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This thesis describes the design of superconducting magnetic resonance imaging (MRI)
magnets using genetic algorithms. Recent advances in the availability of high performance
computers including Beowulf clusters and supercomputers have allowed the application
of stochastic optimization techniques to highly complex real-world engineering problems.
For this project, a real-coded genetic algorithm (GA) has been written to take advantage
of such parallel architectures and is applied to the design of axisymmetric MRI magnets.

A substantial part of this thesis is dedicated to a general framework for the design
and optimization of axisymmetric MRI magnets. This framework includes a summary of
methods for calculating magnetic fields, forces and stresses. Two novel analytical methods
are also included in this framework. A rapid method for the evaluation of the fringe
field, using spherical harmonic decomposition, is presented. Furthermore, an analytical
approach which measures design sensitivity to engineering tolerances is proposed.

Two particular MRI design configurations are investigated. Firstly, an ultra-short
whole-body MRI magnet design is considered. Conventional MRI magnets have bore
lengths between 1.5 and 2.5 m. This causes problems due to patient claustrophobia and
also impairs access to critically ill patients. Using the GA, an ultra-short whole-body
MRI design is optimized. The resulting design has a bore length of 1.0 m and inner bore
diameter of 0.94 m with a standard deviation of the inhomogeneity over a 40 cm diameter
spherical volume (DSV) of 1 ppm and operates at 1.0 T. It is found that short bore designs
are limited by hoop stress constraints and that the cost of such a design is substantially
higher than for conventional designs.

Secondly, a split-coil MRI magnet suitable for simultaneous positron emission tomog-
raphy (PET) and MRI is considered. Dual-modality PET and MRI is an exciting com-
bination of complimentary imaging techniques, offering detailed in vivo functional and
anatomical information. A split-coil design is optimized and compared to a commercially
produced design. The final design boasts a 20 cm inter-coil gap, with a 16 cm DSV giving
a four-fold increase in the homogeneous imaging volume. This design is currently under
construction and will be installed in the Cavendish laboratory during 2003.
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Chapter 1

Introduction

Since its invention in the late 1970s, magnetic resonance imaging (MRI) has

developed rapidly to become one of the most important imaging modalities

in modern medicine. The ability of magnetic resonance to image arbitrarily

orientated cross-sections of the human body at high resolution has led to its

wide acceptance by radiologists and clinicians. Offering unprecedented soft-

tissue contrast, MRI is currently the method of choice for disease diagnosis

in many parts of the body, especially the brain, spine and joints. The lack

of harmful ionizing radiation or radioactive sources also makes MRI suitable

for repetitive studies. Ultimately, though, the overriding advantage of MRI

is its flexibility. By altering the excitation pulse sequence, a wide range of

images exhibiting different contrasts may be acquired. Examples include pro-

ton density, T1 or T2 weighted, volumetric imaging, flow imaging, diffusion,

perfusion and functional imaging.

During the past twenty years, major improvements have been made to all

parts of the MRI system in order to keep up with the requirements of the new

imaging sequences. The main-field magnet, which is by far the largest com-

ponent of the hardware necessary for MRI, is no exception. Advances have

included higher field strengths, shorter bore lengths and the introduction of

active shielding to reduce the fringe fields. However, the considerable phys-

ical size of these magnets still causes problems. MRI magnets are typically

1.5-2.0 m in length and affect patient compliance due to claustrophobia in

1



Chapter 1

a significant proportion of studies. Furthermore, access to patients in need

of close supervision, due to acute trauma or during intervention, remains

marginal. Various geometries have been investigated in the past to increase

access to the patient during imaging, including ‘C’-shaped magnets. These

magnets often operate at lower field strengths than conventional solenoidal

magnets and suffer from a lower signal to noise ratio, requiring longer scan

times. Therefore, much scope for the improvement of the design of MRI

main-field magnets remains.

This thesis describes my own investigation into the optimization of MRI

main-field magnets using genetic algorithms as a stochastic optimization

method. Traditionally, magnet design has been performed analytically and

much of the expertise has remained hidden from the general scientific com-

munity due to commercial secrecy. However, a significant increase recently

in the availability of computing resources, specifically the advent of high-

performance parallel Beowulf clusters, has enabled the consideration of much

more complex real-world optimization problems. For this project, a genetic

algorithm (GA), capable of exploiting these parallel computer architectures,

has been written1 and applied to the design of axisymmetric MRI magnets.

In particular, two types of novel magnet design have been considered: an ul-

tra short bore whole-body MRI magnet and an animal scale, split-coil magnet

suitable for combined MRI and positron emission tomography (PET).

The immense advantages offered by a simultaneous MRI and PET imag-

ing system are clear. Positron emission tomography is in many ways a compli-

mentary imaging modality to MRI. Whereas MRI offers detailed information

on anatomical structure, PET is fundamentally used for functional imaging.

By labelling various chemicals with positron emitters, PET can assess chem-

ical and physiological changes related to the metabolism. Reconstruction of

simultaneously acquired images would be much simplified and motion blur-

ring artifacts on the PET images could theoretically be deconvolved with

rapid acquisition MRI images.

As well as computational optimization of novel magnet designs, this dis-

sertation contains two pieces of original theoretical work. One deals with a

1The GA was originally written in collaboration with Dr. Moray Grieve.
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method of calculating the magnetic field outside the magnet using a spherical

harmonic expansion technique and the other deals with an analytical approx-

imation of the buildability (or sensitivity to build-errors). These methods are

presented within a framework which also includes a review of the standard

methods of calculating the magnetic field from thick solenoidal coils and a

discussion of the effects of forces and stresses.

Outline of thesis

Chapter 2 contains a basic description of the theory of MRI, starting with

the physical basis for nuclear magnetic resonance (NMR). This is followed by

an explanation of the need for magnetic gradient fields for spatially localizing

the NMR signal and an investigation into the effects of an inhomogeneous

static magnetic field over the region of interest (ROI).

Chapter 3 introduces the concept of optimization using a genetic algo-

rithm (GA). The basic operations involved in a simple GA are presented,

followed by some of the more advanced GA techniques. A taste of GA the-

ory is given by reference to the Schema theorem and finally, the parallel

implementation of GAs is discussed.

Chapter 4 presents a general framework for the design of axisymmetric

MRI magnets. Most aspects of MRI magnet design are covered, including

homogeneity requirements, fringe field evaluation, measurements of sensitiv-

ity to manufacturing errors and evaluation of stresses. Details of two novel

theoretical approaches are considered and relevant proofs are included.

Chapter 5, the first of the two main results chapters, looks at the design

of ultra short bore MRI magnets to reduce the effects of claustrophobia on

patients and improve access for surgeons. Issues about the performance of

the GA are investigated and methods of magnet shimming are examined.

Chapter 6 deals with the application of the GA to animal scale, split-

coil MRI magnets suitable for combined PET and MRI. Improvements to

the original GA are presented and comparisons are made with results from

traditional design techniques.

In Chapter 7, conclusions are drawn and opportunities for future work

3
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are suggested.

Appendix A revisits important work on the evaluation of magnetic fields

from axially symmetric coils. Formulae are remodelled to take account of SI

units and the weighting constants are expressed in Tesla.

Appendix B contains some of the proofs required for the derivation of the

analytical sensitivity formulae presented in Chapter 4.

Finally, Appendix C summarizes a few of the programs that were written

as part of this project to post-process axisymmetric magnet designs.
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Chapter 2

Theory Part I: Magnetic

Resonance Imaging

2.1 Introduction

Details of the basic theory of magnetic resonance imaging (MRI) are pre-

sented in this chapter. After a brief history of MRI, the behaviour of nuclear

spins in a magnetic field is described. Next, the application of a radio-

frequency (RF) excitation pulse to the nuclear spin system is considered, as

well as free induction decay (FID) and signal detection. The main magnet,

gradient coils, RF coils and computer system - all essential components of an

MRI scanner - are then introduced, followed by a description of the magnetic

gradients and their role in spatial localization. The application of magnetic

gradients leads to a discussion of three common imaging sequences: spin

echo, gradient echo and echo planar imaging. Finally, the effects of mag-

netic field inhomogeneity on the acquired signal and the resulting image are

examined.

2.2 The Emergence of MRI

Magnetic resonance imaging has its roots in a series of experiments by Stern

and Gerlach between 1921 and 1933. The most famous of these, in 1922,
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showed that collimated silver atoms passing through an inhomogeneous mag-

netic field separated into two beams of atoms [1] (later explained as spin-up

and spin-down atoms by Pauli in 1924). This experiment indicated the ex-

istence of electronic intrinsic angular momentum and in 1933, an improved

experiment on hydrogen atoms demonstrated a similar effect due to an intrin-

sic nuclear magnetic moment. Twelve years later in 1945 two groups, one led

by Purcell at MIT1 and the other led by Bloch at Stanford University, almost

simultaneously measured nuclear resonance effects [2, 3]. Nuclear magnetic

resonance (NMR) quickly became a key tool of fundamental physics research,

allowing the properties of atoms and their nuclei to be measured accurately.

As the systems under study became more complicated, atomic shielding was

encountered along with the resultant chemical shift artifact, creating a basis

for the enormously powerful NMR spectroscopy techniques currently used in

analytical chemistry.

The major step towards spatially resolved nuclear magnetic resonance

came in the early 1970’s when Lauterbur proposed that magnetic field in-

homogeneities could be used to localize the signals from NMR spectra [4].

Originally termed ‘Zeugmatography’, Lauterbur described the implementa-

tion of a back-projection reconstruction technique. Very soon Kumar, Welti

and Ernst [5] realized that switched magnetic field gradients in the time do-

main could also be used to create an image and they published their method

under the title ‘NMR Fourier Zeugmatography’ which forms the basis for all

modern magnetic resonance imaging. During the late 1970’s, faster scanning

techniques were proposed including echo planar imaging by Sir Peter Mans-

field [6] in 1977. The first human scale NMR images were also taken in 1977

using a machine called Indomitable and in 1980, the first clinically viable

MRI scanners became available.

Although intrinsically insensitive, nuclear magnetic resonance imaging,

or MRI, has grown to become a major rival of the older imaging modali-

ties such as computed tomography (CT) or positron emission tomography

(PET), whilst avoiding the use of potentially harmful high-frequency ioniz-

ing radiation. Indeed MRI is in some senses a form of emission tomography,

1Massachusetts Institute of Technology
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picking up signals created within the imaged object. Other types include

transmission tomography such as X-ray or CT, and diffraction tomography

such as ultrasound. Another incredible aspect of MR imaging, especially

to the physicist, is its ability to image objects well below the characteristic

length-scale of the working frequency. For example, routine scans at 1.5 Tesla

(T) may provide sub-millimetre voxel resolution, using a radio-frequency of

typically 65MHz with 2.5 m wavelength.

Since 1980, advances in magnetic field homogeneity, gradient set perfor-

mance and computational power have all led to a remarkable increase in the

numbers of routine scans. MRI offers superb soft tissue contrast for almost

all parts of the body, all of which may be imaged using a wide range of pulse

sequences. Only in the bones, lungs and possibly the gastrointestinal tract,

does CT outperform MRI, due to lack of signal and the high contrast in

CT of calcification. This chapter reviews the basic physics principles behind

MR imaging. The reader can find further details in any one of several good

references on the subject including Liang and Lauterbur [7] and Suetens [8].

2.3 Physics of Nuclear Spin Systems

A fundamental result of quantum mechanics is that nuclei with odd num-

bers of protons or neutrons possess an intrinsic angular momentum J, often

called spin. Although truly characterized by the equations of quantum me-

chanics, this property can in many ways be classically modelled by a spinning

top. Associated with this spinning is a microscopic nuclear magnetic dipole

moment, ~µ, which is related to the angular momentum by the equation

~µ = γJ (2.1)

where γ is known as the gyromagnetic ratio and is dependent on the specific

nucleus. For example γ̄ = γ
2π

= 42.6 MHz/T for hydrogen (1H) nuclei. The

magnitude of ~µ is then given, based on the theories of quantum mechanics,

by

|~µ| = γ~
√

I(I + 1) (2.2)
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where h (= 2π~) is Planck’s constant and I is the nuclear spin quantum

number which takes the allowable values I={0, 1
2
, 1, 3

2
, 2, . . .}. Nuclei with

I = 0 therefore have no magnetic moment and cannot be probed using NMR.

In the absence of any external magnetic fields, the magnitude of the nu-

clear magnetic dipole is fixed, but its direction is completely random. There-

fore at thermal equilibrium no net nuclear magnetic field exists at the macro-

scopic level. When an external magnetic field (B0), acting along the z axis,

is applied to the nuclear spin system2, the z-component of ~µ is constrained

to take on quantized values given by

µz = γmI~ (2.3)

where mI is called the quantum number and for any nucleus with I 6= 0, mI

takes the following set of 2I + 1 values

mI = {−I,−I + 1,−I + 2, . . . , I} (2.4)

Whilst the longitudinal component of the nuclear magnetic dipole is quan-

tized, the transverse component in the x-y plane is randomly orientated and

has a magnitude given by |~µxy| = γ~
√

I(I + 1)−m2
I . In proton MRI, the

nuclear spin quantum number I = 1
2
, so the components of ~µ can be written

as

| ~µz| =
γ~
2

(2.5)

|~µxy| =
γ~√

2
(2.6)

with each microscopic magnetic vector occupying one of two possible orien-

tations: parallel (spin-up) or anti-parallel (spin-down). As well as causing a

quantization of µz, the magnetic field also causes the nuclear magnetic dipole

to precess. Figure 2.1 shows a classical representation of nuclear magnetic

dipoles, some spin-up and some spin-down, precessing around the z axis. Ig-

2Conventionally, the direction of the external static magnetic field is taken to be parallel
to the z axis.
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2.3 Physics of Nuclear Spin Systems

Figure 2.1: Schematic representation of spin-up and spin-down nuclear mag-
netic moments precessing around the direction of the applied external mag-
netic field (B0).

noring interactions between dipoles, and according to classical mechanics, the

nuclear magnetic dipole experiences a torque and so moves in the following

manner
d~µ

dt
= γ~µ×B0k (2.7)

From (2.7) we can identify γB0 as the frequency of precession and the direc-

tion of precession as clockwise when viewed in the opposite direction to the

magnetic field vector. Therefore, the angular velocity vector, ~ω0 is defined as

~ω0 = −γB0k (2.8)

where ω0 = |~ω0| is called the Larmor frequency. The Larmor frequency is

an intrinsic property of every nucleus and arises from the gyromagnetic ratio

γ. A list of magnetically active nuclei and their properties may be found

in several references (e.g. [7, p.59] and [9, p.7]). For example, the most

common nucleus used for NMR is the hydrogen nucleus (1H), which has a

Larmor frequency of 42.6 MHz in a 1 T magnetic field. As well as precession,
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quantum theory also predicts that each state will have an associated energy

of

E = −γ~mIB0 (2.9)

For spin systems with I = 1
2
, this leads to an energy splitting, commonly

termed the Zeeman splitting

∆E = γ~B0 (2.10)

Returning to the classical description of the nuclear magnetic dipole mo-

ments, which is particularly appropriate on the macroscopic level, we can

define the bulk magnetization vector M of a sample by

M =
Ns∑
n=1

~µn (2.11)

where Ns is the total number of microscopic spins in the system. In thermal

equilibrium, there is a slight excess of spins in the lower energy state and

Boltzmann statistics show that

N↑ −N↓ ≈ Ns
γ~B0

2kBTs

(2.12)

where N↑ and N↓ are the number of spins in the spin-up and spin-down

states, kB is Boltzmann’s constant and Ts is the sample absolute temperature.

Although the difference is small, (2.12) leads to a net bulk magnetization

vector M which points along the z axis, given by3

M0
z = |M| = γ2~2B0Ns

4kBTs

(2.13)

For example, a 1 cm3 sample of H2O in a 1 T field at room temperature

gives a net magnetization of 3.2 × 10−9 Am2. This is comparable to the

magnetization from a 1 cm diameter conductive loop carrying a current of

0.1 mA.

3For general I, M0
z = |M| = γ2~2B0NsI(I+1)

3kBTs
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2.4 Acquiring a Signal

2.4 Acquiring a Signal

Until now, only two components of an NMR experiment have been discussed:

the nuclear magnetic moment and the externally applied magnetic field. We

now consider the excitation of the bulk magnetization vector from its equilib-

rium position. This is followed by an introduction to the relevant relaxation

processes and finally signal detection is discussed.

2.4.1 RF excitation pulse

In equilibrium, the net bulk magnetization vector, M, points directly along

the direction of the magnetic field B0 due to the random phases of the micro-

scopic magnetization vectors. When a radio-frequency electromagnetic wave

is applied to a nuclear spin system in equilibrium, the randomized transverse

components of the microscopic magnetization vector, ~µxy, resonate and estab-

lish phase coherence. Planck’s law states that the energy of electromagnetic

radiation is given by

Erf = ~ωrf (2.14)

For coherent transition of spins, the RF photon energy must equal the

Zeeman energy gap (2.10). Thus for resonance, Erf = ∆E = γ~B0, and

ωrf = ω0 (2.15)

The RF excitation may be thought of as an oscillating magnetic field denoted

by B1(t). In a frame rotating at the Larmor frequency, as long as (2.15) holds,

B1(t) will be stationary and the bulk magnetization vector M will precess

around this new effective magnetic field. For example, an RF excitation

pulse, polarized along the x axis could be expressed as

B1(t) = 2Be
1(t) cos(ωrft + Ψ)i (2.16)
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where Be
1(t) is the envelope function of B1(t) and the magnetization vector

in the rotating frame would move as follows

Mx′(t) = 0 (2.17)

My′(t) = M0
z sin[

∫ t

0

γBe
1(t̂ )dt̂ ] for 0 ≤ t ≤ τP (2.18)

Mz′(t) = M0
z cos[

∫ t

0

γBe
1(t̂ )dt̂ ] (2.19)

where τP is the length of the RF excitation pulse and Mx′ , My′ , Mz′ are

the projected components of M in the rotating frame. Usually the envelope

function of the RF pulse is either rectangular or a sinc function. In the case

of a rectangular pulse of length τP and strength B1, the angle by which the

bulk magnetization vector rotates, also known as the flip angle (α), is given

by

α = γB1τP (2.20)

Figure 2.2 shows the motion of the bulk magnetization vector in both the

rotating frame and the stationary frame. There are complications to this

simple formula for multiple RF excitations, however the basic description

remains the same. See Stark [10] for further details.

2.4.2 Free induction decay

At the end of the RF pulse, the spins in the system enter the epoch of relax-

ation and free induction decay. The bulk magnetization vector continues to

precess around the static magnetic field and relaxes to its equilibrium posi-

tion along the z axis. The exact mechanisms by which this relaxation occurs

are very diverse and complex, but can be ascribed to the interaction of M

with the time-dependent microscopic fields, due to random thermal motion.

This effect is usually separated into two processes, spin-spin relaxation and

spin-lattice relaxation, which are described below.

• Spin-spin relaxation: The transverse component of the magnetiza-

tion relaxes due to the time-dependent microscopic fields from neigh-
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Figure 2.2: Motion of the bulk magnetization vector in the presence of a
radio-frequency excitation pulse as observed in (a) the rotating frame, and
(b) the laboratory frame [7, p.79].

bouring atoms generated by thermal motion. Effectively, spins expe-

rience slightly different magnetic fields and dephase, leading to net

cancellation of the transverse component of magnetization. Spin-spin

interactions can be considered as an entropy driven process, so the dis-

order of the system increases without any change in the occupation of

the energy levels. The relaxation of the transverse component may be

modelled by a single exponential decay with a half-life given by the

time constant T2.

• Spin-lattice relaxation: Concurrently with the relaxation of the

transverse component, the longitudinal component of magnetization

regains its original value due to spin-phonon interactions. This pro-

cess involves energy transfer and consequently occurs over a longer

timescale. Energy transferred to the lattice is absorbed primarily by

vibrations which dissipate as heat4. The spins thus return to their

4The heat produced in this process is inconsequential compared to the heating from
RF absorption.
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preferred lower energy state. Again, the relaxation of the longitudinal

component of the bulk magnetization vector may be modelled using

a single exponential. In this case, the half-life is given by the time

constant T1.

Phenomenologically, the spin-spin and spin-lattice processes may be de-

scribed, together with precession by the Bloch equation [7, p.77]

dM

dt
= γM×B− Mxi + Myj

T2

− (Mz −M0
z )k

T1

(2.21)

or in the rotating frame by the first-order differential equations

dMz′

dt
= −Mz′ −M0

z

T1

(2.22)

dMx′y′

dt
= −Mx′y′

T2

(2.23)

Equations (2.22) and (2.23) may be solved to give the exponential decay of

the transverse component and the return to equilibrium of the longitudinal

magnetization vector. Note that this single-exponential model, especially

in the transverse direction, applies only to weak spin-spin interacting spin

systems such as those found in liquids. Spin-spin relaxation in solids is much

faster and the mechanisms are much more complicated. Finally, if T2 � T1,

then the magnitude of the magnetization vector disappears due to dephasing

effects well before the longitudinal magnetization is regained and hence the

magnitude of M is clearly a function of time.

In practice, the spin-spin interactions will be stronger than expected due,

for example, to slight inhomogeneities in the static magnetic field. When field

inhomogeneity effects are incorporated, the decay of the transverse compo-

nent of the bulk magnetization vector is characterized by a new time constant

known as T ∗
2 . In general T ∗

2 is much shorter than T2 and is given by [7, p.111]

1

T ∗
2

=
1

T2

+ γ∆B0 (2.24)
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Typical values for T1 and T2 vary depending on tissue composition and on

the field strength. In a 1.0 T field, water, CSF, grey matter, white matter

and fat have T1 values of 3000, 2000, 800, 650 and 250 ms respectively. The

same components have T2 values of 3000, 150, 100, 90 and 80 ms respectively

[11, p.222].

2.4.3 Signal detection

Faraday’s law of induction states that a time-varying magnetic flux may be

detected as a voltage in a suitably orientated conductive loop. Specifically

e.m.f = −∂φB

∂t
= − ∂

∂t

∫
S

B .ds (2.25)

where φB is the magnetic flux and the integral is performed over a surface

bounded by the conductive loop. Any conductive loop which resonates at the

Larmor frequency may be used, usually consisting of a simple LC circuit with

a variable capacitor for tuning. The detection sensitivity of the receiver coil

is determined by the principle of reciprocity, so we write the basic formula

of all NMR signal detection

V (t) = − ∂

∂t

∫
sample

B(r) .M(r, t) dr (2.26)

where V (t) is the measured voltage and r is a general point within the

sample. In general V (t) is a fairly high frequency signal so phase sensitive

detection (PSD) is used to move the signal to a lower frequency range. Un-

fortunately, PSD removes information about the direction of rotation so a

second PSD system is usually included with a π
2

phase shift. Signal detection

using two phase sensitive detectors is known as quadrature detection and is

commonly used in most modern MRI scanners. The two signals are identified

as the real and imaginary parts of the complex signal, S(t), and assuming a
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homogeneous coverage of the sample by the reception coil5 we have

S(t) ∝
∫

object

Mxy(r, 0)e−i∆ω(r)tdr (2.27)

See Liang [7, p.99] for more details.

2.5 The MRI System Overview

So far, we have dealt with a basic NMR signal acquired from the entire

sample. However, it is possible, by altering the magnetic field strength across

the sample (i.e. creating a magnetic field gradient), to spatially localize the

acquired signal. By scanning across the sample, images may be created.

This is the basis of magnetic resonance imaging. To understand the concepts

involved, we first examine the main components of an MRI system.

2.5.1 Main magnet

The acquisition of any NMR signal requires the presence of a static magnetic

field. Main magnets for MRI typically operate at between 0.5 and 3.0 Tesla

(T). For low field strengths (< 0.7 T), permanent or resistive magnets may be

used, whilst superconducting magnets are employed for higher field strengths

(> 0.7 T). In general, higher field strengths are preferred due to the better

signal to noise ratio observed and narrower spectral widths6. However, prob-

lems with RF deposition and penetration limit, to a certain extent, the use

of very high field strengths (> 4.0 T).

At the centre of the main magnet is an area of high field homogeneity

called the region of interest (ROI). Typically, the ROI is spherical and ex-

hibits an inhomogeneity in the magnetic field strength of less than 1-10 ppm

over a 40-50 cm diameter spherical volume for human scale whole-body imag-

ing. The term region of interest is often used interchangeably with diameter

5Non-homogeneous RF receiver coil reception is the key to the parallel imaging tech-
niques such as SMASH [12] and SENSE [13]

6A notable exception to this is work by Agic et al. [14] at ultra-low field strength.
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Figure 2.3: Schematic of a z gradient coil and the effect on the static main
field strength. Gradient strength is given by Gz = ∂Bz

∂z
.

spherical volume (DSV) as both represent the area of high homogeneity where

imaging occurs.

2.5.2 Gradient coils

The gradient coil system is the workhorse of an MRI scanner. It usually con-

sists of three orthogonal coils which provide spatial resolution of the NMR

signal by altering the magnetic field strength in a nonuniform manner. Ne-

glecting any fields in the transverse direction, the coils create gradients in

the magnetic field strength given by ∂Bz

∂x
, ∂Bz

∂y
and ∂Bz

∂z
. An example of a

z gradient set is shown in Figure 2.3. Typical gradient field strengths are

10-30 mT/m with rise times of the order 0.5 ms.

2.5.3 RF coils

The radio-frequency coils perform two important tasks. The transmit coil

produces an RF excitation field, known as the B1 field and the receive coil
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acquires an electrical signal from the precessing bulk magnetization vector.

