Quantum Theory and The Brain

Proceedings of the Royal Society (London) Series A, Volume 427, pages 43-93 (1990)

Abstract A human brain operates as a pattern of switching. An abstract definition of a quantum mechanical switch is given which allows for the continual random fluctuations in the warm wet environment of the brain. Among several switch-like entities in the brain, we choose to focus on the sodium channel proteins. After explaining what these are, we analyse the ways in which our definition of a quantum switch can be satisfied by portions of such proteins. We calculate the perturbing effects of normal variations in temperature and electric field on the quantum state of such a portion. These are shown to be acceptable within the fluctuations allowed for by our definition. Information processing and unpredictability in the brain are discussed. The ultimate goal underlying the paper is an analysis of quantum measurement theory based on an abstract definition of the physical manifestations of consciousness. The paper is written for physicists with no prior knowledge of neurophysiology, but enough introductory material has also been included to allow neurophysiologists with no prior knowledge of quantum mechanics to follow the central arguments.

TeX source, 52 pages, 184K

pdf, 52 pages, 414K.

Matthew J. Donald

The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, Great Britain.

e-mail : mjd1014@cam.ac.uk

home page: http://people.bss.phy.cam.ac.uk/~mjd1014