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SM1: Membrane fluctuations

Planar geometry

The classical derivation of the membrane fluctuation spectrum is reproduced
here, for the case of a planar continuous membrane with tension and bend-
ing modulus. This is useful in order to clarify the notation as used in the
main text. In the main text this treatment is extended further, to obtain
quantities that are observable experimentally. We follow Helfrich’s notation
(1), and consider a fluctuating membrane of lateral size L whose displace-
ment h(x, y) relative to the average height of the plane is small compared
to the lateral size of the fluctuation. The energy cost due to both stretching
and bending can be written as:

δE =
∫ L

0

∫ L

0

{
σ

2

[(
∂h

∂x

)2

+
(

∂h

∂y

)2
]

+
κ

2

[
∂2h

∂x2
+

∂2h

∂y2

]2
}

dxdy (S1)

where σ is the membrane tension, κ is the bending elastic modulus, and
the area of the membrane is A = L × L. By considering each mode as a
superposition of Fourier components,
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∫
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i~q·~x

with h~q =
1
A

∫
d~xh(~x)e−i~q·~x, (S2)

and assuming equipartition of energy, the mean square amplitude of each
mode can be calculated as (1):

〈
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σq2 + κq4

, (S3)

where q2 = q2
x + q2

y , T is the absolute temperature, and kB is the Boltzmann
constant.

It should be noted for clarity that the direct and inverse Fourier trans-
forms can be defined with arbitrary prefactors (different authors choose
preferred normalisations, and Eq. S2 is a common one, used by Helfrich
and others), therefore care has to be taken when comparing the “square
amplitudes” h2

~q (as shown in Figure SM1) between papers. It is h2
~q times
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the density of modes which is the physical quantity comparable between
different publications.

This form is correct in the limit of small amplitude oscillations, and for
flat open membranes. It has been shown that for all but the lowest modes,
this formula can be applied to the modes of a quasi-spherical membrane (2).
There is however an important aspect to be considered when experiments
are done tracking the position of the spherical contour, this is described
briefly below.

Equatorial projection

Video microscopy is one of the techniques often used to measure membrane
fluctuations. The vesicle is usually visualised along the y axis (from above or
below), focussing on the equatorial plane (x, z plane). The edge shows up as
a quasi-circular contour, which is detected by image analysis as described in
the main text. As first pointed out by Pecreaux et al. (2), under these con-
ditions the fluctuations of the contour are described by the Helfrich theory
outlines above, but the displacements are related to the Fourier transform
of Eq. S3 in the y-coordinate, evaluated at the plane y = 0, giving Eq. 1 in
the main text. For large qx, the contour fluctuation spectrum is described
by

〈
h(qx, y = 0)2

〉
=

1
4L

kBT

κq3
x

, (S4)

where L is simply 2π〈r〉.

Case of complete circumference

This case is used to analyse either homogeneous quasispherical vesicles, or
phase-separated vesicles in the early spinodal decomposition regime where
they still retain their overall quasispherical shape (see Figure 2 a, b). Typical
circumferences are approximately 1000 pixels in length, and we discretize
the circular angle into 360 parts (n = 360, Figure 2b). The mean radius of
curvature 〈r〉 is calculated as the average of r(θn) over all frames and all θn.
We then have, for each frame, a set of discrete amplitudes: hn = r(θn)−〈r〉,
which are Fourier transformed (using the FFT algorithm in Matlab) to give
a set of complex Fourier coefficients ck:

ck =
N∑

n=1

hne−i2π(k−1)(n−1)/N . (S5)
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Supplementary Figure SM1: The mean square amplitude of fluctuation
modes versus the equatorial wave vector qx. Data from vesicles of two dif-
ferent compositions and quasi-spherical shape are shown in (a) and (b).
Symbols (4, ¤, ◦) identify increasing temperatures, as noted on the plots.
The solid lines correspond to fits of the data using Eq. S4.

These are the amplitudes of the modes with q
(k)
x = k/ 〈r〉, with k =

1, 2, ...,+N/2. The relation between the experimentally determined discrete
series ck and the continuous Fourier transform of h (as in Eq. S4) is given
by:

h2
q = c2

k ×
(

1
N

)2

. (S6)

The bending modulus κ is obtained from the experimental data by fitting
Eq. S4 in conjunction with Eq. S6, as shown in Figure SM1.