In certain cases, the transmit and receive coils are the same. In solenoidal

magnets, the transmit and receive coils are saddle shaped, although an alter-

native design, the birdcage coil is becoming more widespread. Usually, the

receive coils are specially constructed for the area of body being imaged due

to noise considerations and improvements in signal strength.

2.5.4 Computer system

A computer system is required for the overall control of the operation of

an MRI system. Computers are involved in the control of gradient pulse

sequences and the shaping and timing of RF pulses as well as data collection,

manipulation and storage. Large amounts of data are likely to be created on

a well used MRI system in a clinical situation and auto-archiving systems

are now commonplace.

2.6 Signal Localization

The major difference between MRI and conventional NMR studies is the ap-

plication of time-varying magnetic gradient fields to the sample. By imposing

a linear variation on the z component of the magnetic field strength in the x,

y and z directions, spatial information about the distribution of the nuclear

spins may be obtained.

2.6.1 Slice selection

Many pulse sequences in MRI begin with a slice (or slab) selection gradient.

A linear field gradient, Gz, is applied in the z direction resulting in a z

dependent distribution of resonant frequencies. By altering the excitation

frequency, it is therefore possible to acquire signals from different slices of

the sample without any movement. The slice thickness, ∆z, is given by

∆z =
∆ω

γGz

(2.28)
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where ∆ω is the RF pulse bandwidth. Due to limitations on gradient field

strength, limits to the power of the RF pulses and their duration, the min-

imum slice thickness is about 2 mm in 1.5 T and 3 mm in a 1.0 T MRI

system.

2.6.2 Frequency and phase encoding

Whilst the slice selection gradient gives resolution in the z direction, to obtain

spatial resolution in the remaining two dimensions (x and y), it is necessary to

introduce the mathematical concept of k-space or reciprocal space. When a

magnetic gradient G is applied to a sample, the angular frequency of rotation

in the rotating frame is

ω(r) = γ G · r (2.29)

where r is a general three dimensional position vector. The signal received

therefore becomes [9, p.348]

S(t) =

∫
sample

ρ(r)e−iγ
∫ t
0 G(τ).r(τ) dτ dr (2.30)

which is exactly the Fourier transform of the spatial distribution of spin

density if we define the k vector as [7, p.160]

k(t) =
γ

2π

∫ t

0

G(τ) dτ (2.31)

In order to produce a complete two dimensional image of an excited slice,

it is necessary to sample the whole of k-space. Different sampling methods

require different pulse sequences.

2.7 Pulse Sequences

There are a wide range of methods available to sample k-space. This is one

of the advantages of MRI as each pulse sequence potentially offers a different

contrast mechanism. In this section three of the most common imaging
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sequences are briefly described. See Brown [15] for a good overview of the

range of available pulse sequences.

2.7.1 Spin echo imaging

In 2DFT7 spin echo imaging, a single line of k-space is acquired for every

RF excitation pulse. In the simplest case, the primary RF pulse rotates the

magnetization vector by 90◦, removing any longitudinal component. Field

inhomogeneities and spin-spin interactions dephase the transverse magneti-

zation vector on the time scale given by T ∗
2 (see Section 2.4.2), so to refocus

these spins, a 180◦ pulse is applied at a time TE/2 which leads to an echo at a

time TE after the initial RF pulse. Spatial encoding is achieved by applying

gradients to manœuvre to the appropriate location in k-space using (2.31).

Specifically, there are two dimensions which remain to be resolved. The first

is resolved by frequency encoding. During signal acquisition, a gradient (Gx)

is applied causing the spins to rotate at different frequencies across the sam-

ple in the x-direction. The second is resolved by phase encoding. A single

application of gradient Gy straight after the slice selection RF pulse affects

the phase of the spins across the sample in the y direction. Figure 2.4 shows

the relative timings of the three gradients, the RF pulse and the signal ac-

quisition. In the figure, each gradient is named using a term which describes

its use in the 2DFT spin echo sequence. Thus, the terms slice selection (Gz),

phase encoding (Gy) and frequency encoding (Gx) are used. As the data is

acquired in k-space, it must be Fourier transformed to create the final image.

Figure 2.5 shows an example of some raw data acquired in k-space and the

resulting real-space image.

The major advantage of spin echo imaging is that, by refocusing the spins

with a 180◦ RF pulse, it is possible to overcome the decay in signal strength

due to field inhomogeneities and thus the signal decay is governed by the time

constant T2 rather T ∗
2 . However, spin echo imaging suffers from a relatively

long acquisition time.

72-dimensional Fourier transform
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Figure 2.4: Spin echo pulse sequence showing the timing of the RF pulses,
the linear gradients and the signal acquisition.

Figure 2.5: Example of (a) the acquired k-space data (magnitude) and (b)
the corresponding real-space image. Each image contains 128×128 pixels.
Courtesy of Pon Satangput.
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2.7.2 Gradient echo imaging

It is also possible to refocus the spins using gradients. The echo occurs when

the positive and negative contributions of a gradient, usually the frequency

encoding gradient, cancel [15, p.60]. Although magnetization is recovered,

gradient echoes cannot reduce the effects of inhomogeneity of the static mag-

netic field. Once again, it is necessary to sample the whole of k-space. This

is done by varying the magnitude of the phase encoding gradient after every

RF pulse.

Two factors make gradient echo imaging faster than spin echo imaging. A

small flip angle is generally used and no refocusing 180◦ RF pulse is required.

A further advantage is that the RF energy deposition is reduced. Gradient

echo sequences usually result in heavily T1 weighted images.

2.7.3 Echo planar imaging

Fastest of all imaging sequences is echo planar imaging (EPI), in which the

whole of k-space is sampled within the T ∗
2 decay envelope from a single

RF pulse. The image, which may be acquired in under 100 ms, is created

by scanning k-space in a raster fashion, using continuous oscillation of the

frequency encoding gradient to create multiple echoes. In between each echo,

the phase encoding gradient in pulsed, moving the location in k-space vector

along in the ky direction [15, p.68].

Echo-planar imaging is characterized by low resolution, low signal to noise

ratio and images which are highly susceptible to field inhomogeneities or

chemical shift effects. However, the power of such a rapid imaging technique

and the continuous improvement in hardware, especially gradient hardware

have made EPI an incredibly useful imaging sequence.

2.8 Effects of Field Inhomogeneity

NMR imaging is a technique with very high specificity due to an intrinsic

property of the nucleus: the gyromagnetic ratio. The hydrogen (1H) nu-

cleus, as already discussed, has a gyromagnetic ratio of 42.6 MHz/T and
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other nuclei will have different resonant frequencies such as 31P which has a

gyromagnetic ratio of 17.3 MHz/T [15, p.3]. Due to the natural abundance

of 1H nuclei in clinical situations, almost all MRI is performed using pro-

tons. When a group of nuclei are simultaneously excited at exactly the same

frequency, they are collectively known as an isochromat.

In practice, a sample will not respond as a single isochromat exactly

at the Larmor frequency. Instead, the existence of magnetic field inhomo-

geneities and the chemical shift effect will lead to a spreading of the resonant

frequency. The chemical shift effect is due to the chemically heterogeneous

environments of the individual spins. Each nucleus is ‘shielded’ to a cer-

tain extent by orbiting electrons and any interaction with neighboring atoms

through chemical bonds will increase or decrease this shielding. Thus, each

nucleus experiences a slightly different magnetic field

B̂0 = B0(1− δ) (2.32)

and ω̂0 = ω0(1− δ) (2.33)

where δ is usually of the order a few ppms. For example ‘fat’ protons (CH2)

display a 3.5 ppm shift from ‘water’ protons. If the maximum chemical shift

is represented by ωM , then the chemical shift bandwidth of the spin system

is given by

|ω − ω0| =
ωM

2
(2.34)

The effect of inhomogeneities in the magnetic field cause a decrease in the

time constant for the signal decay, see (2.24). In severe cases, where the

transverse decay is effectively instantaneous, complete signal loss from re-

gions of the image can be expected. Less severe consequences include image

warping, image blurring and poor slice selection. These artifacts can be dealt

with using correction algorithms if they are sufficiently small, however, large

scale signal loss cannot be recovered by any image post-processing. Fortu-

nately, unlike the dephasing effect of the time-variable microscopic spin-spin

interactions, the dephasing due to the static magnetic inhomogeneities may

be reversed by applying a spin echo RF pulse (Section 8). Thus a spin echo
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Figure 2.6: Example of the frequency spectrum for a sample in an inhomo-
geneous magnetic field B(z) = B0 + z3. The calculated spectral function is
in practice smoothed by sensitivity and accuracy limits.

sequence can sometimes be used when no image is possible with a gradient

echo or echo planar sequence.

Another effect of field inhomogeneity is to alter the frequency spectrum

of the received signal, such as the signal from proton NMR spectroscopy. To

examine this, let us define the spin spectral density function ρ(ω) such that

M =

∫ ∞

−∞
ρ(ω) dω and (2.35)

S(t) =

∫ ∞

−∞
ρ(ω)e−t/T2(ω)e−iωt dω (2.36)

Now if, for example, a uniform sample with spin concentration c(z) = ρ0Π(z)

is placed in an inhomogeneous field B(z) = B0+z3, we can pick an isochromat

at an arbitrary position z and write its resonance frequency as

ω(z) =

{
γ(B0 + z3) |z| ≤ 0.5

0 otherwise
(2.37)

Substituting this into (2.36) gives

S(t) =

∫ 1/2

−1/2

ρ0e
−t/T2e−iγ(B0+z3)t dz (2.38)
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2.8 Effects of Field Inhomogeneity

and using a change of variable, ω = γ(B0 + z3), we recover an expression for

the spin spectral density function

ρ(ω) =

{
ρ0

3γ1/3(|ω−ω0|)2/3 |ω − ω0| < γ/8

0 otherwise
(2.39)

The extent of the sample and the inhomogeneous field are shown in Figure

2.6 along with the resulting frequency spectrum of the received signal. In gen-

eral8, asymmetric lineshapes result from misadjusted even-powered Z shims,

whilst symmetrically broadened lines are usually the effect of misadjusted

odd-powered Z shims such as Z3 or Z5.

8In NMR experiments where the samples are spinning, more exotic side bands may
appear at shifted frequencies due to X,Y ,ZX and ZY inhomogeneities. Second order
bands are a consequence of X2 − Y 2 and XY inhomogeneities. As the samples are not
spun in MRI, this effect is not seen.
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Theory Part II: Genetic

Algorithms

3.1 Introduction

This chapter presents an introduction to the concepts and some of the basic

theory behind genetic algorithms (GAs). Firstly a simple GA is described in

detail and each stage of the optimization process is considered. GAs are pre-

sented as a series of operators acting on possible solutions to the optimization

problem. The idea of constrained optimization is then examined and various

methods of applying the constraints are presented. Next, some advanced GA

techniques are introduced including elitism, sharing and crowding. A brief

description of the theory behind GAs is presented which introduces the con-

cept of building blocks and an important cornerstone of GAs: the Schema

Theorem. Finally, some of the advantages of implementing GAs on parallel

computer architectures are considered.

Genetic algorithms [16] are optimization techniques based on simulating

the natural adaptation of biological systems to their environment. They are

closely linked to the ideas of natural selection and survival of the fittest, first

proposed by Darwin. Acting as a direct search method, GAs require only an

evaluation of the objective (or fitness) function, whereas other optimization

methods often involve the determination of the function gradients. Although
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gradient based searches tend to locate an optimum faster for smoothly vary-

ing, single modal functions, they fail to perform well on discontinuous or

non-differential problems [17]. This makes genetic algorithms important for

real-world engineering design applications, where little information is known

a priori about the fitness landscape. Another key advantage of genetic algo-

rithms is their ability to deal with discrete values. Both of these reasons make

genetic algorithms a logical choice as the optimization method in the design

of novel magnetic resonance imaging magnets. Further details of comparisons

between genetic algorithms and other stochastic optimization techniques can

be found in Fisher, 1996 [18] and Williams, 2001 [19].

3.2 The Simple Genetic Algorithm

The execution of a simple genetic algorithm consists of five stages (or op-

erators): initialization, evaluation, selection, recombination and mutation.

Of these five stages, the last four are iterated, once every generation, until

convergence criteria are met or a time limit expires. Figure 3.1 illustrates

the basic sequence of events in a genetic algorithm. There are a myriad of

possible implementations of the basic genetic algorithm, most of which are

beyond the scope of this thesis. However, by taking each of the five main

stages of the genetic algorithms in turn, key differences in approaches will be

highlighted.

3.2.1 Coding the genetic information

Before exploring the details of the flowchart in Figure 3.1, the encoding of the

optimized parameters must be examined. Any optimization problem may be

cast in the following form

Find ~x which optimizes f(~x) (3.1)

subject to

gi(~x) ≤ 0, i = 1, . . . , n (3.2)
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3.2 The Simple Genetic Algorithm

Figure 3.1: A flowchart showing the different stages of a simple genetic algo-
rithm.

29



Chapter 3

Figure 3.2: Illustration of the formation of the chromosome structure in (a)
binary encoded GAs and (b) real coded GAs.

hj(~x) = 0, j = 1, . . . , p (3.3)

where ~x = [x1, x2, . . . , xr]
T is a vector consisting of the parameters to be

optimized, f(~x) is the function to be optimized, n is the number of inequality

constraints and p is the number of equality constraints. If the entire search

space is given by S and the feasible region of the search space by F , then

F ⊆ S. The functions f(~x), gi(~x) and hj(~x) may be linear or non-linear

combinations of the r parameters x1, . . . , xr.

These parameters (x1, . . . , xr) are encoded into a string, known as a chro-

mosome, which acts as the primary data structure. Encoding schemes vary

between genetic algorithms and the parameters may be stored in binary or

real-number format. A binary encoded genetic algorithm converts each pa-

rameter into a binary string whose length is determined by the required ac-

curacy and range. The binary strings are then concatenated with the other

parameters to form a single string which represents the vector ~x (see Fig-

ure 3.2a). Binary encoding is usually associated with the simplest form of

the genetic algorithm and leads to the formation of the building block schema
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3.2 The Simple Genetic Algorithm

theorem proposed by Holland [20, 21]. On the other hand, real-coded genetic

algorithms (RCGA) have become popular recently for engineering optimiza-

tions [22]. RCGAs create a chromosome by concatenating the real number

parameters into a single data structure. The data structure may include

integers as well, depending on the parameters encoded (see Figure 3.2b).

3.2.2 Initialization

There are two methods of initializing a GA population. The first is by far

the most common method and allocates members of the population entirely

randomly throughout the search space. The second method is to seed the

GA with solutions which require prior knowledge about the problem. For

example, a previously calculated solution may be used as a template for the

entire population. Then, small random mutations are applied to each of

the parameters to create a cluster of solutions around the initial solution.

The other important factor in the initialization stage is the definition of the

population size. Too large a population will unnecessarily prolong the search,

whereas too small a population is likely to lead to premature convergence in

the vicinity of a local minimum.

3.2.3 Fitness evaluation

The fitness evaluation step determines the shape of the search space and is

often very tricky to construct in real-world optimization problems. Whereas

optimization of simple mathematical functions may be straightforward, in

real-world optimizations, the objective function is usually a combination of

several competing factors. This leads to a messy and often indecipherable mix

of objectives, all combined into a single overall solution fitness. If weights are

associated with each of the m competing functions, fk(~x), to be minimized

we write

Optimize f(~x)

where f(~x) =
m∑

k=1

wk fk(~x) (3.4)
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The weights, wk, may be part of the original problem description or may

have to be set by repeated runs of the genetic algorithm until a suitable

balance of the required objectives is reached.

3.2.4 Selection

This stage is inspired directly from Darwin’s theory of survival of the fittest.

Members of the population are selected depending on their fitness and pass

into a so-called parent pool, which undergoes the remaining operations of

crossover and mutation, before being replaced in the general population.

Several methods of selection are represented in the GA literature [16]

1. Tournament selection: two or more members of the population are

chosen and their fitnesses are compared. The one which performs better

is selected to have a copy placed in the parent pool. Both members are

replaced in the population so multiple copies of a single member may

be placed in the parent pool. This method has the property that the

worst member of the population is never chosen. When two members

are chosen from the population for comparison, this method is known

as binary tournament selection.

2. Roulette-wheel selection: the probability of choosing a member of the

population is directly proportional to its relative fitness compared to

the average fitness of the population. Fitter members of the population

therefore have a natural tendency to be selected.

3. Ranking selection: the probability of selection is proportional to the

rank of the member within the population. This is similar to roulette-

wheel selection except that the calculated fitness values are not impor-

tant. This leads to a more consistent selection process.

4. Deterministic sampling: a selected percentage of the total population

is chosen from predetermined ranks of the ordered population. This

method is simple and straightforward to implement. For example the

top half of the population may be placed automatically into the parent

pool.
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3.2 The Simple Genetic Algorithm

3.2.5 Recombination

Recombination is the process which now operates on solutions which have

been passed into the parent pool. Two solutions are chosen at random from

the parent pool and a random number χ ∈ {0, 1} is created. If χ ≤ pc,

where pc is the probability of recombination, then crossover occurs, otherwise,

if χ > pc then the two chromosomes are placed, unaltered, into the next

generation.

If crossover occurs in a binary encoded GA, a random site n is chosen

along the chromosome string of length N , such that n ∈ {0, 1, . . . , N − 1}.
The chromosome contents are copied directly to the offspring for all sites until

the crossover point, after which, the genetic material is swapped between the

two solutions (see Figure 3.3). The two offspring chromosomes are then

placed into the next generation. Such a crossover is known as a single-point

crossover operator. A two-point crossover operator may also be used whereby

the genetic material between the two crossover points is swapped between

the chromosomes. Recombination of the genetic material is very similar to

choosing the best parts of two designs and seeing what happens if they are

put together. Often the result will not be as fit, but occasionally, the result

is better than the original at which point the overall fitness of the population

will improve.

In real-number representation, recombination acts slightly differently.

When a crossing point is chosen, there are two possibilities

1. In the first case, the crossing point lies at the boundary between two

parameters. In this case, recombination is very similar to the binary

method. The first offspring receives the first part of parent 1, and

the second part of parent 2. Whilst the second offspring receives the

remaining genetic information.

2. In the second case, the crossing point may lie within a single parameter.

The most common way of dealing with this situation is using a crossover

operator called BLX-α [22]. If the parameters of the two parents are

given by xi and xj with, for example, xi < xj, then the offspring pa-

rameter is randomly assigned a value in the range {xi − αd, xj + αd},
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Figure 3.3: Schematic representation of a single point crossover in a binary
encoded GA.

Figure 3.4: A real coded crossover operator, BLX-α. The offspring parameter
is chosen with uniform ditribution over the range {xi − αd, xj + αd}.

where d = (xj−xi) (see Figure 3.4). If the offspring is assigned a value

in the range {xi, xj} then exploitation is said to have occurred. If the

offspring is assigned a value between {xi − αd, xi} or {xj, xj + αd},
then exploration is said to have occurred. This balance between explo-

ration and exploitation is crucial and can be controlled by altering the

parameter α. When α = 0.5, there is equal probability of exploration

and exploitation.
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3.3 Constraint Handling

3.2.6 Mutation

After crossover, the chromosomes undergo mutation, thereby introducing

new genetic material into the population. In binary encoded GAs, the mu-

tation operator is very simple to understand. Each prospective member of

the next generation must pass through a random process which flips a single

bit with a given probability, say pm. The spread of where the mutated chro-

mosome bit string will map to in real space, compared to its pre-mutated

location, depends on the type of encoding.

With binary encoding, one quickly recognizes the appearance of the Ham-

ming Cliff problem [16]. For example, the binary string ‘10000’ (representing

16) must mutate all 5 bits to decrement its represented value by 1. Clearly,

as pm is in general a small number, the chances of altering all 5 bits are very

slim. Figure 3.5a illustrates this problem and the dark region which runs

diagonally across the diagram represents mutations which are particularly

unlikely.

A way of avoiding this is to implement Gray binary encoding. In this

encoding, any two adjacent numbers may be reached by the flipping of a

single bit. Thus, the Hamming Cliff problem is avoided and, as illustrated

in Figure 3.5b, the dark regions representing unlikely mutations are more

widely dispersed, especially away from the diagonals.

In real-number encoded GAs, the action of the mutation operator is sim-

ulated by the application of a Gaussian distributed random variable. The

spread of this mutation may be controlled by the standard deviation of the

distribution, σm and, for comparison, the effect of a Gaussian distributed

mutation operator is shown in Figure 3.5c.

3.3 Constraint Handling

Although it may be possible to pose simple problems in an unconstrained

manner, many practical optimizations require several constraints or limits to

be applied. A solution which violates one or more of these constraints is said

to be unfeasible. Many researchers in evolutionary computing have examined
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Figure 3.5: Illustration of mutations using different encodings. The value
before mutation is plotted on the x axis and the value after mutation on the
y axis. The probability of a particular mutation is given by the shading:
white represents the most likely and black represents the least likely. Three
possible encoding methods are shown, (a) binary encoded (b) Gray encoded
(c) real number encoded.

36



3.3 Constraint Handling

ways of dealing with constrained optimization and detailed surveys exist on

the various techniques currently employed [23, 24]. In this section, only a

few of the most common constraint handling methods are introduced.

By far the most used constraint handling method in GAs is the penalty

method [16]. A penalty function is added to solutions which violate one or

more of the constraints, thereby degrading their solution fitness [16, 18, 19].

Thus

f̄(~x) =

{
f(~x) +

∑n
i=1 wiΦi(f(~x)) for unfeasible solutions

f(~x) for feasible solutions
(3.5)

In some cases, the penalty function, Φ(r(~x)), may be a constant and in

other cases it may be a measure of the unfeasibility of the solution. For each

constraint, wi is a measure of its importance. The main advantage of this

method is its simplicity. However, many extra parameters are introduced

which can be difficult to set and usually require some prior knowledge of the

level of constraint violation. Furthermore, the inclusion of penalty functions

warps the search space, which may be an undesirable side-effect.

Another very commonly used method is the rejection of unfeasible solu-

tions, known as the death penalty method [23]. Every new solution created

by the recombination and mutation operators is checked for constraint com-

pliance. If the new solution violates one or more constraints then it is re-

jected and the operator is repeated iteratively until all constraint conditions

are met. In optimizations which include a high proportion of unfeasible re-

gions, this method can be very inefficient. However, implementation is very

straightforward.

Thirdly, a novel method from Schoenauer and Michalewicz [25] may be

used. The idea is to only search regions which lie close to the boundary

between feasible and unfeasible solutions. Many constrained problems have

global optima close to or directly on the boundary of at least one of the

constraints. By focusing on these boundaries, the effectiveness of the search

may be dramatically improved. Clearly, this type of approach is only possible

where the global minimum is known (or at least suspected) to lie on the
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Figure 3.6: Heuristic constraint handling method. Six solid circles represent
solutions in a GA population. f(x) is the unconstrained fitness. The dotted
line, g(x), is the applied penalty function and the modified fitness of each
solution is given by the heavily dashed line, F(x). Reproduced from [17].

boundary of the feasible region. Also, this method provides no possibility to

pass between unconnected feasible regions. However, in applicable situations,

this method is efficient and produces good results [23].

Finally, heuristic rules may be applied to the evaluation of constraints.

One such method, formulated by Deb [17], involves the following set of rules

• Any feasible solution is preferred to any unfeasible solution.

• Among two feasible solutions, the one having the better objective func-

tion value is preferred.

• Among two unfeasible solutions, the one having the smaller constraint

violation is preferred.

The effect of this method is to converge rapidly on feasible regions of the

search space whilst generally avoiding unfeasible regions during the opti-

mization. An example of the operation of this constraint handling method

is shown in Figure 3.6.
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3.4 Advanced GA Methods

The basic operators used in a simple genetic algorithm have been described

in the previous sections. In an attempt to improve the performance, both

in terms of efficiency and flexibility, numerous modifications have been pro-

posed [16, 26]. This section briefly describes some of the more widespread

advanced GA methods.

• Elitism is commonly applied to a simple GA to prevent good solutions

being lost. The elitist operator automatically includes the best indi-

vidual from one generation in the next generation, bypassing the usual

recombination and mutation operators.

• Sharing is the degradation of a particular individual’s fitness due to

the proximity of other individuals [16, 27]. In other words, a solution

which is in the same neighbourhood as several other solutions will not

be as fit as a similar solution without any near neighbours. One can

think of sheep grazing on a hill side. If a single sheep finds a lush area,

its fitness increases. However, if many sheep decide to also graze the

same lush region, the amount of grass per sheep will be less and each

sheep will have a lower fitness. When applied, this method tends to

force the optimization away from premature convergence. Mathemati-

cally, the shared fitness fs(xi) is given by

fs(xi) =
f(xi)∑n

j=1 s(d(xi, xj))
(3.6)

where d(xi, xj) is a measure of the separation of the n solutions and s

is the sharing factor. Although sharing is useful for avoiding premature

convergence, it can be lengthy to calculate and the fitness of a specific

location depends not only on the function being optimized, but also

on the number of near neighbours in the population. This can lead

to inconsistent fitness evaluations and poor exploitation of a particular

optimum.
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• Crowding is a similar method to sharing, but involves less calculation

and is considered a ‘softer’ version of sharing [27, p.70]. The method

was introduced by DeJong [28] in 1975 and uses the idea that, by

forcing individuals to take the place of similar individuals in the next

generation, higher levels of population diversity may be maintained.

Typically, for every offspring, 2 or 3 individuals are chosen at random,

where the number chosen is called the crowding factor. The Hamming

distances, d(xi, xj), are calculated and the most similar individual is

then replaced by the offspring. Although on average, the effect of a

crowding scheme is to allow niches to form, the effect is less dramatic

when compared to sharing, as offspring may well replace individuals

from other niches [29, p. 5].

