A Mathematical Characterization of the Physical Structure of Observers.

Foundations of Physics, Volume 25, pages 529-571 (1995).

Abstract It is proposed that the physical structure of an observer in quantum mechanics is constituted by a pattern of elementary localized switching events. A key preliminary step in giving mathematical expression to this proposal is the introduction of an equivalence relation on sequences of spacetime sets which relates a sequence to any other sequence to which it can be deformed without change of causal arrangement. This allows an individual observer to be associated with a finite structure. The identification of suitable switching events in the human brain is discussed. A definition is given for the sets of sequences of quantum states which such an observer could occupy. Finally, by providing an a priori probability for such sets, the definitions are incorporated into a complete mathematical framework for a many-worlds interpretation. At a less ambitious level, the paper can be read as an exploration of some of the technical and conceptual difficulties involved in constructing such a framework.

TeX source, 37 pages, 130K

pdf, 37 pages, 329K

Matthew J. Donald

The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, Great Britain.

e-mail : mjd1014@cam.ac.uk

home page: http://people.bss.phy.cam.ac.uk/~mjd1014