Case of incomplete circumference

Our approach in analysing the membrane fluctuations for the situation of a
vesicle morphology consisting of two sections of spheres (with different radii)
is similar to the one recently reported in ref (3). The neck region between the
spherical sections extends to only a few microns (3, 4), and is not used in this
analysis. Choosing vesicles oriented so that the equatorial section is made of
two arcs, the fluctuations of the two sections can be analysed separately as
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Supplementary Figure SM2: The bending rigidity κ as a function of temper-
ature for several ternary membranes (GUVs) of different composition: (a)
1:1 DOPC:DPPC+30% cholesterol, (b)1:1 DOPC:DPPC+60% cholesterol.
Phase separation is evident at low temperatures for the 30% cholesterol vesi-
cle. The scale bar in the images is 20 µm. The data in SM1 panels (a) and
(b) is from the dataset with marker (4) .

described above, provided that the amplitude is normalised appropriately to
account for the incomplete perimeter. If only an arc under angle θ is selected
for analysis, then the mean square amplitude

〈
h′(qx, y = 0)2

〉
is given by:
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where L is the complete circumference 2π〈r〉 as before, and the wavenumber
range is reduced to q′xk

= 1
〈r〉(

2π
θ , 2π

θ + 1, .., 2π
θ + N

2 ), i.e. part of the low fre-
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Supplementary Figure SM3: Surface area of quasi-spherical vesicles, de-
rived from the vesicle diameter, as a function of temperature, for the same
experiments shown in SM2 (matching markers). (a) 1:1 DOPC:DPPC+30%
cholesterol, (b)1:1 DOPC:DPPC+60% cholesterol. The sudden changes in
diameter in the data in panel (a) correlate with the transition temperature
observed simultaneously by microscopy. No phase separation was observed
for the vesicles containing 60% cholesterol, panel (b). The solid lines on se-
lected datasets are linear fits, from which the thermal expansion coefficient
is calculated, see text. The thermal history is not important, these data
were taken on both heating and cooling cycles, and showed no hysteresis.

quency range is lost but the high end and the resolution in qx is maintained.
The normalisation in Eq. S7 can be understood by considering the selection
of an arc as a “zero padding” of the function hn. The control experiments
to confirm this analysis are described in the main text.

SM2: Quasi-spherical composite membranes

We analyse the mechanical properties of the membrane immediately after
the transition takes place. Figure SM2 shows the dependence of the mem-
brane bending modulus on the temperature, on a short time scale after the
onset of the phase separation process, i.e. when numerous micrometre sized
domains freely diffuse in the plane of the membrane. For each of the anal-
ysed vesicles, we found that upon lowering the temperature the bending
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rigidity for the membrane composed of 1:1 DOPC:DPPC + 30%mol choles-
terol increased markedly at around 30◦C, see Figure SM2(a). The transition
temperature was slightly different for different vesicles, most probably due
to variations in the membrane composition (see below). The trend clearly
indicates a discontinuity in the value of the bending modulus which corre-
lates with the onset of the liquid-liquid phase separation. For the system
containing 60%mol cholesterol, where no such phase transformation takes
place, the bending modulus shows a weaker dependence on temperature with
no sudden jumps, Figure SM2(b). At the lowest temperatures investigated,
10 and 15◦C, the fluctuations of the GUVs are below our resolution and the
bending modulus cannot be quantified using this technique. Nevertheless,
Figure SM2 shows that we can measure values of the bending modulus over
∼ 200 kBT at lower temperatures. It was possible to measure these high val-
ues because of the relatively large size of our vesicles, for which the qx-range
is correspondingly shifted to small values. According to Eq. S4, the fluctua-
tion amplitudes decay very rapidly: a factor of 2 in the qx-range corresponds
to almost an order of magnitude in the experimental signal amplitude.

It should be remarked that although the simple mode analysis is ill posed
for the case of heterogeneity over lengthscales similar to fluctuation wave-
length (as here for the composite membranes, in the phase separated state
during coarsening), Figure SM1 does not show any “anomaly”, and the sim-
ple homogeneous membrane spectra fits the data very well.

At high temperatures, the vesicles we investigated have bending moduli
around 50 kBT , with one of the vesicles (Figure SM2(b), square markers)
showing a significantly higher value beyond the measurement errors, prob-
ably due to bi- or multi-lamellarity. The fact that a mixture of vesicles
with various thicknesses is produced is well documented in the literature
(5). There is no simple way to distinguish unilamellar vesicles using phase
contrast images, except from the flickering amplitude itself. The measured
values of the bending modulus for these homogeneous membranes are not
very different from the bending rigidity of pure DPPC bilayers above the
melting transition, reported to be between 29 and 36 kBT (6, 7) with values
as high as 73 kBT also registered using the electro deformation method (8).
The addition of cholesterol is also known to increase the phosphocholine
bilayer bending rigidity (2, 9). We are not aware of any measurements re-
ported in the literature of the bending modulus of ternary mixtures of this
composition in their homogeneous state.