Closely linked to crowding is the technique of mating restriction [30],

where recombination is only permitted with a similar individual, cal-

culated using the Hamming distance.

Many other advanced GA techniques exist including diploid or polyploid

GAs, adaptive GAs, hybrid GAs and multi-objective GAs. Details of these

techniques may be found in [16, 27, 31, 32].

3.5 The Schema Theorem

The discussion of schema theory is necessarily brief and offers merely a taste

of the possible power of genetic algorithms. Originally formulated by Hol-

land, the theory presented here is tailored from Goldberg’s book [16] and

concentrates on the binary encoded simple genetic algorithm.

Consider first an extended binary alphabet {0, 1, ∗} where the ∗ symbol

represents the ‘don’t care’ symbol. Strings made up from this extended

alphabet are called schemata and can be matched to actual chromosomes by

comparing the individual bits, implicitly accepting either a 0 or a 1 when

there is a ∗ in the schemata. Certain schemata will encode clear similarities

between chromosomes and these schemata will naturally be passed on more

readily to the next generation.
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If we consider for example two schemata of length 5, 1 ∗ ∗ ∗ 0 and ∗ ∗ 11∗.
The first of these is much more likely to be disrupted by recombination

or crossover than the second, which will tend to pass through to the next

generation unmodified. Mutations usually have a much smaller effect and will

tend to affect both schemata only slightly. From this it may be shown that

highly-fit, short-length schemata are propagated most effectively whereas

low-fitness or long-length schemata tend to disappear quickly. Highly-fit,

short-length schemata are called building blocks and the optimal solution is

usually a combination of these building blocks. This is called the building

block hypothesis. It turns out that for a population of size n, requiring n

fitness evaluations per generation, about n3 schemata are usefully processed

per generation. This implicit parallelism is one of the unique advantages of

genetic algorithms [21, 33].

In schema theory, two measures play an important role, the order of

individual schema and their defining length. The order of a schema (H) is

the number of fixed elements in the schema, written as o(H) and is used to

consider the effects of mutations. The defining length, δ(H), is the distance

between the first and last fixed elements in the schema and is a measure of

the probability of a particular schema being disrupted during recombination.

For example, the schema H1 = 10∗∗0 has o(H1) = 3 and δ(H1) = 4 whereas

the schema H2 = ∗ ∗ 10∗ has o(H2) = 2 and δ(H2) = 1. The probability of

a schema being disrupted during recombination at every generation is

pc
δ(H)

l − 1
(3.7)

where l is the length of H. Similarly, the probability of the schema being

disrupted during mutation for a single generation may be calculated

o(H)pm (3.8)

At a certain time, t, if the schema H occurs m times in the population,

then we can form a lower bound on the expected occurrence of H in the next
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generation [16, p.33]

m(H, t + 1) ≥ m(H, t) · f(H)

f̄

[
1− pc

δ(H)

l − 1
− o(H)pm

]
(3.9)

where f̄ is the average fitness of the entire population and f(H) is the average

fitness of the strings representing schema H at time t. The conclusion to be

drawn from (3.9) is that short, low-order, above-average schema are by far

the most likely to survive and will therefore form the building blocks of any

solution. This statement is known as the Schema Theorem or Fundamental

Theory of Genetic Algorithms.

A genetic algorithm’s success depends upon the recombination of building

blocks to seek better function values. If the building blocks are misleading

due to the use of an unsuitable coding scheme, then the efficiency of the

genetic algorithm may become reduced and the algorithm will tend towards

a limited random search.

3.6 Parallel Implementation

One of the most appealing qualities of genetic algorithms is their intrinsic

parallel nature. To take advantage of this, the fitness evaluation routine may

be spread over a parallel computing architecture. Although there must still

remain some serial processing associated with the selection, recombination

and mutation operators, for real-world optimization problems with complex

fitness evaluation routines, these operators are often a negligible part of the

overall run-time.

There are many ways of categorizing parallel genetic algorithms (pGAs)

and often a division is drawn between coarse-grained and fine-grained mod-

els [34, 35]. Coarse-grained pGAs come in two flavours. The first, consists

of multiple subpopulations, where each subpopulation evolves in an isolated

or semi-isolated manner. This method is also known as the island model GA

and each subpopulation is called a deme. A second coarse-grained method

is the master-slave configuration, where the recombination and evaluation

steps are shared out to individual processors, whilst the master processor
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maintains control over the selection operations. Figure 3.7 illustrates these

two coarse-grained pGA models.

Fine-grained pGAs divide the population into much smaller subpopula-

tions, often containing only 1 or 2 individuals, and implement a network

of communications in the vicinity of each subpopulation for selection and

recombination, [29, p. 139] and [36, p. 67].
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Figure 3.7: Two methods are shown for parallelizing GAs. In (a), the master-
slave paradigm is used, where the fitness evaluation operation is shared in
parallel. In the island model (b), GAs are operated in parallel with possible
migration between demes at predetermined intervals.
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Design Framework for

Axisymmetric Magnet

Optimization

4.1 Introduction

In order to create and compare axisymmetric magnet designs, it is necessary

to define criteria by which potential designs can be judged. In this chapter, a

robust and detailed framework for considering the problem of axisymmetric

magnet design is presented. Whilst most of what is presented can be applied

to general axisymmetric magnet design, emphasis is particularly placed on

the task of MRI main-field magnet design. The framework covers:

• Magnetic field evaluation, especially related to the homogeneous central

region.

• Fringe-field evaluation methods, including a novel theoretical approach

to rapid fringe-field calculation.

• Design sensitivity to build errors, including a Monte Carlo method and

a novel analytical approach.

• Force and stress calculations, both approximations and finite element

methods.
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• Stored energy, inductance calculation and quench modelling.

• Physical constraints such as magnet size and wire volume.

The main aims of this chapter are to draw together previous work on ax-

isymmetric MRI magnet design into a coherent framework and to present

two pieces of original and as yet unpublished theoretical work contained

within Sections 4.3 and 4.4.

4.2 Magnetic Field Evaluation and Central

Field Homogeneity

Accurate methods to evaluate the magnetic field produced by axisymmetric

coils are important in all magnet design work. For MRI magnet design, accu-

racy is particularly important as the intrinsic inhomogeneity of the imaging

region should be equal to or less than the susceptibility inhomogeneities in-

duced by the patient [37]. Typically, in an MRI magnet with a 1.5 T central

field (B0 = 1.5 T ), the magnitude of the inhomogeneity is in the range 1.5

to 30 mgauss (or 0.1 parts per million (ppm) to 2 ppm) over the imaging

region and therefore, calculations should be accurate to at least 1 part in

108. In general, the homogeneous region in the centre of an MRI magnet

is known as the region of interest (ROI) or the diameter spherical volume

(DSV). Usually, spherical ROIs are used for optimization, but recent work

has shown the feasibility of non-spherical geometries [37].

The remainder of this section introduces several methods currently in use

for magnetic field evaluation [38, 39, 40].

4.2.1 Direct Biot-Savart integration

To evaluate the field produced by a thick solenoid, the simplest method

uses the Biot-Savart law directly. The evaluation of the Biot-Savart law for

any configuration of wires is a fairly straightforward exercise. Coordinate

systems, though, used for the evaluation of the magnetic fields can be rather

confusing. In this chapter, two systems are employed - Cartesian coordinates
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Figure 4.1: Comparison of Cartesian coordinates with spherical coordinates.

and spherical coordinates. Figure 4.1 shows the relationship between the two

systems. As an example, the expression for the magnetic field from a loop

carrying a current, I, is [41]

B =
µ0I

4π

∫ 2π

0

ds× (r′ − r)

|r′ − r|3
(4.1)

where r′ is the vector to the current source, r is the position vector of the

observation point, ds is a vector around the loop and µ0 is the permeability of

free space. Numerous references are available in which formulae are derived

for other geometries such as arcs and straight-line segments [18, 41].

In some optimization processes such as when designing gradient coils, it

is sufficient to model the coils as a collection of infinitely thin loops, arcs and

segments [18, 19]. However, for the main field magnets, the coils must be

approximated as thick windings, carrying an evenly spread current density.

Thus, the current in a single loop, I, is replaced by the effective current,

J ′′dz′dx′. For the case of an axisymmetric thick coil around the z axis (see

Figures 4.1 and 4.3) the azimuthal component of the magnetic field vanishes
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and, in the plane y = 0, Bz and Bx are given by:

Bx =
µ0J

′′

4π

∫
x′

∫
z′

∫
φ′

r′ sin θ′ cos φ′(r cos θ − r′ cos θ′) dφ′ dz′ dx′

d3
(4.2)

Bz =
µ0J

′′

4π

∫
x′

∫
z′

∫
φ′

r′ sin θ′(r′ sin θ′ − r cos θ sin φ′) dφ′ dz′ dx′

d3
(4.3)

where d = (r2 + r′2 − 2rr′ cos θ cos θ′ − 2rr′ sin θ sin θ′ cos φ′)1/2 (4.4)

Depending on the exact method of winding employed, the coil may also

have a slight spiral aspect. This, however, does not significantly affect the

magnetic field, as the layer above is wound in the opposite direction and

cancels any non-azimuthal effects.

Although the above integrals (4.2)-(4.4) may be performed using Gaussian

quadrature, for a large number of coils this method tends to be painstakingly

slow, due to integrating over three dimensions (x′, z′ and φ′) and is only

worthwhile as a cross-check when more advanced techniques are tested.

4.2.2 Hybrid integral methods

Rather than performing all three of the integrals of (4.2)-(4.4) numerically,

it is possible to analytically evaluate the z′ integral, leaving the following

expressions [42] involving the complete elliptic integral cel(kc, ρ, α, b)

Bz = 0.1 J ′′

[∫ a2

a1

4(z − w)t

β
√

(zb + β)
cel(γ,

α

β
, t− x, t + x) dt

]b1

w=b2

(4.5)

Bx = 0.1 J ′′

[∫ a2

a1

4t√
(zb + β)

cel(γ, 1, 1,−1) dt

]b2

w=b1

(4.6)

where

zb = (z − w)2 (4.7)

α = (x− t) (4.8)

β = (x− t) (4.9)
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4.2 Magnetic Field Evaluation and Central Field Homogeneity

γ =

√
zb + α

zb + β
(4.10)

and

cel(kc, ρ, α, b) =

∫ ∞

0

α + bζ2

(1 + ρζ2)
√

(1 + ζ2)(1 + k2
cζ

2)
dζ (4.11)

The dimensions of the coil are given by : b1 = zmin, b2 = zmax, a1 = xmin,

a2 = xmax with the current density, J ′′, expressed in A/m2. The observation

point at which the field is calculated is defined by (x, 0, z), with no loss of

generality. The above method is referred to in this thesis as the CEL method

due to the central role played by the evaluation of the complete elliptic in-

tegral. Fortunately, efficient methods exist for the numerical evaluation of

the complete elliptic integral [43] and this method is consistently much faster

than the direct integration of the Biot-Savart equation.

A similar method is one recently proposed by Forbes et al. [40]. In their

derivation, two integrals (x′ and z′) are solved analytically, resulting in the

expressions

Bz =
µ0J

′′

2πr

[
[L(R0 + β, α; r, z)]aα=−a

]b
β=−b

(4.12)

Bz = −µ0J
′′ x

2πr

[
[N(R0 + β, α; r, z)]aα=−a

]b
β=−b

(4.13)

where the functions L(r′, z′; r, z) and N(r′, z′; r, z) are defined in [40] and

involve a single integral of the angle φ′ over the range 0 → π. This method

is very useful for calculating the magnetic fields at points within current

carrying coils. Care must be taken though near coil edges as accuracy can be

lost more rapidly during integration when compared to the CEL method [44].

4.2.3 Harmonic decomposition methods

The harmonic decomposition methods reduce the magnetic field to a weighted

series of complete orthogonal functions. The functions employed depend on

the coordinate system: in cylindrical coordinates, the modified Bessel func-

tions [45] are used; whereas in spherical coordinates, the Legendre polyno-

mials are employed. For historical reasons, spherical coordinates are more
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widely used, even in coaxial magnet design [38, 39]. The decomposition

method is similar to the conventional description of atomic orbitals, where

the orbitals s, p, d, f,. . . have increasing angular dependence. In magnet de-

sign, each of these terms is known as an order, so for example, an infinitely

long solenoid contains only a zeroth order magnetic component. Likewise, a

perfect z-gradient would only contain a first order component. In practice,

all of the orders are present in a magnetic field to a certain degree due to the

finite dimensions of coils and manufacturing errors.

Garrett (1951) [38] and Romeo and Hoult (1984) [39] both showed

that the weightings of the orthogonal harmonic functions can be calculated

uniquely from the configuration of the current sources (circular loops, cylin-

ders or solenoids). Using these weights (qn), the magnetic field may be cal-

culated by

Bz =
∞∑

n=0

qn

(
r

r0

)n

Pn(cos θ) (4.14)

Bx =
∞∑

n=0

1

(n + 1)
qn

(
r

r0

)n

P 1
n(cos θ) (4.15)

where Pn(cos θ) and P 1
n(cos θ) are the Legendre and associated Legendre

polynomials respectively (see Appendix A for details). The evaluation of the

magnetic field using the weightings of orthogonal harmonic functions is even

more efficient than the hybrid integral methods.

The accuracy of this method is determined by a combination of two quan-

tities: the distance from the origin and the number of terms taken in the

infinite expansion. The radius of convergence, rc, is the maximum radius of

a sphere centred on the origin which does not contain any current sources. If

an attempt is made to use the central field expansion beyond this radius, then

the infinite series will not converge and other methods must be employed.

Appendix A revisits Garrett’s analysis of the spherical harmonic decom-

position method, reformulating the results where necessary to take account

of modern SI units1.

1Système International d’Unités
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4.2 Magnetic Field Evaluation and Central Field Homogeneity

4.2.4 Other methods

Both finite element methods (FEM) and boundary element methods (BEM)

may be used to calculate the magnetic fields of arbitrarily shaped magnet de-

signs. These powerful techniques however are complex and require significant

computational resources due to the creation of a mesh and the simultaneous

solution of partial differential equations. Therefore these methods are not

used in conjunction with any stochastic optimization techniques. Instead fi-

nite element programs such as FEMM [46] or OPERA [47] are better suited

to checking the performance of existing designs and, for example, evaluating

the effects of additional bulk iron.

Lastly, it is possible to create a scaled, two-dimensional lookup table for

the calculated field from a solid, semi-infinitely long solenoid. This method

was promoted by Brown and Flax [48], where they suggest the use of the

dimensionless parameters α = outer diameter
inner diameter

and β = length
inner diameter

. Clearly,

any thick solenoid can subsequently be created from the superposition of

four such semi-infinite solenoids. However, for high accuracy, the size of

the lookup table rapidly diverges and therefore this method is included for

completeness only.

4.2.5 Homogeneity - a single figure of merit

Homogeneity, as a single figure of merit, may be determined in a combina-

tion of ways. There is a lack of consistency in the literature making direct

comparison difficult, if not impossible, unless the exact form of the field or

the original coil dimensions are available [49, 50, 51]. Methods for describing

field homogeneity fall into two basic categories,

• The maximum to minimum deviation of |B| or Bz over the ROI ex-

pressed in parts per million (ppm) where B0 is the average central field

strength

∆B =
|Bmax −Bmin|

B0

× 106 (4.16)

• The standard deviation of |B| or Bz over the ROI, also expressed in

ppm [52, p. 495].
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In both cases, the deviation of the field may be taken from the average field

strength or from the field strength at the iso-centre of the magnet system.

Another possible method to calculate the field distribution is to sample the

field strength at a grid of points contained within the ROI. The maximum to

minimum deviation and the standard deviation are then found for this subset

of points. As the number of sampled points increases, so the calculated value

approaches the results from the continuous methods.

4.3 Novel Fringe Field Evaluation Method

Evaluating the fringe field is important in the design of magnets and espe-

cially MRI magnets due to the potential safety hazards associated with stray

fields. The magnetic field in the region outside the magnet is usually cal-

culated using one of the direct hybrid methods discussed in Section 4.2.2.

In this section however, a novel decomposition method is presented for the

fringe fields which reduces calculation times significantly. Spherical coordi-

nates are used in this derivation to maintain consistency with previous work

in this field and a general bias in industry [38]. It is understood that ex-

pansions of the magnetic field have been previously performed in cylindrical

polar coordinates, although these are unpublished [53].

4.3.1 Fringe field expansion of loops, thin solenoids

and thick solenoids in spherical harmonics

Infinitely Thin Loops

Let us consider a single, infinitely thin loop of wire carrying a current I. The

loop, also known as a filament (f), has rotational symmetry about the z axis

and its position can be determined entirely in standard spherical coordinates

by the primed variables (r′, θ′, 0) where a point on this loop is given by the

vector (r′, θ′, φ′). We also create an observation point P , which is denoted by

the unprimed variables (r, θ, φ). Due to the symmetry of the problem about

the z axis, we can constrain the observation point P to lie in the xz plane,
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4.3 Novel Fringe Field Evaluation Method

denoted by y = 0, without any loss of generality.

Now the magnetic vector potential, A, which is related to the magnetic

field (B), by B = ∇×A, is given by the generalized Biot-Savart law [41]:

A(r) =
µ0

4π

∫ ∫ ∫
volume

J(r′)

|r− r′|
dr′

3
(4.17)

where the source coordinates are all given by r′ = (r′, θ′, φ′), the observation

point P by r = (r, θ, φ), µ0 is the permeability of free space and J(r′) is the

current density at point r′.

An infinitely thin loop is illustrated in Figure 4.2, and hence the following

quantities are trivially expressed in Cartesian coordinates:

ds =

 −r′ sin θ′ sin φ′

r′ sin θ′ cos φ′

0

 dφ′ (4.18)

r =

 r sin θ

0

r cos θ

 (4.19)

r′ =

 r′ sin θ′ cos φ′

r′ sin θ′ sin φ′

r′ cos θ′

 (4.20)

Substituting these into (4.17) we find that:

A =
µ0Ia

4π

∫ 2π

0

(− sin φ′, cos φ′, 0) dφ′

|r− r′|
(4.21)

where a is the radius of the loop and

|r− r′| =
√

r2 + r′2 − 2rr′(cos θ cos θ′ + sin θ sin θ′ cos φ′) (4.22)

It is clear that, as P lies in the xz plane, Ax vanishes due to symmetry,
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Figure 4.2: Axisymmetric loop defined by (r′, θ′), carrying current I and
observation point P .

leaving only Ay, or equivalently, Aφ, when expressed in spherical coordinates

Aφ =
µ0Ia

4π

∫ 2π

0

cos φ′ dφ′

|r− r′|
(4.23)

We now use the Green’s function expansion in spherical coordinates [41],

1

|r− r′|
= 4π

∞∑
l=0

m=l∑
m=−l

1

2l + 1

(r′)l

rl+1
Y ∗

lm(θ′, φ′)Ylm(θ, φ) (4.24)
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and the standard definitions for spherical polynomials2, to rewrite (4.23) as

Aφ =
µ0Ia

4π
<

{
∞∑
l=0

m=l∑
m=−l

∫ 2π

0

(r′)l

rl+1

(l −m)!

(l + m)!
Pm

l (cos θ′)Pm
l (cos θ) e−i(m−1)φ′

dφ′

}
(4.25)

Where Ylm(θ, φ) are the normalized spherical harmonics and Pm
l (cos θ) are

the associated Legendre polynomials. The next step is key to this whole

argument and hinges on the fact that the integral over φ′ averages to zero

for all m except the special case where m = 1. This allows the sum over m

to be removed from the equation, leaving

Aφ =
∞∑
l=1

µ0I sin θ′ (r′)l+1

2l(l + 1)
P 1

l (cos θ′)︸ ︷︷ ︸
source

1

r(l+1)
P 1

l (cos θ)︸ ︷︷ ︸
observation

(4.26)

Note that the limits of the sum in (4.26) have altered because the term

with l = 0 now vanishes. Also, it is clear that (4.26) can be separated into

two terms, one determined entirely by the positioning of the current sources,

and the other dependent only on location of the observation point (P). Thus,

when evaluating the fringe field from a specific design, the source dependent

part of Aφ may be calculated as an array of constants, allowing much faster

evaluation of the magnetic field subsequently at any location in the far-field

regime.

We are now in a position to find an expression for the magnetic field

vector B from a filament using B = ∇×A.

Br =
1

r sin θ

∂

∂θ
(sin θAφ)

=
1

r sin θ

∞∑
l=1

µ0I sin θ′

2l(l + 1)

(r′)l+1

rl+1
P 1

l (cos θ′)
∂

∂θ

{√
1− cos2 θ P 1

l (cos θ)
}

2To be able to fully understand the following arguments, the reader should be familiar
with many of the standard results for spherical harmonics and Legendre polynomials.
References are widely available on this subject including Abramowitz and Stegun [54]
and [55]
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=
∞∑
l=1

−µ0I sin θ′

2l(l + 1)

(r′)l+1

rl+2
P 1

l (cos θ′)
∂

∂ cos θ

{√
1− cos2 θP 1

l (cos θ)
}

Br =
∞∑
l=1

−µ0I sin θ′

2

(r′)l+1

rl+2
P 1

l (cos θ′)Pl(cos θ) (4.27)

and similarly,

Bφ = −1

r

∂

∂r

(
rAφ

)
Bφ =

∞∑
l=1

µ0I sin θ′

2(l + 1)

(r′)l+1

rl+2
P 1

l (cos θ′)P 1
l (cos θ) (4.28)

Examining (4.26), (4.27) and (4.28), it is useful to define the far field spher-

ical harmonic weighting constants3 hn(f) as:

hn(f) = −µ0I

2
sin θ′

(r′)n+1

r0
n+2

Pn
1(cos θ′) (4.29)

so

Aφ(f) = −
∞∑

n=1

1

n(n + 1)
hn(f)

r0
n+2

rn+1
Pn

1(cos θ) , (4.30)

Br(f) =
∞∑

n=1

hn(f)
r0

n+2

rn+2
Pn(cos θ) and (4.31)

Bφ(f) = −
∞∑

n=1

1

n + 1
hn(f)

r0
n+2

rn+2
Pn

1(cos θ) (4.32)

where the ‘f’ refers to the fact that the constants are for a filament and an

arbitrary radius, r0, has been included to convert the units of hn(f) to Tesla.

It is conventional to take r0 > r′max so that the weighting constants tend to

zero for large n.

The principle of superposition means that the far-field source constants

from many filaments may be added together to create an overall set of con-

stants htotal
n which entirely describe the form of the magnetic fringe field. In

the following two sections, expressions are developed for hn(c) and hn(s), the

3These are also known as the far-field source constants in a manner similar to [38] (see
Appendix A).
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weighting constants for infinitely thin cylinders and thick solenoids respec-

tively.

Thin cylinders

This mathematical derivation is extended to an infinitely thin cylinder by

integrating the result for Aφ(f) along the z′ axis and replacing the current,

I, in (4.29) by J ′(A/m), the current per unit length.

Aφ(thin cylinder) =

∫ upper

z′=lower

Aφ(filament) dz′ (4.33)

Taking the expression for hn(f) (4.29) and [56]

(u2 − 1)
d

du
Pn

1(u) = nuPn
1(u)− (n + 1)Pn−1

1(u)

it can be shown that

∂ hn(f)

∂z′
=

n + 1

r0

hn−1(f) (4.34)

which can be directly employed to yield an expression for Aφ(c)

Aφ(c) = −
∞∑

n=1

r0

n(n + 1)(n + 2)
[hn+1(f)]limits

r0
n+2

rn+1
P 1

n(cos θ) (4.35)

Notice that we only need to evaluate the weighting constants of the two

filaments located at the extreme ends of the cylinder and combine them with

the appropriate signs. Following the same procedure as before (4.27) and

(4.28), we calculate the magnetic field components

Br(c) =
∞∑

n=1

[hn(c)]limits
r0

n+2

rn+2
Pn(cos θ) (4.36)

Bφ(c) = −
∞∑

n=1

1

n + 1
[hn(c)]limits

r0
n+2

rn+2
P 1

n(cos θ) (4.37)
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Figure 4.3: A thick solenoid with current density J ′′. The observation point
(P) is constrained to lie outside the radius of convergence (rc).

where the weighting constants for infinitely thin cylinders, hn(c), have been

defined by

hn(c) =
r0

(n + 2)
hn+1(f)

= − µ0J
′

2(n + 2)
sin θ′

(r′)n+2

r0
n+2

Pn+1
1(cos θ′) (4.38)

Thick solenoids

The final stage in this exposition is the integration of the magnetic vector

potential, A, over x′ to create a thick solenoid as illustrated in Figure 4.3.

58



4.3 Novel Fringe Field Evaluation Method

Thus

Aφ(thick solenoid) =

∫ outer radius

x′=inner radius

Aφ(thin cylinder) dx′ (4.39)

Examining (4.29), we replace I by the current density J ′′(A/m2) and write

Aφ(s) = −
∞∑

n=1

1

n(n + 1)

r0
n+2

rn+1
P 1

n(cos θ)

∫
limits

hn(c) dx′ (4.40)

It can be shown, following a similar argument to (4.34), that

∂hn(f)

∂x′
=

n + 1

x′
hn(f)− n + 1

r0

z′

x′
hn−1(f) (4.41)

which can be rearranged into the more useful form

hn+1(f) =
x′

n + 2

∂hn+1(f)

∂x′
+

z′

r0

hn(f) (4.42)

At this point, the weighting constants for a thick solenoid, hn(s) are intro-

duced and defined by:

hn(s) =

∫
limits

hn(c) dx′ (4.43)

Combining (4.38), (4.42) and (4.43), we integrate by parts to yield a recur-

rence relation of the form

hn(s) =

[
r0 x′ hn+1(f)

(n + 2)(n + 3)

]
limits

+
(n + 1)z′

(n + 3)r0

hn−1(s) (4.44)

with a stopping condition given by

h0(s) =

[
−µ0J

′′ x′3

12 r0
2

]
limits

(4.45)

59



Chapter 4

Figure 4.4: The weighting constants, hn(s), must be evaluated for
each corner of a thick solenoid and combined using the correct par-
ity. Using the abbreviations lower(l), upper(u), inner(i) and outer(o),
[hn(s)]limits = hn(s){x′i, z′l} − hn(s){x′o, z′l} + hn(s){x′o, z′u} − hn(s){x′i, z′u}.

Finally, we take the curl of A(r, θ) and recover two expressions for the

magnetic field components, Br and Bθ

Br(r, θ) =
∞∑

n=1

[hn(s)]limits

r0
n+2

rn+2
Pn(cos θ) (4.46)

Bθ(r, θ) = −
∞∑

n=1

1

n + 1
[hn(s)]limits

r0
n+2

rn+2
P 1

n(cos θ) (4.47)

where [hn(s)]limits must be evaluated at the four corners of the thick solenoid

and combined with the correct parity (+,−, +,−) as shown in Figure 4.4.

In a similar manner to the central field expansion, the weights of the

spherical harmonics can be determined explicitly for a certain coil config-

uration and then used to evaluate the magnetic field at any point in the

far-field region with very little additional effort. Note also that although an

expression for h0(s) is given in (4.45), it is not directly used to calculate the

spherical harmonic weighting, but is used instead along with the recurrence
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relation to calculate the term h1(s).

The formula for Aφ(thick solenoid) is very satisfactory as it displays a

remarkable symmetry with the central field expansion [38], where the spher-

ical harmonic weights from thick solenoids are expressed as a sum (see Ap-

pendix A). In fact, (4.44) and (4.45) can be remodelled4 to give a single,

final expression for hn(s)

hn(s) =
µ0J

′′ (x′)3 (z′)n

2(n + 2)(n + 3)rn+2
0

+
n∑

m=1

x′ (z′)n−m

(n + 2)(n + 3)r
(n−m−1)
0

hm+1(f) (4.48)

4.3.2 Radius of convergence

The series expansion of the magnetic field must be tested for convergence.

This is achieved by first investigating the convergence of (4.31) and (4.32).

Ignoring constant factors and the finite factor, Pn(cos θ), we can employ the

integral test [57] ∫ ∞
an dn ∼

∫ ∞
(r′)n+1r−(n+2)dn

∼ lim
n→∞

(r′)n+1

r(n+2) ln
∣∣ r′

r

∣∣ (4.49)

and we find that

if


r > r′ 1

rn+2 dominates leading to convergence

r = r′ ln
∣∣ r′

r

∣∣ = 0 causing divergence

r < r′ (r′)n+1 dominates leading to divergence

(4.50)

This result, applicable for infinitely thin filaments, can be generalized to

thin cylinders and thick solenoids using (4.38) and (4.48). It is found that

the same result applies, but now we only get convergence if r completely

encompasses all cylinders and solenoids in the design. We therefore define rc

4Compare with (A.10)-(A.13)

61



Chapter 4

as

rc = max{r′} (4.51)

and apply the far-field expansion formulae only in the region r > rc.

4.3.3 Using the weighting constants

When the spherical harmonic weighting constants hn(f, c, s) were first intro-

duced (4.29), an arbitrary constant r0 was included in the definition. It is

convenient to constrain r0 to satisfy the inequality r0 > rc to ensure that the

higher order weighting constants tend to zero. Furthermore, it is reasonable

to take r0 as a distance at which the fringe fields are important. In the case of

whole-body MRI magnets, smaller fringe fields allow easier siting and reduce

health hazards. A standard specification could well be to contain the 5 gauss

line within 5 m for a high field (1.0 - 3.0 T) magnet. So, setting r0 as 5 m, it

can then easily be shown that the fringe field at this distance (r0) along the

z axis is given by

At (z = r0, x = 0), fringe field =
∞∑

n=1

hn(s) (4.52)

and, if the design has symmetry about the plane z = 0, then the fringe field

at a distance r0 along the x axis is given by

At (z = 0, x = r0), fringe field = −
∞∑

n=1, odd

1

n + 1
hn(s)Pn

1(0) (4.53)

Of course, the precise shape of the fringe field cannot be described in any

detail by only these two numbers, but they are still useful and allow an

understanding of the relative sizes of the fringe fields on both axes. For all

other points, (4.46) and (4.47) must be used to evaluate the fringe field. In

the far field region, both components of B must be found and then combined

to give an absolute value for the field strength, |B| =
√

B2
r + B2

θ .

A final fact to be mentioned in this section is that some authors and math-

ematical software packages differ on their definition of the associated Legen-
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dre polynomials. The problem involves an extra factor of (−1)m (see A.7)

and allowance must be made for this in any specific implementation of the

above formulae.

4.4 Design Sensitivity

When a magnet is designed, the ROI will have a theoretical uniformity which

can be calculated by the usual methods. However, in practice, the coils

which make up this design will not be positioned exactly according to the

specifications and these positioning errors may well spoil the homogeneity of

the central magnetic field and diminish the usefulness of the magnet. The

sensitivity to these positioning errors (manufacturing errors) depends on the

exact size and location of the coils and is termed ‘coil sensitivity’.

A theoretically sub-optimal design, which is hardly affected by manufac-

turing errors will generally be preferred to a better theoretical design which is

overly susceptible to such positioning errors. Two techniques which approxi-

mate the sensitivity of a design are presented in this section. The first method

creates an ensemble of designs, each slightly different and evaluates the ho-

mogeneity of each design within the ensemble. Unfortunately this method is

very computationally intensive. The second method approaches the problem

analytically and results in several novel expressions for the design sensitivity.

4.4.1 Ensemble averaging

A robust method of measuring the actual sensitivity of a magnet design is the

ensemble method [58]. An ensemble of N designs is formed where N is large

and each design is a slight variation on the original design. The size of the

difference between the altered designs and the original is determined by the

expected manufacturing tolerances (or margins). Both coil positioning and

number of turns may be considered as having tolerances for these purposes.

Each of the N designs is then evaluated for homogeneity and an average of

the ensemble is taken. The advantages of this method are that:
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• a wide variety of tolerances can be investigated including winding the

wrong number of turns and adding a layer.

• measurements other than homogeneity (e.g. fringe fields, hoop stresses)

can be investigated as a function of manufacturing tolerance.

However, the ensemble method suffers from being relatively slow. To get a

good estimate of the sensitivity for a fairly complex design, several thousand

homogeneity evaluations are required. Therefore, this method is most suit-

able as a means of post-processing designs to determine their susceptibility

to manufacturing errors.

By taking an analytical approach to the sensitivity of coils, a significant

reduction in the time taken for evaluation may be obtained. The following

section presents just such an approach.

4.4.2 Novel analytical approach to design sensitivity

The following assumptions are made:

• The number of turns in each coil is fixed along with the width and

depth of each coil.

• To first order, the sensitivity can be approximated by the sensitivity

to z′ movements and x′ movements independently.

• The homogeneity of the ROI is expressed in terms of a spherical har-

monic expansion qn (as given in Appendix A).

It is known [38], and has already been stated, that the magnetic field in the

ROI, B, can be expressed as

Bz =
∞∑

n=0

qn

(
r

r0

)n

Pn(cos θ) (4.54)

Bx =
∞∑

n=0

1

(n + 1)
qn

(
r

r0

)n

P 1
n(cos θ) (4.55)
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where the constants qn are determined by the set of equations (A.10)-(A.13).

In systems where the goal is a homogeneous central field, the x component

of the magnetic field can often be ignored and the magnetic field strength

is approximated by |B| ≈ Bz. Using this approximation, the average field

strength over the ROI can be calculated by

av(Bz) =
1

V

∫
Bz dV = q0 (4.56)

where use has been made of the following relationship

∫ π

θ=0

sin θPn(cos θ) dθ =

{
2 if n = 0

0 if n 6= 0
(4.57)

Furthermore, a measure of the homogeneity over the ROI is given by the

variance of Bz

var(Bz) = 〈B2
z 〉 − 〈Bz〉2 (4.58)

where

〈B2
z 〉 =

1

V

∫ ∞∑
n=0

∞∑
m=0

qnqm

(
r

r0

)n+m

Pn(cos θ)Pm(cos θ) dV (4.59)

Equation (4.59) may be expressed in spherical coordinates and integrated

using the property

∫ π

θ=0

sin θPn(cos θ)Pm(cos θ) dθ =

{
2

2n+1
if n = m

0 if n 6= m
(4.60)

to give

〈B2
z 〉 =

1

V

∞∑
n=0

∫ R

r=0

4π

2n + 1
q2
n

(
r2n+2

r2n
0

)
dr (4.61)

=
∞∑

n=0

3 q2
n

(2n + 1)(2n + 3)

(
R

r0

)2n

(4.62)
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where we have integrated over the whole of the DSV (diameter = 2R) such

that V = 4
3
πR3. Substituting into (4.58) removes the first term from the

sum and we recover a simple formula for the variance of Bz over the ROI

var(Bz) =
∞∑

n=1

3 q2
n

(2n + 1)(2n + 3)

(
R

r0

)2n

(4.63)

where qn can represent the harmonic weighting constants from filaments,

thin cylinders or thick solenoids without changing the above formulae.

Sensitivity of a single filament

To find the changes in the homogeneity of the central field when a single

filament is displaced by a small amount either in the z′ or the x′ direction,

we consider the general case of displacing a single filament by a distance ∆s

and thus

∆Bz ≈
∂Bz

∂s
∆s =

∞∑
n=0

∂qn

∂s

(
r

r0

)n

Pn(cos θ) ∆s (4.64)

We calculate the average and variance of ∆Bz using the same methods as

(4.56) and (4.63):

av(∆Bz) =

(
∂q0

∂s

)
∆s (4.65)

var(∆Bz) =
∞∑

n=1

3

(2n + 1)(2n + 3)

(
R

r0

)2n(
∂qn

∂s

)2

(∆s)2 (4.66)

where R is the radius of the ROI.

The above formulae need to be carefully interpreted to understand their

relevance to the sensitivity of a single filament. Firstly, the average ∆Bz is

the change in the central field strength that occurs as the filament moves.

For example if a filament moves further away from the origin, we expect the

central field strength to decrease. This component of the sensitivity is termed

the ‘absolute sensitivity’ because it alters the overall field strength without

significantly changing the homogeneity of the ROI5. More important in the

5Of course for large movements, the homogeneity of the field would be affected. How-
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understanding of the intrinsic coil sensitivity is the variance of ∆Bz (4.66),

which measures the change in homogeneity of the central field and is termed

the ‘relative sensitivity’. To allow comparison between different coils and

designs, the following quantities are created with units of ppm per mm.

‘absolute sensitivity’ (ppm/mm) =
av(∆Bz)

av(Bz) ∆s
× 103 (4.67)

‘relative sensitivity’ (ppm/mm) =

√
var(∆Bz)

av(Bz) ∆s
× 103 (4.68)

Sensitivity of several filaments

The above formulae (4.67) and (4.68) deal with a design containing a single

filament. However, most designs tend to contain many filaments and the

question of how to measure their overall sensitivity is addressed here.

The method proposed is to evaluate the sensitivity of each filament indi-

vidually and then to add them in quadrature. Formalizing this, we take a

design containing M filaments and denote a particular filament by m, such

that 1 ≤ m ≤ M . Some filaments in the design will be more susceptible to

positioning than others, so we calculate for each filament (note the superfix)

abs. sens.(m) =
1

av(Bz)

(
∂q0

∂s

(m)
)
× 103 (4.69)

rel. sens.(m) =
1

av(Bz)

√√√√ ∞∑
n=1

3

(2n + 1)(2n + 3)

(
∂qn

∂s

(m)
)2 (

R

r0

)2n

× 103

(4.70)

where the source constants from an individual filament, m, are denoted by

q
(m)
n and the overall magnetic field is determined by the superposition of the

ever, in this section we are talking only about small coil movements due to manufacturing
errors.
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filaments. So

q(overall design)
n =

M∑
m=1

q(m)
n (4.71)

As mentioned above, in most applications, we can ignore the absolute sen-

sitivity as being an insignificant percentage of the overall field strength and

concentrate only on the relative sensitivity which determines the change in

homogeneity of the magnetic field. We combine the relative sensitivities of

the M coils in quadrature to give a single figure measure of robustness to

movements in the direction represented by the vector ∆s

relative sensitivity along s =

√√√√ M∑
m=1

[
rel. sens.(m)

]2
(4.72)

Up until this point the sensitivity of filaments with respect to movements in

a general direction, ∆s, has been discussed. Exactly the same treatment can

be applied to find the sensitivity of the filaments in the z′ and x′ directions,

by replacing ∆s and ∂qn/∂s by, for example, ∆z′ and ∂qn/∂z′.

The advantage of considering movement along the z′ and x′ axes in par-

ticular is two-fold. Firstly, the manufacturing process determines that place-

ment in these axes is controlled by different parameters, z′ being controlled

by the accuracy of the slots cut into the magnet former, whereas accuracy

in x′ is determined by the ability to lathe accurately at a constant radius.

Secondly, the partial differentials of qn can be found relatively easily in these

directions.

For source constants from infinitely thin filaments, qn(f), defined as in

(A.6), we can determine that

∂qn(f)

∂z′
= −n + 1

r0

qn+1(f) (4.73)

and with some tricky manipulation of the Legendre polynomials6, we find

6See Appendix B for details.
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the differential with respect to x′

∂qn(f)

∂x′
= −(n + 1)(n + 2)

(2n + 5)

[
(r′)2

x′r2
0

qn+2(f)− 1

x′
qn(f)

]
(4.74)

Equations (4.73) and (4.74) can be directly substituted into (4.69) and (4.70)

to give a measure of the relative sensitivity of the design to movements in the

z′ and x′ directions separately. Notice that since the derivatives of qn(f) can

be evaluated as multiples of qn(f), this method is extremely fast, especially

if the code is written in such a way as to store the weighting coefficients as

an array in memory to begin with.

We then combine the contributions from all M filaments in both the z′

and x′ directions to find an overall single figure of merit:

Absolute relative sensitivity =

√√√√ M∑
m=1

([
abs. sens.

(m)
z′

]2
+
[
abs. sens.

(m)
x′

]2)
(4.75)

Overall relative sensitivity =

√√√√ M∑
m=1

([
rel. sens.

(m)
z′

]2
+
[
rel. sens.

(m)
x′

]2)
(4.76)

Equation (4.76) can now be used as a single figure measure of the ro-

bustness of a design and is an extremely powerful tool of comparing different

designs objectively.

Although the derivation has concentrated on designs containing infinitely

thin filaments, it is clear from the mathematics that it is a simple case of

substituting qn(c) or qn(s) in place of qn(f) to achieve a similar result for

designs containing thin cylinders and thick solenoids. In the next section,

results for the differentials of these source constants are presented.
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Sensitivity of thin cylinders and thick solenoids

To determine the absolute and relative sensitivities of thin cylinders and

thick solenoids, it is necessary to determine the differentials of qn(c) and

qn(s) with respect to both z′ and x′. Examining (A.8-A.9) and (A.10-A.12)

we can develop the following relationships

∂qn

∂z′
(c) = −(n + 1)

r0

qn+1(c) (4.77)

∂qn

∂x′
(c) =

(n + 1)

(2n + 3)

[
(n + 2)(r′)2

x′ r2
0

qn+2(c)−
n

x′
qn(c)

]
(4.78)

evaluated at both ends of cylinder [z = zlower]− [z = zupper]

∂qn

∂z′
(s) = −(n + 1)

r0

qn+1(s) (4.79)

∂qn

∂x′
(s) =

{
µ0J ′′

2
cos θ′ for n = 0

µ0J ′′

2n

(
r0

r′

)n
sin2 θ′ P 1

n(cos θ′) for n ≥ 1
(4.80)

evaluated at all four corners (see Figure 4.4)

Notice the symmetry which exists when differentiating qn(f, c, s) with re-

spect to z′. Remarkably, we recover exactly the same formulae for filaments,

thin cylinders and thick solenoids, which makes the calculation of the sensi-

tivity much faster than would otherwise be possible. As usual, (4.77)-(4.78)

need to be evaluated at the ends of each thin cylinder and (4.79)-(4.80) need

to be evaluated at the four corners of each thick solenoid before combining

the results with the appropriate signs to calculate an overall figure for ∂qn(c)
∂z′ ,

∂qn(c)
∂x′ , ∂qn(s)

∂z′ and ∂qn(s)
∂x′ .

Finally, we substitute (4.77)-(4.80) into the formulae for absolute and

relative sensitivity and then combine the contributions from many individual

cylinders or solenoids to obtain the ‘overall relative sensitivity’ (4.76).
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Nth order sensitivity

Up to this point, we have been attempting to find a single ‘figure of merit’

for the sensitivity. In fact, the inhomogeneity induced over the central field

can be described in much more detail as a sum of spherical harmonic terms.

This leads us to consider the fact that the inhomogeneities created during

manufacture will eventually be shimmed with active or passive shimming

methods which in general correct for each of the terms in the spherical har-

monic expansion. Therefore, rather than combining the terms in (4.70), we

maintain them as individual harmonics and find the relative sensitivity of

the nth order. These figures can then be compared to the various strengths

of the shimming coils and a decision made about acceptable margins during

fabrication. Thus

‘nth order relative

sensitivity’ (ppms/mm)
≈ 1

av(Bz)

√
3(n + 1)2

(2n + 1)(2n + 3)
(qn+1)

Rn

rn+1
0

× 103

(4.81)

These values are useful for detailed analysis of the magnet’s response to

build errors, however, ‘overall relative sensitivity’ (4.76) provides a use-

ful single figure of merit, which allows straightforward comparison between

different designs. All of the presented formulae are straightforward and rapid

to implement.

4.5 Forces, Stresses and Strains

Whenever a current flows in a magnetic field, the conductor experiences a

force, perpendicular to both the direction of the current (I) and the direction

of the magnetic field (B), known as the Lorentz force. The size and direction

of the Lorentz force (F) is given, per unit length, by [41]

F = B× I (4.82)

where the magnetic field is the combination of self-field and the background

field from the surrounding coils.
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In many different types of magnet design, these forces, exerted on the

conductors can be very large. Unless care is taken with the design and

construction of such magnets, the forces can damage the superconductor

and the insulation, induce premature quenching, or even lead to catastrophic

failure of the entire structure [59]. The following sections describe methods

of calculating the forces and resulting stresses.

4.5.1 Forces and stresses in solenoids

Taking a slice perpendicular to the axis of symmetry, the magnetic field

lines can be considered as a gas which exert a pressure of B2/2µ0 against

the cylindrical coil [60]. Indeed this is exactly how Faraday visualized the

intrinsic repulsion of magnetic flux lines. The pressure exerted by this ‘gas’

creates a radial force on the current carrying coils, but there are also axial

forces acting on the windings due to the curvature of the magnetic field lines

at the extremities of the windings.

A cross-section through a solitary axisymmetric coil is shown in Figure 4.5

with the pattern of forces shown on the right and lines of magnetic flux

shown on the left. Notice how the axial forces act towards the middle of

the coil, thereby compressing the windings and consolidating the structure.

Furthermore, near the outer edge of the coil, the direction of the field reverses

and the forces act to partially contain the winding with an inward radial force.

Axial forces in solenoidal magnets tend to pose few problems due to their

symmetry and consolidating nature. However, in unusual geometries such

as split-coil magnets or ‘C’ shaped vertical axis magnets, these forces can

reach several tonnes, leading to extreme difficulties in maintaining the correct

separation of the pole pieces. More often though, it is the radial forces which

act as the limiting factor, leading to very high tensions being exerted on the

superconducting matrix, known as the hoop stress. It is therefore essential

that the hoop stresses are considered during the design of magnets, especially

for large bore MRI designs.

To evaluate the hoop stress, a reasonable approximation is to assume
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Figure 4.5: Pattern of forces and magnetic flux lines within a solitary ax-
isymmetric coil. Notice how the net force over the cross-section is in the
positive radial direction and that the axial forces are acting to consolidate
the coil.

that each turn acts independently of its neighbours [60, p.42]. Thus, a single

turn, with radius r, develops a tension given by |T | = BzIr. Dividing by

the cross-section of the turn, we obtain a value for the unsupported uniaxial

hoop stress, σhoop.

σhoop = BzJ
′′ r (4.83)

where J ′′ is the current density in A/m2. The above formula, whilst cor-

rect for a coil composed entirely of superconductor, must be altered slightly

in practice, where the superconducting wire is surrounded by insulation

and embedded in epoxy. These materials are much softer than the cop-

per/superconducting wire matrix and consequently do not contribute to the

stiffness of the coil. To account for this factor, an engineering current density

JE is referred to [52], such that

JE =
1

1− ε
J ′′ (4.84)
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where ε is the fraction of cross-sectional area containing epoxy and insulation.

Thus (4.83) becomes

σhoop = BzJE r (4.85)

Shear stresses and strains are harder to approximate, but are usually less

of a constraint compared to the uniaxial hoop stresses. However it must

be born in mind that, in general, materials are much more susceptible to

shear stresses than uniaxial stresses, especially when the uniaxial stress is

compressive.

4.5.2 Material properties

To obtain a better indication of the stresses and strains within a particular

magnet design, it is necessary to take into account the actual material prop-

erties of the coil windings and eventually, the coil formers. All materials are

affected by both uniaxial and shear stresses which produce elastic deforma-

tion, followed, near the yield stress by eventual fracture. Stresses can also

alter the superconducting properties of the materials leading to premature

quenching. In order to study them more accurately, a finite element model

must be created which should include the superconducting wire, stabilizing

matrix, insulation and epoxy. Inclusion of the formers in the finite element

model is also necessary for a final evaluation of the total deformation of the

magnet structure, however, this is beyond the scope of this thesis.

Deformation is governed by up to 21 independent constants for general

materials. If we can assume isotropic conditions, then just two constants,

Young’s modulus of elasticity and Poisson’s ratio, are needed. Young’s mod-

ulus is given by [61]

Y =
σxx

εxx

(4.86)

and Poisson’s ratio by [61]

ν = −εyy

εxx

(4.87)
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where σ and ε are the 2nd rank stress and strain tensors such that

σij =
Fi

Aj

(4.88)

and

εij =
∂ui

∂xj

(4.89)

Often a volume-weighted average can be taken of the individual parts of

the winding to find an approximate value of Young’s modulus and Poisson’s

ratio, which can be used in a finite element analysis. For even more accuracy,

a finite element model must be created, which includes the superconducting

wire, stabilizing matrix, insulation material and epoxy individually. From

the finite element model, all necessary stresses and strains may be found,

including the hoop stress, σ33 and particularly, the von Mises stress which is

the universally accepted measure of stress in industry given by [62]

σν =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2

2
(4.90)

4.5.3 Finite element analysis with ABAQUS

A detailed finite element analysis of the stresses, shears and strains incurred

in an MRI magnet design is beyond the scope of this thesis. Indeed, even

commercial MRI manufacturers often subcontract the finite element analysis

to a specialist company. However, using a state of the art finite element

package, ABAQUS(c) [63], a two-stage procedure was created to perform

preliminary finite element analysis of candidate designs after optimization.

1. The entire design is modelled, approximating each coil by a solid, thick

winding with volume-averaged Young’s modulus and Poisson’s ratio.

The coils are restricted in the axial direction on the relevant side

by a frictionless, infinitely strong former. This allows radial expan-

sion/contraction to be visualized (see Figure 4.6). Shear stresses are
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also evaluated, but may not be as accurate due to the interaction with

an infinitely strong former.

2. Individual coils which are found to have a high hoop stress are sub-

sequently modelled by taking each layer of winding as a laminated

combination of a copper/superconductor matrix and epoxy. The mesh

used in this model is much finer and each coil is examined individu-

ally (see Figure 4.7). As in the previous analysis, the coils are only

contained axially by frictionless, infinitely strong formers.

By accurately modelling the stresses present in a particular magnet design,

informed decisions can be made about which designs are feasible and which

are unfeasible.

4.6 Quenching, Stored Energy and Induc-

tance

This section gives an overview rather than specific details of the problem

of magnet underperformance due to quenching. The emphasis is placed on

the physical indicators that can be controlled during the design process and

their impact on the phenomenon of quenching. This is an important part of

magnet design and factors such as the stored energy and the inductance of

a magnet must be carefully considered especially with larger scale supercon-

ducting magnets like those used in whole-body MRI.

4.6.1 Introduction to quenching

In normal operation, the entire volume of a magnet coil is maintained at a

temperature below the critical temperature, Tc(B), such that the supercon-

ducting properties of the wire can be exploited. However, if due to some

instability7, part of the wire heats up, this region can be driven into its nor-

mal state and the resultant Joule heating may well lead to runaway and a

7See Seeber [52, p. 528] for a brief explanation of causes.
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Figure 4.6: This figure shows the finite element calculated von Mises stress
for a short, whole-body MRI magnet design. Maximum stress is roughly
385 MPa.

Figure 4.7: Detailed finite element analysis of a laminated coil with three
1 mm layers of epoxy and copper. The maximum von Mises stress can be
seen near the inner edge shown in red.
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quench. Only if the heat conduction away from the initiation point is greater

than the Joule heating can a quench be prevented. Under balanced condi-

tions we can match the heat conduction to the Joule heating in the following

formula
2kA(Tc − T0)

l
= J2ρAl (4.91)

where k is the thermal conductivity, l is the length of the normal zone

and Tc−T0

l
is the approximate temperature gradient between the normal and

the superconducting zones. A is cross-sectional area of the wire, J is the

current density and ρ is the normal state resistivity. This rough calculation

shows that a normal zone greater than approximately 0.5 µm will provoke

a quench [60, p.74]. Once a quench has been initiated, heat spreads by a

combination of thermal conduction and Joule heating.