We emphasize the transient, non-equilibrium character of the phase sep-
arated membrane, which eventually proceeds towards a complete separation
into two large similarly-sized domains on a time scale of tens of minutes.
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The recording of fluctuations occurs on a shorter timescale, so we are able
to acquire the membrane fluctuation spectrum and extract a value for the
bending modulus. The length scale of the bending fluctuations we probe
in the phase separated system (set by the qx-range investigated) are typ-
ically between 6 and 20µm and are therefore comparable or greater than
the domain size, so we are typically probing the bending of a heterogeneous
membrane. This raises the question about the physical meaning of the
bending modulus thus obtained which can only be defined correctly for each
separate lipid phase. By applying the standard method for homogeneous
membranes we interpret the fluctuation spectra in terms of an ‘effective’
membrane bending modulus. A similar approach has been used before. For
example, the first micropipette experiments on active membranes (vesicles
with reconstituted bacteriorhodopsin) (10, 11) interpreted the magnification
in the membrane fluctuations due to the activity of the protein in terms of an
‘effective’ bending modulus (11) (or, equivalently, an ‘effective temperature’
(10)) by using the standard analysis for passive membranes. Whilst such an
effective quantity cannot represent a true material parameter, it is a useful
measure for the overall changes in the membrane mechanical behaviour due
to the onset of phase separation: the suppression of the fluctuation in the
separated membrane is a certain sign of the overall stiffening of the mem-
brane. The effective bending modulus of the phase separated membrane will
depend not only on the individual bending rigidity for the Lo and the Lα

phases, but also on the line tension and the exact membrane morphology
(e.g., domain shape, size and distribution) and will slowly vary with time
as the domains coarsen and segregate. Nevertheless, we expect the effective
bending modulus in the phase separated system to be more sensitive to the
mechanical properties of the continuous phase. The higher bending rigidity
is thus easily anticipated since the Lo phase is rich in the saturated lipid
DPPC (see below for a comparison of the bending moduli). From existing
data at 20◦C it is known that the composition of the continuous Lo phase is
around 1:9 DOPC:DPPC + 40%mol cholesterol (12). The most straightfor-
ward interpretation of our results is that the ordered Lo phase has a higher
bending modulus than the liquid disordered Lα phase.

This conclusion is confirmed in the direct study of the two separate
phases (see main text). The L0 phase is seen to have a higher bending mod-
ulus, and has a stronger temperature dependence. We would like to empha-
size here the necessity of further experimental and theoretical work in order
to fully quantify the mechanical properties of phase-separated membranes.
Future experiments should be aimed at investigating how different fluctua-
tion modes can be affected due to the micrometer domain structure. These
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studies should be underpinned by a thorough theoretical description of the
thermal fluctuation spectrum in heterogeneous membranes, which should
take into account the different bending rigidity of the two (or more) types
of domains, the effect of the line tension and the exact lateral membrane
mesostructure.

SM3: Thermal area expansion

Changes in the vesicle mean area can be quantified from captured contours,
which allows the characterisation of membrane thermal expansivity. The
mean vesicle diameter was monitored and found to increase by about 10%
from 10 to 50◦C. SM3 shows the temperature dependence of the vesicle sur-
face area (obtained from the measured mean diameters) for the dataset of
quasi-spherical vesicles shown in SM2. These experiments were conducted
following different thermal paths. We did not find any systematic depen-
dence on the thermal path, i.e. both the bending modulus and the vesicle
diameter were independent of the vesicle thermal history. The mean di-
ameter of the GUVs with 30% cholesterol shows a jump upon crossing the
phase boundary, as seen in SM3a. Vesicles containing 60% cholesterol show
a continuous expansion, albeit with a similar overall change over the entire
temperature range. To further characterize the membrane properties, we
measured the membrane thermal expansion coefficient, β = (1/A0)(dA/dT ),
from the linear parts of the temperature dependencies of the vesicle area
(see SM3 for the lines of best fit). For vesicles containing 60% choles-
terol, SM3(b), the experimentally obtained values are (7.6 ± 0.9) × 10−3

K−1, (4.7 ± 1.0) × 10−3 K−1, and (3.3 ± 0.8) × 10−3 K−1. A similar value,
(6.3± 0.6)10−3 K−1, is also obtained for the system containing 30% choles-
terol, SM3(a), above the critical temperature (in the Lα phase). These
values are typical for the thermal expansivity of lipid bilayers in liquid-
crystalline state. As a comparison, the reported value of the thermal expan-
sion coefficient for dimyristoylphosphocholine (DMPC) bilayers is 6.8×10−3

K−1 at about 5◦C above the main phase transition (stearoyloleoylphospho-
choline (SOPC) bilayers show a lower thermal expansivity of 3.3×10−3 K−1)
(13). The value of the apparent thermal expansion coefficient for the phase
separated membrane (SM3(a) below the critical temperature) is significantly
reduced to (0.4± 1.0)× 10−3 K−1, which seems to reflect the changes in the
lipid and cholesterol-lipid interactions in the newly formed L0 phase.

The diameter change upon crossing the phase boundary from coexisting
liquids to a uniform liquid state could possibly lead to an increase in the
available excess area, resulting in a deviation from the spherical shape. Vice
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versa, for a vesicle equilibrated above Tc, cooling could lead to the onset
of membrane tension. We did not observe such transitions in the data re-
ported in Figure SM2, but such a possibility cannot be ruled out at lower
temperatures where the fluctuation amplitudes are below our resolution.
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