Historically, the causes of quenching have been very hard to pin down.

Flux jumping certainly played a role in the early days, however with modern

multicore wire, this problem has been virtually eliminated. Probably the

most important factor in magnet degradation8 is due to mechanical distur-

bances. As the magnet is energized, the stress endured by the coil increases

and can cause the wire to shift, releasing energy. The amount of energy

needed to drive a section of wire into its normal state is very small, typically

of the order of 10−9 J compared to a total energy in the region of 106 J. Evi-

dence for this comes from the recording of the sounds emitted as the magnet

ramps up to its operational current. The frequency of cracking increases as

does the intensity until the point where quenching occurs. In general, coils

which are subjected to large forces between themselves and the formers tend

to suffer greater degradation.

Once the normal zone region has started to grow there is no alternative

but to allow the coil to quench completely. In a few seconds, all of the energy

stored within the magnetic field must be dissipated, without permanent dam-

age to the superconducting windings. For a magnet with 10 MJ of internal

energy which quenches in 5 seconds, this is equivalent to coping with the en-

8The effect that large magnets do not obtain the same critical currents as would be
expected from experiments on short samples of superconducting wire is known as degra-
dation.
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ergy output from 2000 single bar heaters! Three factors need consideration,

each of which can lead to permanent magnet damage.

Firstly, Joule heating from the now resistive conductor leads to the for-

mation of a hot spot, usually at the point of initiation. The quench must be

controlled in such a way that the peak temperature does not exceed a certain

critical limit, Tmax, and that differential thermal expansion does not have a

significant impact on the structural stability. Secondly, although the voltage

across the coil terminals may only be a few volts, turn-to-turn voltages can

reach several thousand volts (kV) resulting in shorting of the insulation and

a reduction in the magnet performance. Thirdly, as parts of the magnet tend

to quench before others, asymmetric forces exceeding the design limits can be

produced. Obviously the magnet designers must take all of these effects into

account before building such a magnet to avoid permanent damage. From an

economic standpoint as well, quenches are very expensive both in the time

taken to re-cool the magnet and in the consumption of liquid Helium.

4.6.2 Quench modelling

The techniques developed to model normal zone propagation come in two

basic flavours. Some attempt to solve the problem analytically, often in-

cluding many approximations, whereas others use a finite element technique

and solve the resulting coupled differential equations numerically. The main

aims of the modelling are to find the peak turn-to-turn voltage9, the peak

temperature10 and the velocity of quench propagation11. The details of these

methods are not discussed in any depth here as many good references exist

on the subject; see [52] and [60] for the analytical approaches and [64, 65, 66]

for numerical techniques.

9In general, the turn-to-turn voltage is much greater than the voltage measured across
the magnet terminals.

10Peak temperature is usually assumed to occur at the point of quench initiation.
11The propagation velocity depends on the thermal conductivity of the wire. In general,

the longitudinal conductivity is much greater than the transverse conductivity due to the
intervening layer of insulation, creating a quasi-1D model.
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4.6.3 Quench prevention and protection

Multi-filament, superconducting wire in a copper matrix is now almost uni-

versally used in large magnet projects. The fine filaments reduce AC losses

and prevent flux-jumping which can release enough energy to initiate a

quench on its own. Better thermal contact between the filaments and the

copper matrix also mean that heat transfer to the entire cold mass is im-

proved.

Combined with the type of wire used, the method of winding is also

crucial. For high performance magnets, it is necessary to dry wind the coils

and follow this by a carefully studied process of vacuum epoxy impregnation.

The exact epoxy properties are very important and must include an ability to

flow rather than crack at low temperatures combined with inherent strength.

Glass fibre reinforcement is also used to improve insulation along with a more

surprising quality of allowing long term slippage. Too much insulation and

reinforcement however reduces the maximum current density that can be

obtained in a coil.

Apart from the manufacturing considerations for quench prevention, there

are design criteria that can be examined. These are known as the safety

margins, which are expressed either as a current margin or as a tempera-

ture margin12. The maximum current density is always limited by the peak

field strength within windings. This is substantially greater than the central

field strength in wide-bore magnets such as those used in whole-body MRI.

Figure 4.8 shows some of the typical current density limits for NbTi and

Nb3Sn at 4.2 K and 2 K. However, as well as current fluctuations, there may

also be thermal fluctuations. Safety margins for thermal fluctuations can be

expressed either as a temperature difference, ∆T , or as an enthalpy margin.

If all of the preventive measures fail and a quench occurs, it is crucial

that a magnet is protected to cope with the ensuing conditions. Specifically

there are two main threats. One is the peak temperature throughout the

12Copper, the main component of the wire has a specific heat of 0.1 J kg−1 K−1 at 4.2 K
and 0.5 J kg−1 K−1 at 8 K.
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Figure 4.8: Critical current density vs B characteristics of NbTi and Nb3Sn
multifilamentary superconductors (reproduced from Seeber [52, p. 400]).

magnet and the other is the peak voltage. The copper matrix is the primary

means of reducing the Joule heating effects and increasing the thermal mass

of the magnet system thereby stabilizing normal zone fluctuations. Both

Nb3Sn and NbTi have normal phase resistances that are far too high for

safe dissipation of the currents so instead, the current bypasses into the

copper matrix (ρcopper ≈ 3× 10−10Ωm, ρNbTi ≈ 6.5× 10−7Ωm at 4.2 K [52]).

External resistors may then be used to extract part of the stored energy,

whilst the conserved energy will cause the magnet to heat up. During the

design process, a limit is placed on the peak temperature. Sometimes this is

taken as room temperature, but if differential thermal contraction is an issue

then 100 K is a more appropriate target [52, 60]. Similarly, the insulation

surrounding each turn must be capable of surviving several kV. The supply

voltage is usually only a few volts, but this must be turned off as soon as
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possible after a quench is detected.

Devices to protect superconducting magnets can be either passive or ac-

tive. Passive methods include external dump resistors or coil subdivision,

whilst active systems include heaters to spread the quench more evenly across

the magnet and the activation of a cold diode [67].

4.6.4 Training

If a magnet quenches well below its design current, there is a chance that

by repeated quenching, the maximum current in the coils can be increased

significantly. This process is known as training. Training allows stressed

regions to relax to a lower energy configuration thus removing possible loca-

tions for quench initiation and consequently improving magnet performance.

However, training is an unreliable and expensive procedure. Some magnets

will improve dramatically during the first few training quenches, whilst oth-

ers show little improvement. In general, all magnets reach a plateau where

further quenches do not increase performance. Further problems can be en-

countered if the magnet is thermally cycled to room temperature. This can

have a detrimental effect on the operational current limit and require a sub-

sequent retraining period.

4.6.5 Stored energy and inductance

The self-inductance of a solenoid, Ci, is given by [41]

Li =
µ0

4πI2
i

∫
Ci

d3ri

∫
Ci

d3r′i
J(ri) · J(r′i)

|ri − r′i|
(4.92)

and the mutual inductance of solenoids, Ci and Cj, by [41]

Mij =
µ0

4πIiIj

∫
Ci

d3ri

∫
Cj

d3r′j
J(ri) · J(r′j)

|ri − r′j|
(4.93)

For general coaxial thick solenoids, complications arise as there is only partial

flux transfer between the two coils. As Grover says [68]:
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For the most part, calculations are not simple and in some cases

the formulae are very complicated.

For this reason, many approximations are usually made and common tech-

niques for calculating the inductances involve tables and approximations such

as those found in [68, 69, 70]. However, self and mutual inductances may also

be evaluated by numerical methods using a knowledge of the field strength

within the magnet design and the flux linkage [71].

Once the self and mutual inductances have been found, the stored energy

of a magnet can be calculated by an extension of the formula for two coils

carrying currents I1 and I2

E =
1

2
L1I

2
1 + M12I1I2 +

1

2
L2I

2
2 (4.94)

or by an integral of the magnetic field strength over all space

E =

∫
B2

2µ0

dV. (4.95)

4.7 Physical Limitations

Finally in this chapter, the overall size of the magnet is considered as well

as limitations such as the maximum allowable current. In most cases, the

overall size of the magnet is determined at the start of the design procedure,

so such limitations can be dealt with fairly simply. Due to the complexity

of the engineering involved, the increased forces and the increased volume of

materials required, the cost of a project increases rapidly for large designs.

The following quantities form part of the design specification: magnet

length, outer diameter, inner bore diameter, mid-plane separation (if neces-

sary) and maximum current supply. Two supplementary quantities may well

be used to compare designs.
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The volume of superconductor Vsc is given by

Vsc = (1− ε)
∑
coils

π w d (d + 2rin) (4.96)

where ε is the fraction of cross-sectional area containing insulation and epoxy,

w is the width of a coil, d is the depth of the coil, rin is the inner radius of

the coil and the sum is over all coils in the design.

Finally, the number of amp-turns for magnet designs may be calculated

as follows

Amp.turns =
∑
coils

w d I

A
(4.97)

where A is the wire cross-sectional area and I is the current flowing in a

single strand of wire.
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Genetic Algorithms for

Optimizing Short Whole-Body

MRI Magnets

5.1 Introduction

Magnetic resonance imaging (MRI) has heralded a revolution in the in vivo

understanding of soft tissue structure and is becoming one of the most impor-

tant modalities within a clinician’s toolkit. Throughout the past twenty-five

years, the hardware for MRI has continually improved, leading to faster imag-

ing at higher field for less cost. However the goal to create an ultra-short

main field magnet, comparable in length to the currently available computed

tomography (CT) scanners, remains elusive. The need for ultra-short MRI

magnets though is well documented [37] and is driven by two major factors.

Firstly, many patients feel uncomfortably confined inside the magnet bore

especially during some of the longer scans up to an hour and a half. This

claustrophobia seriously affects1 about 14% of adult patients [72] and it is

generally accepted that this percentage increases in children, especially as

noisy gradient sets can accentuate the problem. Images of patients affected

114.3% of adults required some form of sedation: oral, intra-venous or general anesthe-
sia.
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by claustrophobia often include motion artifacts which can in turn impact

on the diagnostic quality of the images [73]. In many such cases, the pa-

tients are obliged to undergo subsequent examinations with other imaging

modalities which are less suitable for their condition and potentially risky.

A second reason for ultra-short main field magnets is that clinicians are in-

creasingly performing operations under MRI guidance. The advantages of

such procedures include very good spatial resolution, real-time imaging and

non-ionizing radiation, making it relatively safe for both surgeon and patient.

However, conventional length MRI scanners mean that the patient must be

moved into the bore of the magnet for each scan during the operation and

then removed before the operation can continue2. Another solution is to split

the magnet into two halves. Such magnets include the GE Signa SP/i (dou-

ble doughnut) system3 [75], which operates at 0.5 T and is used for adult

and paediatric interventional work4.

This chapter details the optimization of a suitable ultra-short MRI main

field magnet using GAs.

5.2 Specifications and Requirements

Since the early 1980s, MRI magnets have undergone a revolution in their

design, becoming smaller, cheaper and easier to site. However, there are

still problems with claustrophobic patients and accessibility to critically ill

patients. One method to address these problems is to further reduce the

length of the main field magnet. Traditional design techniques, however,

have been poor at reducing whole-body magnet lengths much below 1.5 m,

so novel design methodologies need to be investigated. Short magnet design

is known to be challenging [37] and especially so when the aim is to provide

the shorter magnet for a similar cost to existing systems [76, 77]. Currently,

magnets have lengths ranging from 1.5-2.5 m and room temperature bore

2More recently, a system has been developed where the patient remains stationary at
all times and the magnet is moved into position for imaging [74].

3http://www.gemedicalsystems.com/rad/mri/products/spi/index.html
4For example, the Interventional Magnetic Resonance unit based in St. Mary’s Hospi-

tal, London.
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diameters in the region of 80-90 cm.

Preliminary work [78, 79] to optimize short bore MRI magnets using a

GA illustrated some of the problems faced when reducing the overall length.

The problems can be categorized into 3 key areas.

• Stress limits: As the magnet length is shortened, the coils need to

produce magnetic field more efficiently, leading to strong fields in coils

with high currents. The Lorentz force equation, F = B × I, shows

that the force depends on the magnetic field strength and the current.

Hence, the hoop stress is proportional to the square of the current.

• Critical current and critical field limits: All high field MRI magnets

rely on the operation of superconducting NbTi or Nb3Sn wire, which

loses its superconducting properties when exposed to a combination

of strong magnetic fields and high current densities. As the magnet

length is reduced, the magnetic flux density is further concentrated

exacerbating the problems.

• Region of Interest (ROI) homogeneity limits: Homogeneity of the mag-

netic field over the ROI becomes increasingly difficult to maintain as

the magnet length decreases. A corollary is that the size of the useful

imaging region usually decreases.

With the above limitations in mind, the following specifications were

decided upon:

• 1.0 m long MRI magnet (coils only) with 1.0 m wide bore access.

• 1.0 T field strength5.

• Outer diameter less than 2.5 m (allowing space for shielding coils).

• Homogeneous region of at least a 30 cm diameter spherical volume

(DSV).

5A 1.5 T field was avoided due to problems with hoop stresses at this higher field
strength.
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• Inhomogeneity over 30 cm DSV of less than 1 ppm max. to min. or

roughly 1 ppm standard deviation over a 40 cm DSV.

• Necessary critical current and critical field constraints satisfied.

• Design robust enough to still achieve good homogeneity when subjected

to manufacturing tolerances.

5.3 Methods I: Implementation of Genetic

Algorithm

5.3.1 Encoding the parameters

A real-coded genetic algorithm (see Section 3.2.1) was written in C to opti-

mize the positions of pairs of coils within an axisymmetric MRI supercon-

ducting magnet design. Each coil was uniquely specified by five parameters:

zmin, rmin, w (width), d (depth) and J ′′, the current density (see Figure 5.1).

Width and depth were quantized throughout the optimization process to the

wire size, which was generally taken as 1 mm × 1 mm. These parameters also

specified a symmetrical partner, reflected in the plane z = 0, where necessary

and formed a basic building block for the GA optimization. Details of the

parameters and the formation of a chromosome are illustrated in Figure 5.1.

Using this representation, a single chromosome contains all of the necessary

parameters that define a single magnet design.

5.3.2 Details of the GA

The GA was configured so that each member of the population represented

a single potential MRI magnet design. A population size of 128 was chosen

after testing, since larger population sizes were found to slow down the GA,

whilst smaller population sizes led to rapid convergence and stagnation of

the GA.

To initialize the population, designs were created by assigning a random

value to each parameter. Each initialized design was checked and rejected
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Figure 5.1: Illustration of (a) the definitions of the parameters used in ax-
isymmetric coil optimization (using cylindrical coordinates) and (b) the en-
coding of the parameters to form a chromosome.
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if the design failed to comply with all of the constraints. Specifically, the

constraints ensured that all of the coils were located within the boundaries

of the maximum MRI magnet size and that none of the coils overlapped. To

check for overlapping coils, the following condition was used:

zmin(1) < zmax(2) and

zmin(2) < zmax(1) and

rmin(1) < rmax(2) and

rmin(2) < rmax(1) (5.1)

where zmax = zmin + w, rmax = rmin + d and the numbers in brackets relate

to the two coils being compared.

Selection was performed using a binary tournament method (see Sec-

tion 3.2.4) and selected individuals were copied into a group, known as the

parent pool. Members were then chosen randomly from the parent pool and

recombination was performed with a probability (pm) of 0.9 to create a single

offspring. Crossover was permitted at a single-point between parameters and

parents were replaced in the parent pool after recombination.

Random mutations were applied to the offspring by the addition of a

Gaussian-distributed random variable to the parameters. Three possible

mutations were performed, a spread mutation, a jump mutation and a kick

mutation. For a spread mutation, the standard deviation of the Gaussian-

distributed random variable was fairly small (of the order 1 mm). Jump

mutations had a larger standard deviation (1-2 cm) and the kick mutations

re-initialized the parameter to a random value over the entire allowable range.

Each type of mutation was controlled by two variables, the probability that

an individual would be subjected to this type of mutation, and the proba-

bility that once chosen, a particular parameter of that individual would be

selected for mutation. Designs were checked after both recombination and

after mutation to see if they remained within the boundaries and no coils

overlapped. If the constraints were broken, then recombination or mutation

were performed again until a feasible solution was created.

Finally, elitism (see Section 3.4) was implemented to ensure that the best
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genetic information was not lost between generations.

5.3.3 Parallel computation and MPI

A de facto industry standard parallel communication protocol, Local Area

Multicomputer (LAM) / Message Passing Interface (MPI) [80, 81, 82] was

used for communication between processors (or nodes) on both cluster com-

puters and supercomputers. MPI offers a portable and easily-implemented

interface in both homogeneous and heterogeneous parallel environments,

whilst maintaining efficiency. For simplicity, a single instruction, multiple

data (SIMD) format was implemented. This involves the simultaneous exe-

cution of the same program on all processors and relies on function calls to

a MPI library written in C.

The parallel GA code was tested on a small scale Linux cluster and then

ported to a Hitachi SR2201 supercomputer, part of the High Performance

Computing Facility at the University of Cambridge [83], for the production

runs. Details of the two parallel computer architectures are given below:

• Four-node Linux cluster: Pentium-II 333 MHz processors with 256 MB

of RAM linked by 100 BaseT ethernet switch.

• Hitachi SR2201 supercomputer: 256× 150 MHz processors with 2 float-

ing point pipelines, 256 MB of RAM and 3D crossbar network operating

at 300 MB/s. Three partitions were available for production runs and

contained 64 processors each.

An almost-linear speedup was found to occur due to the very low rate of

communication between nodes. For example, a production run of 4 parallel

demes for 60,000 generations took 2-3 days on the Linux cluster. However,

using a 64-node partition on the SR2201 supercomputer, 32 parallel demes

could be processed in a standard 8 hour run.

5.3.4 Parallel GA

A coarse-grained parallel GA topology, known as the island model, was used

in this implementation (see Figure 3.7b). Periodic migration was permitted
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between the demes, which otherwise were allowed to evolve independently

as if the populations were confined to islands. The actual separation of the

calculation across the nodes depended on the number of available nodes and

the requested number of demes. To minimize delays from communication,

demes were equally divided among the nodes whenever possible. In the

cases, though, where the number of demes was less than the number of

nodes, the fitness evaluation stage was performed by sharing members of the

population amongst the available nodes. Once all nodes had completed the

fitness evaluation, they communicated the resulting fitness to the controlling

node, which would perform the serial operations of selection, recombination

and mutation.

Migration was performed between demes at periodic intervals and in-

volved the following heuristic method

The member from the source deme which undergoes migration

should be the fittest member such that, when migration is com-

pleted, it will not become the fittest member of the destination

deme.

Therefore, a particular deme would send a copy of one of its fittest individ-

uals, as long as it did not become the elite member of the destination deme.

This paradigm avoided premature convergence between the demes and in-

stead, the genetic material of the migrants was slowly absorbed into the

population of the destination deme, possibly improving the existing designs.

5.4 Testing the GA

5.4.1 Helmholtz pair

In order to test the GA optimization code, a simple design task was created.

The task consisted of optimizing a pair of thick Helmholtz coils. Usually

Helmholtz coils are assumed to be infinitely thin and carry identical cur-

rents. If the separation is given by s, the diameter by d and the following
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relationship [84, p.172] holds

s =
1

2
d (5.2)

then the first three derivatives of the magnetic field cancel at the centre

of the system, creating a fairly homogeneous magnetic field. In this case,

the problem was altered slightly to optimize the placement of thick (10 cm

wide and 10 cm deep) Helmholtz coils to minimize the inhomogeneity over

an 8 cm DSV. Constraints were imposed on the optimization to ensure that

a minimum field strength of 1 T was achieved using a fixed current density

of 100 A/mm2.

16 demes were optimized in parallel without migration, each with a sub-

population size of 32 which was initialized randomly and then left to evolve

for 500 generations. The results (see Figure 5.2) clearly show that all of the

runs converged within 350 generations to a single optimal design given by

zmid ≈ 44.96 cm

rmid ≈ 89.86 cm

where zmid = zmin + 0.5w and rmid = rmin + 0.5d define the location of

the centre of the Helmholtz coils. Comparing the results to (5.2), we find
44.96
89.86

≈ 0.5003 (4 s.f.). The small deviation from exactly 0.5 is due to the

finite size of the coils used in the design6.

5.4.2 Coil configurations

Having shown that the GA is capable of optimizing a single pair of coils, the

next task was to investigate how the GA dealt with multiple coils. There-

fore, a series of experiments was performed with varying numbers of coils. In

particular, the coils making up a design were divided into positively wound

coils, which contributed to the main field strength, and negatively wound

coils, which reduced the fringe fields and improved the homogeneity. Fig-

ure 5.3 shows the different convergence rates using a wide range of possible

6See Kaminishi and Nawata [85] for an in depth description of the thick Helmholtz
coils problem.
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Figure 5.2: Convergence of thick Helmholtz coil test problem. The fitness is
the standard deviation of the magnetic field over an 8 cm diameter sphere.
The optimal design is shown in the inset.

Figure 5.3: Comparison of the preliminary genetic algorithm optimization
on various combinations of positive and negatively wound coils. The results
showed little difference between the combinations, although the rate of con-
vergence is slightly higher with more pairs of coils.
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configurations. Surprisingly, adding more coils did not significantly improve

the homogeneity of the final designs. It was found instead that roughly the

same homogeneity (or fitness) could be obtained using very different numbers

of coils, although designs containing more pairs of coils tended to converge

to their final fitness slightly faster.

Using this information and considering the complexity of the designs, a

decision was made to optimize a design containing four pairs of coils; two

positively wound and two negatively wound.

5.5 Methods II: Applying the GA to the

Short Bore Magnet

5.5.1 Main coil optimization

The GA described in the previous sections was used to optimize a short

bore MRI magnet consisting of four pairs of coils. The coils were configured

during initialization so that two pairs were positively wound and two pairs

were negatively wound. The maximum length of the magnet bore was set

to 1.0 m with a 1.0 m bore diameter and a maximum outer diameter of 2.5 m.

A fitness function was used which calculated the standard deviation of

the z component of the magnetic field at a few sampled points within the

ROI. Therefore the minimized function was

Fitness =

√√√√ 1

N

N∑
i=1

(Bz,i)2 −

(
1

N

N∑
i=1

Bz,i

)2

(5.3)

where N points in total were sampled across the ROI of radius R. In this

case, a 6×6 grid of points was formed and the 28 points located within 1.05R

of the origin were used to calculate the fitness (see Figure 5.4).

Various constraints were placed on the optimization and these were imple-

mented by adding a penalty value to the basic fitness (see Section 3.3). The

penalty values were determined by a process of iterative testing, resulting in

the following formulae
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Figure 5.4: Sketch of the points at which the magnetic field was evaluated
within the ROI.

• Central field strength: if the field strength at the centre of the ROI,

Bz(0, 0), was less than the required field strength, Breq., then the fitness

value was given by

If Bz(0, 0) < Breq. then

Fitness = Fitness× [1.0 + 10(Breq. −Bz(0, 0))]× 100

• Fringe fields: the fringe fields were constrained by examining the field

strength at two points along the z axis. In this case, a fringe field of

less than 5 gauss was required at 5 m. Therefore the field strength

was calculated at 5 m and 6 m along the z axis. A penalty was added

to the fitness value if the field strength at either point exceeded the

required 5 gauss. Evaluating the field at two points along the z axis

prevented the fringe field from simply inverting at z = 5 m.

If Bz(z = 5m) > Breq.(fringe) then

Fitness = Fitness + [Bz(z = 5)−Breq.(fringe)]× 106
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If Bz(z = 6m) > Breq.(fringe) then

Fitness = Fitness + [Bz(z = 6)−Breq.(fringe)]× 5× 106

• Hoop stress: the final constraint was a limit imposed on the hoop stress.

This was calculated by finding the z component of the field inside each

coil and multiplying by the current density and the radius. Unfor-

tunately, evaluation of the field within a coil was very slow, so only

a single point could be chosen in each coil. This point was located

at (zmin + w
2
, rmin +0.5mm), just inside the edge of each coil, where the

field strength is highest for a solitary coil (see Figure 4.5). The fitness

was penalized if the approximated hoop stress, Sapprox, exceeded the

nominal maximum stress, Smax, of 200 MPa.

If Sapprox > Smax then

Fitness = Fitness + [Sapprox − Smax]× 100

Production runs were performed on the Hitachi SR2201 supercomputer us-

ing 64 demes for 60,000 generations and a deme sub-population size of 128.

Unfortunately, it was impossible to optimize the homogeneity of such a mag-

net to the required levels of 1 ppm max. to min. over a 40 cm DSV. In fact,

typical inhomogeneities of roughly 50 ppm max. to min. over a 40 cm DSV

were the best that could be achieved by the GA.

Taking into consideration fitness and the layout of coils, the best design

was chosen with the following properties; 1.0 T field with homogeneity of

9.9 ppm and 48.4 ppm max. to min. over a 30 cm and 40 cm DSV re-

spectively. Fringe fields were within the required distance and hoop stresses

were properly constrained. The field in the ROI for this design is shown in

Figure 5.5 and details of the positions and current densities of the four pairs

of coils are given in Table 5.1.
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Figure 5.5: Contour plot of inhomogeneities over a 40 × 40 cm cylinder for
four main superconducting coils. The highlighted region has 1 ppm max. to
min. deviation over a 7.5 cm diameter sphere.

Coil zmin (cm) rmin (cm) width (cm) depth (cm) J′′ (A/mm2)

m1 10.80 54.08 2.70 12.90 77.91
m2 28.71 57.86 4.70 12.90 -58.07
m3 40.72 63.00 9.20 24.70 66.43
m4 20.97 112.88 7.70 11.80 -65.61

Table 5.1: Positions and current density of four main superconducting coils
optimized using the genetic algorithm, in the short whole-body MRI magnet
design.
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5.5.2 Superconducting shim coil optimization

To improve the homogeneity of this design, a second optimization stage was

performed, involving the addition of a set of superconducting shims. It was

found that by cancelling all non-zero orders up to and including 8th order7,

that good homogeneity could be created over a 40 cm DSV. This was achieved

with a superconducting shim set consisting of five pairs of coils. To set the

currents in the shim set, a matrix inversion technique was used.

Firstly the spherical harmonic expansion weighting coefficients, qn, were

calculated for the four coils of the existing magnet design. Due to symmetry

about the plane z = 0, these coefficients were zero for all values of odd n.

The first five non-zero weighting coefficients q0, q2, q4, q6 and q8 were used

to form a vector Q. Secondly, the spherical harmonic weighting coefficients

were calculated for each of the shim coils with unitary current density (J ′′ =

1 A/mm2) and these values were used to create a 5×5 matrix, M. Finally,

to find the required currents in the shim coils, the following matrix equation

was solved

MJ = Q (5.4)

where J is a vector containing the required current densities in the super-

conducting shims. To maintain the field strength, the first component of the

vector Q was set to zero. Equation (5.4) may be rearranged to give

J = M−1 Q (5.5)

providing M−1, the inverse of M, exists.

There remains the problem of where exactly the superconducting shim

coils should be placed. To answer this, a second stage GA was used to

optimize the positioning of the superconducting shims coils with the objective

of minimizing the size of the remaining weighting coefficients in the spherical

harmonic expansion.

7See Section 4.2.3 for an explanation of the meaning of ‘order’.
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Coil zmin (cm) rmin (cm) width (cm) depth (cm) J′′ (A/mm2)

m1 10.80 54.08 2.70 12.90 77.91
m2 28.71 57.86 4.70 12.90 -58.07
m3 40.72 63.00 9.20 24.70 66.43
m4 20.97 112.88 7.70 11.80 -65.61
s1 9.42 50.00 4.30 0.90 133.94
s2 14.81 50.02 4.90 3.40 -124.80
s3 20.91 50.00 8.60 3.50 114.68
s4 32.34 51.00 9.90 5.00 -104.90
s5 43.30 54.49 6.70 5.50 99.99

Table 5.2: Resulting short bore MRI magnet design with the addition of five
pairs of superconducting shim coils.

The fitness function was expressed as

Fitness =
20∑

n=10,even

|qn| (5.6)

By iterative optimization of this fitness function, it was found that the

hoop stresses in the superconducting shim coils were too high to consider

construction. In an attempt to control these stresses, limits were placed on

the allowed current densities in the five superconducting shims. Starting

from the outer shim, the limits were set to Jmax= 100, 105, 140, 140 and

140 A/mm2. These limits were enforced by adding a penalty function to the

fitness if the current in the ith coil, Ji, exceeded the limit, Jmax(i), thus

If Ji > Jmax(i) then

Fitness = Fitness +
[
Ji − Jmax(i)

]
× 106 (5.7)

The results of this second optimization stage are shown in Table 5.2. The

inhomogeneity of this design showed a standard deviations of 0.07 ppm over a

30 cm DSV and 1.0 ppm over a 40 cm DSV. Maximum to minimum deviations

over the same DSVs were 1.0 ppm and 14 ppm respectively.
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5.6 Results and Analysis

5.5.3 Quantization of parameters

The design, detailed in Table 5.2, would in practice be very difficult to main-

tain due to the fact that each coil operates at a different current density.

Therefore, a final stage of the optimization process was implemented whereby

the primary coils, m1-m4, were configured to operate at 68 A/mm2 and the

superconducting shim coils, s1-s5, were configured to operate at 110 A/mm2.

This alteration was performed using the first order relationship

w × h× J ′′ = constant (5.8)

Thus, the change in cross-sectional area of each coil was inversely propor-

tional to the change in current density. Once these alterations had been ap-

plied to the design however, a further process of re-shimming was required.

To achieve this, five pairs of room temperature shim coils were added to

the design and the currents were set using the matrix inversion technique

described in the previous section. As well as removing much of the inhomo-

geneity from the design, the room temperature shim coils also allowed for the

compensation of manufacturing errors. For simplicity, the shim coils were all

located at an inner radius of 47 cm and had a cross-section of 2× 2 cm.

5.6 Results and Analysis

The final magnet design is detailed in Table 5.3 and analyzed in the following

sections.

5.6.1 Overall configuration

The overall configuration of the design is shown in Figure 5.6 and a detailed

view of one quadrant is shown in Figure 5.7. The coils were numbered using

the convention ‘m1-m4’ for the main coils carrying 68 A/mm2, ‘s1-s5’ for

the superconducting shims carrying 110 A/mm2 and ‘r1-r5’ for the room

temperature shims used to correct for positioning errors. The main coils and

the superconducting shims were slightly flared from an inner radius of 50 cm
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Coil zmin (cm) rmin (cm) width (cm) depth (cm) J′′ (A/mm2)

m1 10.71 54.08 2.90 13.50 68.00
m2 28.89 57.86 4.30 11.90 -68.00
m3 40.77 63.00 9.10 24.40 68.00
m4 21.04 112.88 7.60 11.60 -68.00
s1 9.20 50.00 4.70 1.00 110.00
s2 14.65 50.02 5.20 3.70 -110.00
s3 20.82 50.00 8.90 3.60 110.00
s4 32.46 51.00 9.70 4.80 -110.00
s5 43.45 54.49 6.30 5.10 110.00
r1 8.00 47.00 2.00 2.00 4.2177
r2 15.00 47.00 2.00 2.00 -0.9457
r3 21.00 47.00 2.00 2.00 -1.9129
r4 32.00 47.00 2.00 2.00 -6.2943
r5 48.00 47.00 2.00 2.00 5.1421

Table 5.3: Positions and current density of the coils in final short, whole-
body MRI magnet design. Main superconducting coils are labelled m1-m4,
superconducting shims by s1-s5 and room temperature shim coils by r1-r5.

at the centre to 54.5 cm at the edge of the magnet. The central field strength

was 1.0 T.

5.6.2 Homogeneity

The magnitude of the z component of the magnetic field over the ROI is

shown in Figure 5.8 with the deviation of the field from the central value

expressed in parts per million (ppm). The homogeneity has a standard de-

viation of 0.06 ppm over a 30 cm ROI and 1.06 ppm over a 40 cm ROI.

Maximum to minimum deviations are 0.87 ppm and 14.65 ppms over DSVs

of 30 cm and 40 cm respectively. The size of this DSV is perfectly suitable

for surgical interventions and in particular brain surgery where the typical

size of the region examined is of the order 25 cm.

102



5.6 Results and Analysis

Figure 5.6: Cross-section of the final optimized short whole-body magnet.
The positively wound coils are shown in red, whereas the negatively wound
coils are shown in blue.

Figure 5.7: Close up of one quadrant showing the 4 main coils and the
5 superconducting shim coils. For clarity the room temperature shim coils
are not included.
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Figure 5.8: Homogeneity of short, whole-body magnet over the ROI. The
uniform region is highlighted and is sufficiently large for routine brain imag-
ing.
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Figure 5.9: Fringe fields of short, whole-body MRI magnet. The 5 gauss line
can be seen to lie entirely within a sphere of radius 5.19 m.

5.6.3 Fringe fields

The active shielding in the short MRI magnet reduces the magnetic footprint

considerably. On axis, the magnetic field strength decays to 5 gauss at 5.19 m,

whereas radially, the distance to the 5 gauss line is 4.56 m. The overall region

in which the fringe field exceeds 5 gauss is contained entirely within a sphere

of radius 5.19 m, covering a floorspace of approximately 54 m2. See Figure 5.9

for details. These dimensions compare well to other similar strength magnets

especially considering the open aspect of the 1.0 T magnet.

5.6.4 Peak fields

The maximum field within the conductors, 5.1 T, occurs in coil s4 of the

superconducting shim set. From Table 5.4 it can also be seen that s5 and m3

endure fairly high fields of 5.0 T and 4.2 T respectively. However, the main
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Coil Peak Field (T) Hoop Stress (MPa) Axial Force (MN)

m1 2.18 75.25 0.08
m2 3.09 -101.37 -1.17
m3 4.20 -179.63 2.30
m4 2.85 214.31 -1.03
s1 1.66 89.43 -0.07
s2 2.46 -135.51 -0.15
s3 2.48 134.65 -0.15
s4 5.10 -234.66 1.50
s5 5.00 257.44 1.00

Table 5.4: Peak field, hoop stress and axial force for final short, whole-body
MRI magnet design. Hoop stresses are calculated using the independent
hoop approximation (Section 4.5.1). The room temperature shim coils are
omitted due to their low current densities.

coils (m1-m4) only operate at 68 A/mm2 compared to 110 A/mm2 for the

superconducting shim set. This means that our attention should be placed,

on the two outermost superconducting shim coils (s4 and s5) to check that

they lie within the critical field boundary. Operating at 110 A/mm2 and

4.2 K, the critical field for NbTi superconductor is roughly 10 T8. Often

an operational temperature margin of 0.5 K is used to ensure that small

temperature fluctuations do not initiate a quench (as discussed in Section

4.6.3). Even at 4.7 K, the critical field remains well above the operating field

at about 9 T. This ensures that critical current limits do not restrict this

design, rather the design is limited by the hoop stresses.

5.6.5 Stress and Forces

Stresses (including axial stress, shear stress and von Mises stress) were cal-

culated for this short bore design using the finite element modelling program

ABAQUS9. Figure 5.10 shows the calculated axial hoop stresses with a max-

imum tensile stress of 197 MPa and maximum compressive stress of 94 MPa.

The remaining coils in the design had substantially lower stresses, as can

8See Figure 4.8.
9See Section 4.5.3.
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Figure 5.10: Cutaway view of the short, whole-body MRI magnet showing
hoop stress, σ33 (MPa)

be seen from the figure. The outer two superconducting shims (s4 and s5)

have fairly high internal stresses and would require some structural reinforce-

ment, for example with steel reinforced superconductor. Such cable is formed

by winding multiple strands of standard NbTi/Cu superconductor around a

steel core. Axial forces are detailed in Table 5.4.

5.6.6 Sensitivity

Sensitivity of the main superconducting coils to manufacturing errors was

measured using a Monte Carlo simulation. Movements in the axial direc-

tion were considered by shifting each coil by 0.5 mm and imperfections in

the milling radius of the coil formers were also considered by expanding or

contracting the inner and outer radii by 0.5 mm. Coils on both sides of the

plane where z = 0 were subjected to different movements and the homogene-

ity of the ROI was recalculated. The results are shown in the main part of

Figure 5.11, where the new homogeneity of the ROI is plotted against the
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Figure 5.11: Simulation of 0.5 mm manufacturing errors showing frequency
distribution of maximum to minimum homogeneity over a 30 cm sphere.
Average degradation of the homogeneity was approximately 710 ppm. The
figure shown in the inset details the analogous distribution after reshimming
with the room temperature shim coils. The average homogeneity was reduced
to 1.16 ppm.
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frequency of the outcome. The average maximum to minimum deviation for

0.5 mm movements was 710 ppm with the tail of the graph reaching almost

3000 ppm.

In order to reshim the magnet a matrix inversion technique similar to

the method in Section 5.5.2 was used. However, in this situation, there

was no symmetry about the plane z = 0 resulting in the need to set the

currents in all 10 room temperature shim coils independently. The inset

of Figure 5.11 shows the corresponding graph when the room temperature

shim coils are set to cancel the first 10 spherical harmonic terms. It can

be seen that the homogeneity is restored to roughly its original value with

an average inhomogeneity of 1.16 ppm. The maximum currents used in the

room temperature shim coils to restore the homogeneity did not exceed 16 A.

It should also be noted, that general susceptibility effects of the patient

could also be cancelled using the room temperature shims, however, more

localized effects around the sinuses and ears would still have to be dealt with

using specialized techniques [86].

5.7 Discussion

On several counts, the ultra short bore MRI magnet design proposed in this

chapter compares well with conventional MRI magnets. The bore length of

1.0 m is significantly shorted than existing magnet designs, typically 1.5-

2.5 m, and the ratio of bore length to bore diameter is very nearly unity,

reducing the effects of claustrophobia and increasing access for interventional

surgery. Homogeneity over the central ROI is acceptable with 1.06 ppm

standard deviation over a 40 cm DSV or 0.87 ppm max. to min. over a 30 cm

DSV, whilst the fringe fields are reduced to less than 5 gauss within a sphere

of radius 5.19 m. Using a GA, multiple constraints have been simultaneously

applied, limiting the fringe-fields, the hoop stresses and the maintaining the

central field strength. By including all of the relevant constraints in the

fitness function, it has been shown that an ab initio approach to MRI magnet

design using stochastic optimization is feasible.

Recent work by Zhao et al. [87] has added to the theoretical understand-
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ing of short bore MRI magnet design. Zhao investigated the properties of

MRI magnet designs found by the target field10 method as a function of

the overall magnet length. It was found that for magnets with a length to

diameter ratio less than 1.4, the solutions to the target field method ex-

hibit regions with negative current density. These regions are interpreted as

‘bucking’ coils wound in the opposite direction to the main field producing

coils. This leads to two effects seen in ultra-short, whole-body MRI magnets.

Firstly, the overall efficiency of the magnet is dramatically reduced, with the

counter-wound coils working against each other to cancel field strength. This

is not too much of a problem as the 1.0-3.0 T field strengths used in MRI

are relatively low field strengths for superconducting magnets. However, any

increase in the required volume of superconductor can have a large impact

on the cost of the system. Secondly, the bucking coils create regions within

the magnet where the field strength is much higher than usually encoun-

tered due to the compaction of the flux lines between positive and negatively

wound coils. This leads to problems with strong forces and stresses as well

as potentially limiting critical currents.

It is interesting to note that the original design from the genetic algorithm

(see Table 5.1) used a single negatively wound coil ‘m2’ in precisely the

expected position for this bucking coil. Also, attempts to include more coils

in the optimization did not significantly improve the results (see Figure 5.3),

possibly due to the coils clumping together to form localized regions of current

density.

Several other techniques have been used in the literature for the design of

ultra short bore MRI magnets. For example, Crozier et al. [89] use the target

field method as part of a hybrid optimization process combined with simu-

lated annealing. The two methods are required as the target field method

produces a continuous current distribution on the inner bore surface, which

must subsequently be approximated by quantized, thick solenoidal coils. As

a last step in the process, simulated annealing is used to reoptimize the posi-

10The target field method, popularized by Turner [88] for the design of gradient coils,
is still widely used in magnet and gradient coil design. The technique is very efficient,
but cannot deal with integer parameters as easily as genetic algorithms or other stochastic
optimization methods.
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tions. Alternatively, the designs may be finally optimized using a non-linear

least-squares scheme [87]. Other methods that have been examined include

the use of matrix subset selection [90] and genetic algorithms [91]. However,

the literature has so far tended to ignore fundamental constraints which make

MRI magnets feasible. An example is a symmetric magnet design in [87] with

a bore length of roughly 1.0 m, a bore diameter of roughly 0.9 m and a cen-

tral field strength of 1.0 T. Whilst the homogeneity of the 50 cm DSV is very

impressive (standard deviation of 3.4 ppm) and the peak fields within the

superconductor are reasonable at 6.5 T, an approximation (4.83) of the hoop

stress in the one of the coils gives over 800 MPa, which clearly rules out this

magnet as these stresses cannot be supported.

In terms of commercial designs currently on the market, the shortest

magnet design is the Philips Infinion [37]. This 1.5 T magnet has a bore

length of 1.4 m and has an elliptical ROI, 50 cm across in the anterior-

posterior direction and 40 cm across in the axial direction. Ignoring the

trimming and cryostat, the coil dimensions do not exceed 1.27 m in length

and a flared whole-body gradient gives the impression of an even shorter bore.

Compared to the design optimized with the GA, the Infinion compromises

its length (25% longer) for a larger imaging volume and a higher operating

field strength. Unfortunately, the methods of optimization used in industry

are still shrouded in secrecy, so further comparisons are very difficult.

At this point, the feasibility of the short bore magnet proposed in this

chapter should be considered. Although many important constraints have

been enforced, the sheer complexity of the design makes construction a dif-

ficult prospect. The magnet consists of 18 superconducting coils and 10

room temperature shim coils, many more than conventional MRI magnets

which typically contain about 10 coils. Furthermore, the high stresses on the

two outermost superconducting shim coils may well cause problems either

through premature quenching or simply in the construction of sufficiently

strong formers. In cases where hoop stresses are slightly higher than usual,

it is possible to reinforce the superconductor with stainless steel. However,

these factors would probably lead to a higher cost when compared to exist-

ing systems. Cost is also likely to be significantly higher due to the use of
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0.515 m3 of superconductor, which is 3-4 times the quantity used in conven-

tional MRI designs.

Cost optimization has been studied by only a handful of authors including

Xu et al. [76] and Prestmon et al. [77]. Xu arrived at the conclusion that

magnets with a length (L) shorter than

Lcritical = 1.2DSV + 0.77D, (5.9)

become very expensive to build11. The methods used to obtain this result

remain unpublished, but the evidence from the ultra-short magnet proposed

in this chapter and the design of the Infinion magnet appear to support his

conclusions.

It may well be that although ultra short bore magnet design is possible

in principle, building these magnets at the same cost as conventional designs

remains unfeasible.

5.8 Conclusions

In conclusion, it has been shown that ultra short bore magnet design using

genetic algorithms is possible and merits further investigation. An ab ini-

tio approach to the design problem, including all of the relevant constraints

on design has produced a design which is 30-40% shorter than current con-

ventional designs and is therefore suitable for interventional use and in cases

where the patient is claustrophobic. A real-coded genetic algorithm was used

in a two-stage optimization procedure, firstly to position the main coils and

then to position the superconducting shim coils. A third stage involved the

inclusion of a set of room temperature shims. The resulting magnet design

compares favourably with the existing literature on short bore designs.

It was found that the inclusion of a set of room temperature shim coils

allows for the correction of manufacturing errors as large as 0.5 mm with cur-

rents below 16 A and that the shim coils would also be suitable for correcting

general inhomogeneities caused by susceptibility of patients in the scanner.

11Where DSV is the diameter spherical volume and D is the bore diameter.
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Almost all of the constraints placed on the design were met. Surprisingly,

the most difficult constraint placed on the MRI magnet design was found to

be the hoop stress limit. By confining the hoop stress to below 200 MPa,

compromises had to be made on the homogeneity of the central field strength.

Unfortunately, the complexity of the design has contributed to an elevated

cost projection for this magnet, which would make the design uncompetitive

compared to existing designs12. Indeed, keeping the costs down is one of the

most difficult problems to overcome as the length of MRI magnets decreases.

This is due to the need for bucking coils near the ROI and the need to

have increasingly high alternate current densities along the inner magnet

bore. Ways of relaxing the apparent constraints remain an area of research

in which genetic algorithms may well play a role.

Finally, in the search for interventional magnets, other possible magnet

configurations may be considered, for example, ‘C’ shaped magnets [92].

Another option is to create a split-coil magnet system with radial access for

the surgeon [93]. Designs with radial access to the central homogeneous ROI,

although for a different purpose, are the subject of the next chapter.

12The design presented in this chapter has been quoted at 5,000,000 US$ for one-off
manufacture.
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Split-coil MRI Magnet for

Combined PET/MRI

6.1 Introduction

A wide range of biomedical imaging techniques are now available to physi-

cians including magnetic resonance imaging (MRI), computed tomography

(CT), positron emission tomography (PET) and ultrasound. Each tech-

nique or modality provides slightly different information with some, such

as ultrasound, providing better anatomical information and others, such as

PET, providing primarily functional information. Recently, interest has been

sparked in combined imaging systems following very encouraging results from

a commercial dual-imaging PET/CT system [94, 95]. Combining PET and

CT, two complimentary imaging modalities, into a single system allows near-

simultaneous images to be obtained and results in several important advan-

tages. Firstly, images taken from the two modalities may be more accurately

matched (co-registered) as the patient does not have to be repositioned be-

tween scans [95]. Secondly, photon attenuation maps for PET reconstruction

may be generated from the CT images [96]. Thirdly, the combined system

produces better overall sensitivity and specificity for diagnosis of primary

tumours [95], therefore improving patient management and avoiding unnec-

essary treatment.
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Another exciting candidate for dual modality imaging is combined PET

and MRI [97]. A truly simultaneous combined PET/MRI scanner would be

remarkable due to the good sensitivity of MRI to soft tissues along with

the quantitative functional activation data available from PET. As in com-

bined PET/CT, the simultaneous acquisition of PET and MRI data would

offer more diagnostic information than the sum of the individual modalities.

Combined PET/MRI would allow almost perfect spatial registration using

the known characteristics of each imaging modality and would permit the

correction of partial volume effects. Furthermore, temporal correlation be-

tween the modalities would allow the removal of motion blurring from the

PET data. Photon attenuation maps could be reconstructed from the MRI

data and perhaps most importantly of all, targeted molecular imaging would

be feasible with nano to picomolar sensitivity [97] from PET combined with

anatomical information available from MRI.

In this chapter, a novel way of combining PET and MRI is considered

using a split-coil magnet. The genetic algorithm (GA) used in the previous

chapter for the design of the ultra short bore MRI magnet is adapted and

improved. Results are compared to a commercial design from a leading

manufacturer.

6.2 Combined PET and MRI

6.2.1 What is PET?

Positron Emission Tomography (PET) is a form of emission tomography

that provides unique functional information in vivo about the viability of

tissue and organs. The technique is used to measure the spatial distribution

of positron-emitting radionuclides. Such radionuclides include proton-rich

isotopes of carbon, nitrogen, oxygen and fluorine. The most common example

used in PET is 18F, an unstable isotope of fluorine which has a half-life of

112 minutes [11, p. 122] and decays via the following nuclear process

p → β+ + n + ν (6.1)
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where p=proton, n=neutron, ν=neutrino and β+=positron. The emitted

positron (β+) will, in vivo, travel only a short distance (≈ 1 mm) before

coming to rest and annihilating with an electron in the surroundings. In this

annihilation, both energy and momentum are conserved and two 511 keV

gamma rays are emitted with a 180◦ angular separation. Detectors are used

to localize the source of the electromagnetic radiation. They rely on coinci-

dence detection over a short timing window (2-10 ns) and the fact that the

annihilation photons are produced back-to-back.

A PET scanner usually contains several rings of scintillation crystals1

which produce a flash of light for each incident photon. Light from several

scintillation crystals is amplified using a position sensitive photomultiplier

tube (PMT) which creates an electrical pulse for analysis. PET images are

acquired in either 2D mode or 3D mode. In 2D (multislice) mode, lead or

tungsten shields are placed between detectors to absorb scattered radiation

and restrict the angular range of each crystal. In 3D mode, no shields are

used and each scintillation crystal is sensitive to photons from a much wider

area. Using 3D mode allows lower doses of radiation to be administered, but

more sophisticated scatter correction algorithms must be implemented. For

further details about PET many good text books are available, e.g. [98].

6.2.2 Challenges of combining PET and MRI

Although the advantages of combined PET and MRI are enormous, there

are many technical challenges that must be overcome before simultaneous

PET/MRI imaging becomes a reality. These challenges may be divided into

three categories

1. Effects of MRI on PET: Photomultiplier tubes (PMTs), a key compo-

nent of any PET system are very sensitive to even very small magnetic

fields [99, 100]. State-of-the-art position sensitive PMTs can operate

in field strengths up to 1 gauss, although with soft-iron shielding, they

1Scintillation crystals are made from many materials including Bismuth Germinate
Oxide (BGO), Lutetium Oxyorthosilicate (LSO) or Thallium-doped Sodium Iodide (NaI-
Tl).
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may be used in fields strengths up to 500 gauss.

2. Effects of PET on MRI: Additional inhomogeneity over the region of

interest (ROI) may be induced by magnetically active materials from

the PET system placed within the magnetic footprint. Whilst it has

been shown that scintillation crystals do not cause any problems [97],

shielding associated with the PMTs may well affect the flux lines and

thus the homogeneity of the MRI system. Any conducting materials

placed near the central ROI may also cause problems due to eddy

currents [101, 102].

3. Electromagnetic interference (EMI): Interference between the imaging

modalities is a serious cause for concern. For example, radio frequency

interference from the PET electronics may well lead to banding arti-

facts in the magnetic resonance images. Similarly, strongly switching

gradients and RF pulses from MRI could well lead to spurious activa-

tions in the PMTs and related electronics [97].

Ideally, the aim for a combined PET/MRI scanner must be to achieve a

performance which is as good as the state-of-the-art performance attainable

from the individual modalities.

6.2.3 Previous attempts

In recent years, Cherry, Marsden et al. have performed ground-breaking pre-

liminary work on simultaneous PET and MRI [101, 97, 102]. Their approach

has been to develop a miniaturized PET detector capable of operating in the

environment of a conventional clinical MRI scanner. Two prototypes have

been built so far using roughly the same geometry. The original prototype

consisted of a ring of 48 LSO crystals (2 × 2 × 10 mm) in a ring with di-

ameter 48 mm [101]. Each scintillation crystal was linked via 4 m of optical

fibre to one of three position sensitive PMTs located outside the region of

strong magnetic field. Figure 6.1a illustrates the experimental setup. More

recently, a prototype with 72 LSO scintillation crystals (2 × 2 × 5 mm) has

been constructed with an inner bore diameter of 56 mm [97].
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Remarkable results have been achieved with these systems. In 1997, si-

multaneous MRI and PET images were successfully acquired within a 0.2 T

open bore magnet [101]. With the second prototype, a study was made of

the artifacts induced by the combination of imaging modalities and showed

no significant interaction even with echo-planar imaging [97]. More recently,

simultaneous PET and nuclear magnetic resonance (NMR) has been per-

formed on isolated, perfused rat hearts [103] using the same system.

However, the geometry of this prototype leads to several problems.

Firstly, the orientation of the scintillation crystals leads to poor sensitiv-

ity to the gamma rays. A better orientation, with the long direction parallel

to the direction of the electromagnetic radiation, gives a much higher in-

teraction rate. Secondly, there is significant attenuation in the long (4 m)

optical fibres which are required to site the PMTs in a region of low field

strength. Thirdly, with this system, a very small imaging region is available

and access to the imaging volume is restricted by the location of the LSO

crystals and the optical fibres. Finally, the small ring prototype may only

obtain 2D images. This 2D data must be compared to usually 3D images

from MRI, possibly introducing an additional partial volume effect.

6.2.4 A novel approach

In this chapter, a novel geometry for combined PET and MRI is proposed

to overcome some of the problems encountered by previous attempts. The

main feature of this proposal requires the construction of a split-coil MRI su-

perconducting magnet. By splitting the magnet into two halves and creating

a room temperature gap, the PET components may be positioned radially

around the imaging volume, which is located at the centre of the magnet.

Within the gap, scintillation crystals may be located, offering 360◦ coverage.

A number of PMTs may then be placed radially away from the centre of the

magnet in a region where the magnetic field is sufficiently reduced. As the

magnetic field tends to drop away faster radially than axially, relatively short

optical fibres may be used to link the scintillation crystals and the PMTs (see

Figure 6.1b).
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Figure 6.1: Two geometries for simultaneous PET and MRI. In (a) a small
ring of scintillation crystals is inserted into the bore of a conventional MRI
scanner. In (b) the PET detection system is located in a gap between the
two halves of a split-coil MRI magnet.

Several advantages may be noted as a consequence of this novel geometry.

Firstly, the orientation of the scintillation crystals is optimized to allow the

maximum length of crystal for interaction with the gamma rays. Secondly,

the attenuation caused by the fibre optics is reduced by shortening their

length. Finally, depending on the size of the gap, it is likely that full 3D

PET could be implemented. This is a significant advantage as the images

obtained from MRI are often full 3D volume data sets.

Given these advantages, a decision was taken to use the GA developed in

the previous chapter to optimize a split-coil main field MRI magnet.

6.3 Specifications and Requirements

As the design was novel, exact specifications were not available and could

only roughly be envisaged. A leading manufacturer of magnetic resonance

magnets in the UK, Magnex Scientific Limited [104], was approached and

discussions were held about the feasibility of such a split-coil design. Very
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soon, it became clear that our efforts should be focussed on designing an

animal scale system due to the cost constraints and also the importance of

the potential applications in drug testing. After consultation, the following

flexible requirements were agreed upon

Field strength 1.0 T

Homogeneity as good as possible

Length < 1.5 m

Outer diameter < 1.5 m

Inner bore diameter 20-30 cm

Split-coil gap 10-40 cm (as wide as possible)

Fringe fields 5 gauss within < 5 m

Volume of superconductor minimal

Number of coils 3 pairs (for simplicity)

As usual, limits on the critical currents and hoop stresses had to be en-

forced. At this point, the optimization proceeded along two separate avenues.

Magnex Scientific Ltd were commissioned to perform a design study of the

split-coil magnet and produce their own optimal design. Simultaneously, the

GA which had been used for the design of the ultra short bore MRI magnet

in the previous chapter was implemented to optimize our split-coil magnet

design. The two designs are subsequently compared in Section 6.5.3.

6.4 Methods I: Implementation of Genetic

Algorithm

Work on the ultra short bore, whole-body MRI scanner showed some of the

promise of stochastic optimization techniques [78, 79] on real-world engineer-

ing designs. For the optimization of the split-coil MRI magnet, the same GA

(see Section 5.3) was used, but several improvements were made to the effi-

ciency of the code which allowed more of the search space to be examined in

less time. For completeness, the GA parameters are summarized below:
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Population size 128 per deme

Number of demes up to 128

Initialization random

Selection binary tournament

Prob. of crossover 0.9

Crossover single point

Mutation type Gaussian real-number

Mutation rates



spread : pindiv. = 0.5

pcomp. = 0.1

jump : pindiv. = 0.1

pcomp. = 0.05

kick : pindiv. = 0.05

pcomp. = 0.05

Elitism yes

6.4.1 Specifying the homogeneity

In the previous chapter, the homogeneity over the ROI was found by taking

the standard deviation of the magnetic field evaluated at 28 points located

on a grid within the ROI. The actual magnetic field was calculated using the

well known spherical harmonic expansion method (see Section 4.2.1).

In this chapter, a slight variation of this technique was applied. Rather

than using a grid of points, the standard deviation was derived analytically

from the spherical harmonic weighting constants (qn). Thus, if the z compo-

nent of the central field (4.54) was given by

Bz =
∞∑

n=0

qn

(
r

r0

)n

Pn(cos θ) (6.2)

then the standard deviation of the inhomogeneity of the magnetic field over
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a ROI with radius R could be expressed (4.63) as

σ(Bz) =

√√√√ ∞∑
n=1

3 q2
n

(2n + 1)(2n + 3)

(
R

r0

)2n

(6.3)

where r0 is an arbitrary radius. The main advantage of using this method

was that the homogeneity depended only on the radius of the ROI (R) and

not on the choice of grid points.

6.4.2 Fringe field evaluation

One of the most important constraints placed on the GA was the limit applied

to the magnetic fringe field. Various methods were tested in the previous

chapter to evaluate and constrain the fringe field, whilst maintaining the

speed of the fitness function. In the end, a compromise was reached whereby,

only two points along the z axis were evaluated. However, this method did

not always completely constrain the fringe field.

In order to constrain the fringe fields properly, the magnetic field should

be evaluated at several points around the magnet (typically 12 points). How-

ever, fringe field evaluation is generally much slower than the central field

evaluation as a method involving numerical integration has to be used to

calculate both components of the magnetic field (see Section 4.2.2). For ex-

ample, finding the fringe field using numerical evaluation at 12 points took

up over 50% of the time spent on the fitness function.

To improve the speed of the fitness function, a rapid fringe field evaluation

method was invented and implemented (see Section 4.3 for full details). The

method provides a way of directly calculating the far-field spherical harmonic

weighting constants, hn, from thick solenoidal coils (4.48). These weighting

constants can then be used to evaluate the magnetic fringe field at arbitrary

points outside the magnet by applying

Br =
∞∑

n=1

hn

(r0

r

)n+2

Pn(cos θ) and (6.4)
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Bφ = −
∞∑

n=1

1

n + 1
hn

(r0

r

)n+2

Pn
1(cos θ) (6.5)

This novel technique was found to be 216 times faster than previous hy-

brid methods [105]. Consequently, the percentage of time spent evaluating

the fringe field constraint diminished to less than 5% of the overall fitness

function.

6.4.3 Constraint handling

A new way of handling constraint violation was also implemented in this

chapter. Whereas previously, a large penalty constant was added to the

fitness function for constraint violation [18, 19], this new method allows better

comparison of widely different constraints and avoids the need for large,

arbitrary penalty constants. Suggested by Deb [17], the constraint handling

technique has the following properties:

• Any feasible solution is preferred to any unfeasible solution

• Among two feasible solutions, the one having the better objective func-

tion value is preferred

• Among two unfeasible solutions, the one having smaller constraint vi-

olation is preferred.

When a constraint is violated then a normalized value in the range [0-1] is

added to the overall penalty. Mathematically, the constraint penalty can be

expressed as a sum of contributions from each of the N constraints. If xi(c)

is the limiting value of xi and the scaling parameter is σi, then

Penalty =
N∑

i=1

{
tanh(xi−xi(c)

2σi
) if xi > xi(c)

0 if xi ≤ xi(c)
(6.6)

The scaling parameters σi are expressed in units of the constraint xi and

give an approximation to the value of constraint violation when the penalty

reaches a value of 1/2.
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6.4.4 Summary of fitness function

A summary of the fitness function used in the optimization of the split-coil

MRI magnet is given below with the associated constraints

Fitness = σ(Bz) (6.7)

where σ(Bz) is given in 6.3. Under the new constraint handling technique,

penalties were calculated separately from the fitness. The following con-

straints were applied to the optimization

• Central field constraint: if the central field strength (B0) was less than

the desired central field strength (Breq.), a penalty term was added

using σB = 0.5 T

Penalty = tanh

(
Breq. −B0

2 σB

)
(6.8)

• Fringe field constraint: field magnitude was calculated for 12 points

at a fixed distance (rfringe) from the iso-centre. If the maximum

field strength at any of the 12 points (Bfringe) exceeded the fringe

field constraint (Bconstraint), then a penalty term was enforced where

σfringe = 200 gauss

Penalty = Penalty + tanh

(
Bfringe −Bconstraint

2 σfringe

)
(6.9)

• Hoop stress limit: the hoop stress was found by calculating the z com-

ponent of the magnetic field at a single point within each coil, located

at (zmin + w
2
, rmin + 0.5mm) (c.f. Section 5.5.1). If the maximum ap-

proximate stress found (Sapprox) in any coil was greater than the max-

imum allowable stress (Smax), then the penalty term was set using

σstress = 50 MPa

Penalty = Penalty + tanh

(
S≈ − Smax

2 σstress

)
(6.10)
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A final attempt was made to streamline the fitness evaluation code by

comparing the level of required accuracy to the level of obtained accuracy. It

was found that all of the evaluation routines contained much more accuracy

than was necessary. By reducing the accuracy, for example, of the numerical

integration for stress evaluation, the typical evaluation time of a 6 coil design

was reduced from 4.1 ms to 2.6 ms. In other words, 60% more designs could

be examined in the same period of time.

Finally two new computer systems, which had not been available previ-

ously were used for this optimization

1. 16-node Linux cluster: Forming a major part of the Wolfson Brain

Imaging Centre computing facilities [106], this cluster contains 16 dual

Pentium-III 866 MHz processors with 1 GB RAM each connected by

100 MB/s Fast ethernet.

2. IBM SP-II supercomputer: Part of the HPCF [83], the IBM SP-II con-

tains 10 nodes each with 16 Power3-II 375 MHz processors offering 4

floating point pipelines. Each node contains 12 GB memory and is

linked to 500 MB/s communication channels. Partitions of 64 proces-

sors are readily available giving 96 Gflops peak performance.

6.5 Methods II: Applying the GA to the

Split-Coil Magnet

6.5.1 Initial investigations of the search space

An initial investigation of the search space for designs consisting of three

pairs of superconducting coils was performed. In particular, the effect of two

important parameters, the inter-coil gap and the volume of superconductor,

was considered. Multiple runs of the GA were executed with different con-

straints on these parameters and the size of the homogeneous region (max.

to min. deviation < 1 ppm) was found.

Every run consisted of 32 parallel demes with a population size of 128,

optimized for 100,000 generations. If a particular deme did not improve for
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Figure 6.2: The optimized diameter of the ROI, given as a function of volume
of superconducting wire (cost) and inter-coil separation.

more than 2000 generations, it was said to have stagnated and the deme

was randomly re-initialized. On average, about 150 different designs were

found during the course of each run. This spread indicated that the GA was

becoming entrapped in a myriad of local minima, rather than converging to

a global minimum. However, fitnesses of the best designs were usually very

similar.

The size of the homogeneous region of the best design is plotted in Figure

6.2 against the two parameters, inter-coil gap and volume of superconductor.

There are four points of special interest on this plot:

1. This point represents the smallest volume of superconductor (0.05 m3)

and most accessible (30 cm gap) design considered. It suffers though
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from a very small homogeneous ROI with a diameter of only 1 cm.

2. Maintaining minimal cost (0.05 m3), this point represents a good com-

promise between size of ROI (7 cm) and inter-coil separation (15 cm).

It can be seen that reducing the inter-coil separation to 10 cm appears

to allow little improvement in the size of the ROI.

3. This point represents the design with the largest ROI, almost 10 cm in

diameter. The inter-coil gap, however, is rather small (10 cm) and the

volume of superconductor used in the design (0.09 m3) indicates higher

than desirable cost.

4. This point appears to be a good comprise with a decent size for the

ROI of 8 cm whilst reducing the volume of superconductor to 0.07 m3

and allowing an inter-coil gap of 20 cm.

This initial investigation shows not only which of the compromises are

important for such a design procedure, but also provides quantitative data

about the actual trade-offs involved.

6.5.2 Preliminary results

Using the understanding of the search space gained, further computational

runs were performed with an inter-coil gap of 20 cm and a maximum volume

of 0.07 m3 superconductor. The resulting design exhibited a standard devi-

ation of 0.5 ppm and maximum deviation 2.1 ppm over a 10 cm diameter

spherical volume (DSV). The design had a peak field within the conductor of

1.9 T and a very conservative maximum hoop stress of 16 MPa. The fringe

field constraint was satisfied, with the 5 gauss line lying entirely within a

sphere of radius 3.1 m. Figure 6.3a shows a cross-section of the preliminary

magnet design and Figure 6.4a shows the homogeneity over the ROI.

6.5.3 Comparison with manufacturer’s design

At this point, the commissioned design study was nearing completion and it

was possible to compare our preliminary results against a design from indus-
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Preliminary
Results

Manufacturer
Design

Field strength 1.0 T 1.0 T
Homogeneity (10 cm DSV) 2.1 ppm 1.2 ppm

Vol. of s/c (m3) 0.07 0.058
Sensitivity (ppm/mm)

over 10 cm DSV

}
463 244

Table 6.1: Comparison of the preliminary design with the manufacturer’s
proposed design.

try. The configuration of the commissioned design is shown in Figure 6.3b

and the homogeneity is shown in Figure 6.4. Both designs had a 1.0 T cen-

tral field strength with a 20 cm inter-coil gap, an overall length of 1.5 m and

outer bore diameter of 1.0 m. Remarkably, the two designs also displayed

very similar homogeneity over a 10 cm DSV (see Table 6.1). The single ma-

jor difference, though, between the designs was the operating current density.

Whereas our design operated at only 33.3 A/mm2, the design from industry

was rated at 100 A/mm2. This led to clear differences in the hoop stresses and

in the volume of superconductor used. Interestingly, our design was based

upon two negatively wound coils, one to actively shield the magnet and the

other to improve the homogeneity, whereas the manufacturer’s design only

had a single negatively wound coil.

During discussions about the various advantages of the two designs, it

was suggested by the manufacturers that our design would be too sensi-

tive to coil positioning and was therefore unbuildable. This objection was

quite disturbing, as although sensitivity to build-errors had been considered

previously, a Monte Carlo type calculation of design sensitivity during opti-

mization was unrealistic because of the complexity of such a calculation. In

order to overcome this issue, a rapid method of analytically approximating

the coil sensitivity was created (see Section 4.4.2 for details).

Using the spherical harmonic weighting constants for the central field

expansion, the novel analytical method obtains a value for the overall relative

sensitivity of each design with minimal extra calculation. The speed of this

technique is such that when tested, the evaluation of the sensitivity took
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Figure 6.3: Comparison between (a) the preliminary design from the GA and
(b) the commissioned design from Magnex Scientific Ltd.

up less than 0.5% of the overall fitness evaluation time. This technique was

applied to both of the designs and the sensitivity over a 10 cm DSV was

found to be 463 ppm/mm for our preliminary design and 244 ppm/mm for

the manufacturer’s design. The designs are briefly summarized and compared

in Table 6.1. In the following section, the new rapid technique to evaluate

coil sensitivity is added to the GA.

6.5.4 Including the sensitivity constraint

The measure of coil sensitivity was included in the GA by adding another

constraint to the penalty function. In order to try to match the design from

Magnex, the sensitivity limit was set to 80 ppm/mm per coil over a 10 cm

DSV, thus

Penalty = Penalty + tanh

(
Scoil − Smax

2 σS

)
(6.11)

where Scoil was the maximum sensitivity of all of the coils, Smax was the max-

imum allowable sensitivity and σS was set to 10 ppm/mm. For consistency,
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Figure 6.4: Contour plot of the homogeneity of (a) the preliminary design
from the GA and (b) the commissioned design.
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the operating current density was increased to 100 A/mm2 and following

discussions with the manufacturers, a few final design criteria were enforced

• Wire size was set to 1.5×1.5 mm.

• Number of layers was forced to be even.

• Coil depth was limited to 45 mm.

• Fringe field less than 5 gauss at 3.5 m.

• Inner bore diameter set to 50 cm.

The GA was run again for 10,000 generations using 128 demes each with a

population of 128. Using the 16-node Linux cluster from the Wolfson Brain

Imaging Centre, the computation time was approximately 3 hours. At the

end of the run, the results were examined and the best design is presented

in the next section.

6.6 Results and Analysis

With the inclusion of the sensitivity constraint, the GA produced a very

promising final design which is presented and analyzed in this section. See Ta-

ble 6.2 for the positions and current density of the coils in the final split-coil

MRI magnet design.

Coil zmin (cm) rmin (cm) width (cm) depth (cm) J′′ (A/mm2)

c1 10.48 42.06 8.55 4.50 100.00
c2 30.40 25.01 8.85 2.40 100.00
c3 65.36 50.84 8.10 3.30 -100.00

Table 6.2: Positions and current density of the coils in the final split-coil
MRI magnet design.
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Figure 6.5: 2D poloidal cross-section of final split-coil magnet design. Posi-
tively wound coils are represented in red and negatively wound coils in blue.
The ROI shown has a maximum inhomogeneity of < 1.15 ppm. The location
of the cryostat and connecting struts are shown schematically (see Section
6.7 for details).

6.6.1 Overall configuration

The general configuration of this magnet is that of a split-coil MRI magnet

with a gap between the two symmetrical halves of 20 cm. Containing only

three pairs of superconducting coils, the magnet is a relatively simple design.

Two pairs of coils are positively wound and produce a strong magnetic field

parallel to the z axis, whilst a single pair of coils is negatively wound and

actively shields the magnet design. A 2D poloidal cross-section of the magnet

is shown in Figure 6.5. The superconducting coils are labelled c1-c3 and the

operating magnetic field strength is 1.0 T.
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Figure 6.6: Homogeneity of the final split-coil design. (a) Contour plot and
(b) surface plot of the z component of the magnetic field over the ROI showing
the deviation from uniformity.
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Figure 6.7: Magnetic far field region of the split-coil MRI magnet showing
the 5 gauss contour line lying entirely within a sphere of radius 3.45 m.

6.6.2 Homogeneity

The deviation of the z component of the magnetic field from the central

value, expressed in parts per million, is shown in Figure 6.6. Over a 10 cm

DSV, the standard deviation of the magnetic field is 0.01 ppm. Extending

the DSV to 16 cm and 20 cm, the standard deviation becomes 0.30 ppm

and 1.67 ppm respectively. The maximum deviation from the central field

strength is 0.05 ppm over a 10 cm DSV, 1.15 ppm over a 16 cm DSV and

9.92 ppm over a 20 cm DSV. It is very clear that the diameter of the ROI is

about one and a half times as large as our preliminary design and also the

manufacturer’s design. This translates into a four-fold increase in homoge-

neous imaging volume.
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6.6.3 Fringe fields

The split-coil MRI magnet design is actively shielded using a single pair of

negatively wound coils to reduce the magnetic footprint. The 5 gauss line lies

entirely within a sphere of radius 3.45 m. Axially, the field drops to less than

5 gauss at 2.76 m from the iso-centre and radially at 3.31 m. The 500 gauss

line, which is important for the siting of the PMTs is located at 1.27 m along

the z axis and 1.06 m radially. Details of the fringes are shown in Figure 6.7.

The compact nature of the fringe fields allows for easier siting of the mag-

net and reduces the possibility of interaction with surrounding magnetically

active materials. The overall 5 gauss footprint of the magnet covers an area

of approximately 31.5 m2.

6.6.4 Peak fields

The peak fields were calculated for each of the three pairs of coils within the

magnet design. The results in Table 6.3 show that the maximum field within

the superconducting region is 2.4 T in coil c1, well within the intrinsic short-

sample limits of standard NbTi superconductor at 4.2 K and 100 A/mm2

(see Figure 4.8).

Coil
Peak Field

(T)
Axial Force

(kN)
Hoop Stress

approx (MPa)
Shear Stress

(MPa)

c1 2.4 191 (attractive) 101.7 0.802
c2 1.9 108 (attractive) 47.4 0.434
c3 1.8 101 (repulsive) 86.7 1.440

Table 6.3: Peak fields, axial forces and approximate hoop and shear stresses
for the three pairs of coils in the split-coil MRI magnet design.

6.6.5 Stress and Forces

A finite element analysis of the stresses in the split-coil MRI magnet design

was performed using Abaqus [63] (see Section 4.5.3). The percentage of

epoxy and insulation was estimated as 10% of the overall wire cross-sectional
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area (ε = 0.1). It was found that coil c1 undergoes the largest hoop stress of

93 MPa, whilst the maximum shear stress of 1.4 MPa is located within coil c2.

See Figures 6.8 and 6.9 for details. The hoop stresses quoted in Table 6.3 are

approximated from the self-supporting hoop stress analysis (4.83) which also

accounts for the slight difference. Both values are well within the intrinsic

limits for a Cu/NbTi superconducting matrix.

Axial forces were found by numerical integration of Fz over each individ-

ual annular coil. The results are shown in Table 6.3. Summing the forces

shows that a net attractive force of 198 kN or almost 20 tons must be sup-

ported by the interconnecting rods between the two coil halves.

6.6.6 Sensitivity

The sensitivity of the design to build errors was evaluated using the two

available methods. Firstly, a Monte Carlo simulation was performed using

0.5 mm positioning errors in both the axial location of the coils and the inner

bore radius. Results are shown in Figure 6.10. The standard deviation of

the inhomogeneity over a 10 cm DSV was 131 ppm on average, equivalent to

262 ppm/mm. Using the novel analytical approximation of the sensitivity,

a value of 229 ppm/mm was found for the overall relative sensitivity for a

10 cm DSV.

6.6.7 Comparison with manufacturer’s design

A comparison of the latest split-coil MRI magnet design against the manufac-

turer’s suggested design is shown in Table 6.4. It can be seen that for almost

all measures of performance, the stochastically optimized magnet design has

outperformed the manufacturer’s proposed design. Especially encouraging

is the four-fold increase in the imaging volume with homogeneity < 1 ppm

combined with a reduction of 20% in the volume of superconductor used in

the design.
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Figure 6.8: Analysis of the split-coil magnet for hoop stresses using Abaqus.

Figure 6.9: Analysis of the split-coil magnet for shear stresses using Abaqus.
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Figure 6.10: Sensitivity of split-coil MRI magnet design to positioning errors.
In this case, 0.5 mm errors were simulated in the z position and the inner
radius of each coil.

6.7 Discussion

Using an improved GA optimization, a split-coil MRI magnet design has been

created which significantly outperforms a commercially produced design. It

is a shame that the optimization methods used in industry are a closely

guarded secret and therefore direct comparison of our method is impossible.

However, there are a few research groups that have published stochas-

tic optimization techniques for MRI magnet design recently. As discussed

in Chapter 5, Crozier et al. [89] have used a hybrid method combined with

simulated annealing, but their work has focussed almost exclusively on short

bore magnets. Cavaliere et al. [58, 91, 107] on the other hand have applied

their stochastic optimization technique to human scale split-coil magnets.

An example of this is given in [107], where Cavaliere presents a design for

a human scale split-coil magnet with 1 ppm deviation over a 10 cm DSV,
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Parameter Manufacturer’s design GA design Improved?

Field strength 1.0 T 1.0 T
Operating current 225 A 225 A
Wire size 1.5×1.5 mm 1.5×1.5 mm
Inner bore φ 50 cm 50 cm
Outer diameter φ 100 cm 100 cm
Length 150 cm 150 cm
Inhomogeneity 1.22 ppm (10 cm) 0.04 ppm (10 cm) +

21.0 ppm (16 cm) 1.15 ppm (16 cm) +
Fringe fields 5 gauss at 3.70 m 5 gauss at 3.45 m +
Sensitivity 249 ppm/mm 229 ppm/mm +
Volume of s/c 0.058 m3 0.046 m3 +
Max hoop stress 98 MPa 102 MPa
Peak field 2.7 T 2.4 T +
Axial force 177 kN 214 kN −

Table 6.4: Comparison of the design optimized by GAs and the design avail-
able from the manufacturers as part of a commissioned design study. The
advantages and disadvantages are highlighted.

created using a real-coded GA. As part of the GA, a single fitness function

value is made up from a measure of the homogeneity, the volume of super-

conductor and a factor called the ‘compactness’ of the design. Although the

design offers a substantial gap between the coils of 24 cm and a homogeneous

ROI of 10 cm, it is clearly unfeasible to build as it suffers from very large

hoop stresses exceeding 900 MPa. Indeed one of the major advantages of the

method presented in this chapter is that its ablity to optimize designs with

all of the necessary constraints, ranging from homogeneity and fringe fields

to hoop stresses and even buildability.

Turning now to the absolute performance of the GA in this chapter,

the inclusion of a new measure of the homogeneity and a new fringe field

evaluation method improved the efficiency of the fitness function evaluation

routine. This reduced the time spent on the evaluation of each design and

allowed more of the search space to be covered and therefore better designs to

be produced at the end of each run. Optimization in parallel with multiple

demes was also particularly useful as it offered multiple solutions to the
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problem and could be used to counteract the natural tendency of the GA to

converge prematurely to local minima.

Altering the constraint handling method was also beneficial. In the pre-

vious chapter, large arbitrary parameters were used as penalties and added

to the fitness of a design in violation of the relevant constraint. This created

a delicate balance between the magnitude of the constraint penalties and

the expected fitness value. Typically, several iterations were required to set

the penalty factors to reasonable levels. In this chapter, the new constraint

handling mechanism [17, 108] required little or no iteration to initialize as

each penalty was measured using a normalizing function (see Equation 6.6).

Setting the length-scale, σi is much easier as it can be taken as a rough mea-

sure of the violation of the constraint when the penalty grows to a value of

0.5.

In the introduction to this chapter and Section 6.2, the design of a split-

coil magnet was motivated as an essential component of a combined PET and

MRI dual-imaging system. Now that a theoretical design has been optimized,

various additional components need to be considered in order to create the

final combined PET/MRI system.

Firstly, the superconducting coils have to be enclosed in a cryostat. The

dimensions of the cryostat were determined by the manufacturers who take

into consideration the size of the coils and the requirements for good thermal

shielding. The resulting structure reduces the intercoil separation from 20 cm

to a room temperature gap of 8 cm. Secondly, there is a large force of about

20 tons pulling the two halves of the magnet together. In order to support

this force, four struts (with 5 cm diameter) have been located between the

two halves of the magnet at a radius of 30 cm. To achieve complete coverage

by the PET detection system, the scintillation crystals will be placed close

to the ROI at a radius of 20 cm. Using flexible optical fibres, the light pro-

duced will then be channelled around the struts to the PMTs which will be

located at a radius of roughly 1.1 m, outside the 500 gauss field lines. Fig-

ure 6.11 illustrates the composition of the final combined PET/MRI system

and includes the split gradient coils and RF coils for MRI.

In the literature, simultaneous PET/MRI has been achieved in both phan-
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Figure 6.11: Cut-away view of the split-coil MRI magnet with the PET
system installed. The scintillation crystals are linked via optical fibres to the
PMTs which are located outside the 500 gauss magnetic field line. Courtesy
of O. Barret.
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Figure 6.12: Simultaneous PET and MR images taken in 15 minutes. (a)
and (b) show spin echo (TE = 30 ms, TR = 2000 ms) MR images of the
two phantoms acquired on a 4.7 T, 30 cm bore system. Corresponding PET
images are shown in (c) and (d). These images were reconstructed from
300,000 counts with 10 MBq activity in the phantoms. The PET resolution
is roughly 2 mm FWHM [102].

toms [102] and isolated, perfused rat hearts [103]. An example of the remark-

able images obtained is shown in Figure 6.12.

Using our novel geometry, it is hoped that even more exciting combined

PET and MRI images may be obtained. Examples include molecular imaging

of targetted receptor sites, the direct comparison of 18F-Fluorodeoxyglucose-

PET with functional MRI and deconvoluting PET data to reduce motion

blurring and partial volume effects. Furthermore, by taking advantage of the

improved PET system location, fully 3D PET data sets will become available

for comparison to 3D MRI data.

143



Chapter 6

6.8 Conclusions

Improvements and additions made to the GA optimization method have been

described in this chapter, leading to a robust, homogeneous and feasible split-

coil MRI magnet design. An exploratory evaluation of the search space, using

simplified variables of cost and inter-coil gap was found to be useful in un-

derstanding the potential trade-offs. Using this information, a preliminary

design was optimized and compared to a commercial design. Comparison

showed encouraging results, but also that our design was highly sensitive

to build errors. To avoid this problem, a novel analytical method was in-

corporated into the fitness evaluation function which calculated the design

sensitivity during optimization. Using this novel sensitivity evaluation, a

final design was optimized ab initio using the GA.

The final design presented in this chapter consists of a 1.0 T split-coil

magnet with homogeneity over a 16 cm DSV of approximately 1 ppm (max.

to min. deviation). As well as improving on the homogeneity of the imaging

volume, the optimized design also satisfies all of the additional constraints

placed on the magnet dimensions, the fringe fields, the stress and the sensi-

tivity to build errors. The room temperature gap between the magnet halves

is sufficiently wide to allow radial access to the ROI for an MRI compati-

ble PET detector. The magnet system is due for delivery to the Cavendish

Laboratory in 2003 and testing of simultaneous combined PET and MRI will

begin shortly afterwards.
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Conclusions

A robust, simple genetic algorithm (GA) has been written. Whilst it can be

applied to general optimization problems, this dissertation has focussed on its

application to the design and optimization of axisymmetric MRI main-field

magnets. Taking advantage of the recent development of parallel computer

architectures, especially cluster computing, the GA has been written using

Message Passing Interface (MPI), an industry standard protocol for commu-

nicating efficiently on homogeneous or heterogeneous networks. Two meth-

ods of parallelization have been considered. The first uses a single node of the

cluster for the serial genetic processes such as crossover and mutations, whilst

spreading the function evaluation step evenly across the available nodes. In

the second method, entire demes are evaluated on separate nodes in parallel

and occasional migration between demes is allowed (see Figure 3.7).

Separate to the GA optimization technique, a theoretical framework for

the design of axisymmetric MRI magnets has also been presented. A sig-

nificant part of this framework is the exposition of two new theoretical ap-

proaches. The first offers a rapid fringe-field evaluation method using a

spherical harmonic expansion technique. The second is an analytical, rather

than numerical method to determine the sensitivity of a design to build-

errors. Both of these methods reduce the evaluation time significantly when

compared to previous methods and therefore allow the associated constraints

to be included in stochastic optimizations such as the GA. In passing, Gar-
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rett’s work from 1951 [38] on the central field expansion has been revisited

and the formulae have been updated to SI units (see Appendix A).

The GA software has been applied to the design and optimization of novel

MRI main-field magnets. In particular, two classes of magnet were exam-

ined. Firstly, in Chapter 5, the design of ultra short bore MRI magnets was

investigated. Shortening the bore length in such magnets reduces claustro-

phobia for patients and improves access for clinicians during scanning which

can be especially important when close supervision is required (e.g. critical

head trauma imaging). Via a three-stage process, a particular ultra short

bore design was proposed and fully evaluated. The design consists of a 1.0 T

magnet with good homogeneity of less than 1 ppm max. to min. deviation

over a 30 cm diameter spherical volume (DSV). The bore length of 1.0 m is

significantly shorter than that in any other current design (> 1.25 m) and

the aspect ratio of this magnet is close to 1:1. Critical currents and fringe

fields are within the desired limits and hoop stresses have been considered

using finite element analysis.

In Chapter 6, the design of an animal scale, split-coil MRI magnet was

investigated. A novel constraint handling technique was included in the GA

and faster evaluation of the fringe field allowed more of the search space to

be considered. Preliminary results were examined, but it was found that

the split-coil magnet suffered from high sensitivity to build errors. By in-

troducing a direct measure of this sensitivity as an additional constraint in

the fitness function, it was possible to find a less sensitive design with im-

proved performance. This 1.0 T magnet has a coil inner-bore diameter of

50 cm and a length of 1.46 m. The design features a 20 cm gap between

the coils so that the magnet can be used for simultaneous positron emission

tomography (PET) and MRI. With the addition of a vacuum jacket and final

trimmings, this gap will be reduced to 8 cm. Comparisons were made between

this magnet and one resulting from a commercial design study. Our design

was found to outperform the manufacturer’s design in almost all aspects,

especially the volume of imaging. Whereas the manufacturer’s design exhib-

ited an homogeneity1 of 1 ppm over a 10 cm DSV, our magnet quadrupled

1Standard deviation of z component of magnetic field.
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the imaging volume with a 16 cm DSV maintaining the same homogeneity.

This shows the power of a stochastic optimization method, especially when

applied to problems where the overall optimum cannot be predetermined.

Although the results of the GA outperformed MRI magnet designs cur-

rently available, lack of convergence to a global optimum for these designs

was slightly disappointing. If certain problems are addressed, it may well be

that optimization using GAs holds even more promise for the future. One

such issue is the encoding of the parameters which should be re-examined.

As Goldberg says [16]

The user should select a coding so that short, low-order schemata

are relevant to the underlying problem and relatively unrelated to

schemata over other positions.

This point is crucial, but difficult to implement for the optimization of MRI

main field magnets. The crux of the problem lies in the fact that if one of

the parameters of a coil is altered, other parameters naturally need to com-

pensate. Without this compensation, the optimization may quickly become

entrapped in a local minimum whereby the alteration of any parameter will

result in a design which does not perform as well. However, if two or three

parameters were altered simultaneously then movement between regions of

high fitness might become more probable.

Another issue, the combination of several objective functions into a single

fitness, was found to be rather tricky especially as the weights (see Equa-

tion 3.4) of each objective could not be calculated in advance. Instead, in

Chapters 5 and 6 a single objective function was chosen (homogeneity) whilst

the other objectives were encoded as constraints. Recently, novel approaches

to problems requiring the optimization of multiple objectives have been pub-

lished [31, 32]. These approaches, called multi-objective evolutionary algo-

rithms also act on a population of designs. However, rather than combining

competing objectives into a single fitness, a term called non-dominance is in-

troduced, which describes a solution for which no other solution exists which

is better than it for all objectives. It may be that such an approach would

be worthwhile attempting for MRI magnet design.
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Figure 7.1: Example showing the interaction of constraints on the number
and classification of minima in a simplified optimization problem.

Linked to the problem of not finding the global minimum, is the sug-

gestion that a significant proportion of local minima were also not sampled.

Evidence for this comes from the fact that stagnation within populations of

solutions typically appeared towards the end of each optimization run and

that the stagnated designs rarely matched when different starting configura-

tions were used. This behaviour, indicative of a highly complex search space,

is thought to be due to the large number of constraints that are imposed

during optimization.

Taking a simple example, minimizing f(x) = x2−2x+1 in the range x →
{0, 2}, we see that only a single global minimum occurs at the point x = 1

where f(x) = 0. However, if we constrain x such that |x − 0.8| ≥ 0.4, then

the solutions alter significantly. A local minimum appears on one boundary

of the constraint with f(x) = 0.36 at x = 0.4 and the global minimum moves

to the point x = 1.2 where f(x) = 0.04 (see Figure 7.1). In the case of the

main-field MRI magnet designs discussed in this thesis (Chapters 5 and 6),

the many boundary conditions and constraints imposed on the optimization

have rapidly produced a very complicated search space, even for relatively

small numbers of parameters. It may well be that focussing the search on the

boundary regions between feasible and unfeasible solutions [25] would yield

better performance.
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An issue not explicitly considered in this thesis is the inclusion of iron

in MRI magnet designs to improve the homogeneity and passively shield

high field systems. A new rapid method for the calculation of the magnetic

field induced by iron has been recently presented by Zhao [109] and should

allow the investigation of such designs. Another technique which has not

been considered is that of grading the coils with different current densities

depending on the magnetic field strength [60, p.23]. This not only reduces

the possibility of exceeding the critical current limits, but also reduces the

hoop stresses exerted on the magnet design, which is an important limiting

factor. Inclusion of both these factors is strongly recommended for any future

work in this field.

Whilst the ultra short bore magnet presented in Chapter 5 has many ad-

vantages over the current generation of short bore magnets, the cost of con-

struction has so far prevented it from leaving the drawing board. However,

the split-coil combined MRI and PET magnet, using the design in Chapter 6,

is currently under construction and will be installed in the Cavendish labora-

tory during the second half of 2003. The radial access to the ROI offered by

this magnet and its dedication to combined modality imaging research mean

that the future is very exciting. Combination of PET and MRI may well lead

to a better understanding of the fMRI results that are currently obtained.

Certainly, whilst the physics behind PET response is well understood, the

physics and physiological responses associated with fMRI remain the sub-

ject of intensive research. Furthermore, the removal of motion blurring of

PET images with high temporal resolution MRI and almost perfect image

co-registration should lead to imaging throughout the body at a molecular

level.

As the power of MRI continues to advance, so the hardware necessary to

support the clinicians must improve. In this thesis, the power of GAs applied

to highly constrained real-world problems has been shown. The results have

been very encouraging and the future is sure to bring even greater advances.

149





Appendix A

Magnetic field evaluation in the

near-field using spherical

harmonics

It is commonly known, and quoted, that the magnetic flux density field (B)

can be described near the origin of a system as an expansion of weighted

spherical harmonic functions. For the general case this expansion contains

both tesseral and zonal harmonics. However, for problems which are con-

strained to axisymmetrical geometries, the tesseral harmonics can be ignored

and the magnetic field expressed as

Bz =
∞∑

n=0

qn

(
r

r0

)n

Pn(cos θ) (A.1)

Bx =
∞∑

n=0

1

(n + 1)
qn

(
r

r0

)n

P 1
n(cos θ) (A.2)

where the magnetic field is to be evaluated at the point (r, θ), r0 is an

arbitrary radius (usually the radius of the region of interest) and qn are the

spherical harmonic weighting constants. There is an unfortunate mixing of

coordinate systems in (A.1) and (A.2) with locations described in spherical

coordinates and the magnetic field vector described in Cartesian coordinates.

However, this is inevitable as it is common practice to concentrate on the
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z component of the magnetic field in the region of interest rather than the

radial component. Indeed for most homogeneous regions of interest, the

approximation |B| ≈ Bz is perfectly valid.

This appendix follows the mathematical treatment given by Garrett [38]

to calculate the ‘source’ constants (qn) for a given geometry of thick solenoids.

However, the units have been updated to S.I. units and the source constants,

which in [38] are dimensionless, are given here with dimensions of magnetic

flux density (Telsa). Both representations require the inclusion of an ar-

bitrary radius, denoted by r0, but by forcing the source constants to have

dimensions of magnetic flux density, we can directly interpret them as a

measure of the field inhomogeneity. Thus, for a design with symmetry in the

plane z = 0,

Central field strength = q0 (A.3)

Deviation (in T) at (r0, 0) =
∞∑

n=1

qn (A.4)

It is therefore clear that taking r0 as the radius of the region of interest is

sensible. Furthermore, for a system with symmetry in the plane z = 0, the

off-axis deviation at the edge of the ROI is given by

Deviation (in T) at (r0, π/2) =
∞∑

n=2, even

qn Pn(0)

= −1

2
q2 +

3

8
q4 −

5

16
q6 + · · · (A.5)

Notice the close links between this and the far-field spherical harmonic

expansion as calculated in Section 4.3.1. The remainder of this appendix

gives the remodelled source constants for an infinitely thin loop, an infinitely

thin cylinder and a thick solenoid.

For an infinitely thin loop, the source constants, qn(f), are given by:

qn(filament) =
µ0 I

2
sin2 θ′

rn
0

(r′)n+1
Pn+1

′(cos θ′) (A.6)

152



where the position of the filament is defined by the primed variables (r′, θ′)

and the current is given by I. Pm
′(u) is the first derivative of Pm(u) w.r.t. u

and can be related to the associated Legendre polynomials using1

P 1
m(u) = −

√
1− u2Pm

′(u) (A.7)

Replacing I by J ′ dz′ and integrating along z′, we find the source constants

for thin cylindrical systems

q0(thin cylinder) =
µ0 J ′

2
cos θ′ (A.8)

(n ≥ 1), qn(thin cylinder) = −µ0 J ′

2n

(r0

r′

)n

sin2 θ′ Pn
′(cos θ′) (A.9)

where (A.8) and (A.9) must be evaluated at the limits of the cylinder. Finally

by integrating qn(thin cylinder) radially, the source constants are found for

thick solenoidal coil systems [38]:

q0(solenoid) = −µ0 J ′′
0

2
z′ [1− ln (r′ + x′)] (A.10)

q1(solenoid) =
µ0 J ′′

0

2
r0 [sin θ′ − ln (r′ + x′)] (A.11)

(n ≥ 2), qn(solenoid) =
µ0 J ′′

0

2n(n− 1)

r0
n

(z′)n−1
sn−1(cos θ′) (A.12)

where

sn−1(u) = 1− sin3 θ′
n−1∑
m=1

um−1Pm
′(u) (A.13)

Again, the limits of the integration require that (A.10)-(A.13) be evaluated

at each of the four corners of the thick solenoid and the results combined

with signs as shown in Figure 4.4. An observant reader who compares the

above equations to [38] will notice that there are several slight alterations to

the original set of equations. Specifically, an extra factor of −µ0J ′′z′

2
appears

1The sign in (A.7) can be either positive or negative depending on the precise definition
of Pm

l (u). This appendix follows the convention used by Mathematica [110] rather than
Belousov [111]. For more details see Abramowitz and Stegun [54]
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in (A.10) and the logarithmic arguments have been altered from ln(1+sin θ′

cos θ′ )

to ln(r′ + x′). These are cosmetic changes and alter only the arbitrary con-

stants of integration, which arise from
∫

qn(thin cylinder) dx′. To confirm the

validity of (A.10)-(A.13), we can check that they all satisfy the much more

rigorous condition
∂qn(solenoid)

∂x′
=

J ′′

J ′ qn(c) (A.14)

The advantage of altering the form of these equations is to allow the weight-

ing coefficients to be used as a basis for finding the relative coil sensitivities

as proposed in Section 15.
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Partial differentials of near-field

weighting constants

To find the partial differentials of the near-field weighting constants, several

standard results [54, 110, 111] involving the associated Legendre polynomials

are required. The following are used in this appendix

(2n + 3)µP 1
n+1(µ) = (n + 2)P 1

n(µ) + (n + 1)P 1
n+2(µ) (B.1)

(µ2 − 1)
dP 1

n+1(µ)

dµ
= (n + 2)P 1

n(µ)− (n + 1)µP 1
n+1(µ) (B.2)

(1− µ2)1/2 dP 1
n+1(µ)

dθ
= (n + 1)µP 1

n+1(µ)− (n + 2)P 1
n(µ) (B.3)

and

(l −m)Pm
l (µ) = (2l − 1)µPm

l−1(µ)− (l + m− 1)Pm
l−2(µ)

For example

(n + 1)P 1
n+2(µ) = (2n + 3)µP 1

n+1(µ)− (n + 2)P 1
n(µ) (B.4)

(n + 2)P 1
n+3(µ) = (2n + 5)µP 1

n+2(µ)− (n + 3)P 1
n+1(µ) (B.5)

Taking the formula for qn(f) (A.6) and dropping the primed notation for

simplicity, we write

qn(f) = −µ0 I rn
0

2

sin θ

rn+1
P 1

n+1(µ) (B.6)
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where µ = cos(θ) and the Cartesian and spherical coordinates are de-

fined in the usual manner1. The partial differential of qn(f) w.r.t. z may be

calculated using the chain rule

∂qn(f)

∂z
= −µ0I rn

0

2

∂

∂z

{
x

(x2 + z2)
n+2

2

P 1
n+1(µ)

}
(B.7)

= −µ0I rn
0

2

[
− (n + 2)xz

(x2 + z2)
n+4

2

P 1
n+1(µ) (B.8)

+
x

(x2 + z2)
n+2

2

· x2

(x2 + z2)
3
2

·
dP 1

n+1(µ)

dµ

]
(B.9)

since
∂µ

∂z

∣∣∣∣
x

=
x2

(x2 + z2)3/2
(B.10)

Applying (B.2) and simplifying with (B.1) we obtain

∂qn(f)

∂z
= −µ0I rn

0

2

[
−(2n + 3)x

rn+3
µP 1

n+1(µ) +
(n + 2)x

rn+3
P 1

n(µ)

]
(B.11)

=
µ0I rn

0

2
· x

rn+3
· (n + 1)P 1

n+2(µ) (B.12)

Thus
∂qn(f)

∂z′
= −(n + 1)

r0

qn+1(f) (B.13)

where the primed variables, representing locations of the current sources,

have been reintroduced.

Next, we need to find the differential of P 1
n+1(µ) w.r.t. x. Using the chain

rule again, we note

∂P 1
n+1(µ)

∂x
=

dP 1
n+1(µ)

dθ
· ∂θ

∂x
=

z

x2 + z2
·
dP 1

n+1(µ)

dθ
(B.14)

into which (B.3) may be substituted.

1See Figure 4.2 for details.
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Furthermore,

∂qn(f)

∂x
= −µ0 I rn

0

2

{
sin θ

rn+1
· z

r2

[
(n + 1)µP 1

n+1(µ)

sin θ
− (n + 2)P 1

n(µ)

sin θ

]
+

z2 − (n + 1)x2

rn+4
· P 1

n+1(µ)

}
(B.15)

Substituting x2 = r2 − z2 and µ = z/r we recover

− µ0 I rn
0

2

{
(2n + 3)µ2

rn+2
P 1

n+1(µ)− (n + 2)µ

rn+2
P 1

n(µ)− (n + 1)

rn+2
P 1

n+1(µ)

}
(B.16)

The first two terms in (B.16) can now be combined with (B.4) to give

− µ0 I rn
0

2

{
(n + 1)µP 1

n+2(µ)− (n + 1)P 1
n+1(µ)

rn+2

}
(B.17)

before substituting (B.5) to remove any dependence on P 1
n+2(µ)

− µ0 I rn
0

2
· (n + 1)

rn+2

{
(n + 2)

(2n + 5)
P 1

n+3(µ) +

[
(n + 3)

(2n + 5)
− 1

]
P 1

n+1(µ)

}
(B.18)

which simplifies to

− µ0 I rn
0

2
· (n + 1)(n + 2)

(2n + 5)

{
P 1

n+3(µ)− P 1
n+1(µ)

rn+2

}
(B.19)

This equation (B.19) may finally be rewritten, as required, in terms of qn+2(f)

and qn(f),

∂qn(f)

∂x′
= −(n + 1)(n + 2)

(2n + 5)

[
(r′)2

x′r2
0

qn+2(f)− 1

x′
qn(f)

]
(B.20)

where the primed notation has been reintroduced as before.
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Post-processing software

This appendix contains details of supplementary software which was written

to analyse the magnet designs created by the genetic algorithm code used

in this thesis. The software is divided into various components, each of

which performs a single task including automated evaluation of axisymmetric

magnet designs, shimming of designs, analysis of the sensitivity to build

errors and conversions to other formats (e.g. for finite element analysis).

These four programs are discussed below.

C.1 Detailed axisymmetric design evaluation

This program processes axisymmetric MRI magnet designs directly from the

output of the GA software. It calculates central field strength, homogeneity

and fringe field magnitude, as well as the spherical harmonic expansion co-

efficients (both near and far-field). Furthermore, it approximates the peak

field strength within the coils, the peak hoop stresses and the sensitivity of

the design to build-errors in the z direction. Physical factors such as the

volume of superconductor and wire length are also evaluated. The input file

is text only and begins with a header section detailing important information

about the overall design. The program extracts these variables using key-

phrases as markers. A list of key-phrases is given in Table C.1 along with the

default values which are used if the key-phrase is missing. The design itself

is encoded using one line for each coil (or pair of coils). Coils are represented
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Key-phrase Description Default (units)
MRI length <double> Overall length of magnet 1.5 m
MRI height <double> Overall height of magnet 1.5 m
ROI radius <double> Radius of region of interest 0.2 m
R nought (for expansion) <double> Typical radius r0 0.1 m
Required central field <double> Expected field strength 1.0 T
Fringe field limit <double> Expressed in Teslas 0.0005 T
Fringe field distance <double> Radius of the fringe field sphere 5.0 m
Number of coils <int> Pairs of coils if symmetric 1
Mid-plane symmetry <int> Boolean expression, 1=true, 0=false 1
Wire width <double> 0.001 m
Wire height <double> 0.001 m
Maximum allowable wire volume
<double>

Expressed in m3 0.1 m3

Maximum relative sensitivity
<double>

Only w.r.t. z movements 100.0 ppm/mm

Table C.1: Key-phrases, descriptions and default values used in the MRI
magnet design evaluation software.

by 5 parameters: left edge of coil (m), inner radius of coil (m), width (m),

depth (m) and current in a single strand of wire (A).

The software calculates the magnetic field for the complete design and

useful figures are automatically created (see Figure C.1). These include a 2D

cross-section of the magnet configuration, a surface plot of the field inhomo-

geneities over the region of interest, plots of the field strength along the axes

and a contour plot of the field strength in the far-field region.

C.2 Autoshim

Autoshim calculates the shim currents required to cancel the first (n − 1)

non-zero spherical harmonic terms, using n pairs of shim coils. This pro-

gram requires a file containing the magnet design parameters and a separate

file detailing the locations of the shim coils. A matrix inversion method is

implemented, as discussed in Section 5.5.2, which maintains the central field

strength and calculates the required currents for the shim coils.

C.3 Sensitivity to builderrors

A Monte Carlo analysis is performed to simulate the effects of manufacturing

errors by moving the positions of coils in an optimized design. Typically two

error modes are examined: accuracy along the z axis and accuracy of the
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coil inner radius. Shim coils are subsequently used in an attempt to restore

the homogeneity and graphs are automatically created which summarize the

results (see Figure 5.11).

C.4 Conversion routines

Two conversion routines have been created. One routine converts the pa-

rameters of an MRI magnet design to a suitable format for the finite element

program FEMM [46]. The other produces a model of the magnet design

suitable for ABAQUS [63] as well as a database of forces which is used in the

finite element stress analysis. To apply forces to the model in ABAQUS, a

user subroutine, ‘dload.f ’, was developed in Fortran.
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Figure C.1: Example of an automatically created summary sheet. Details of
the magnet design’s performance are given as well as plots of the fringe field,
the central field homogeneity and the overall coil configuration.
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