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Control of synchronization in models of
hydrodynamically coupled motile cilia
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In many organisms, multiple motile cilia coordinate their beating to facilitate swimming or

driving of surface flows. Simple models are required to gain a quantitative understanding of

how such coordination is achieved; there are two scales of phenomena, within and between

cilia, and both host complex non-linear and non-thermal effects. We study here a model that

is tractable analytically and can be realized by optical trapping colloidal particles: intra-cilia

properties are coarse grained into the parameters chosen to drive particles around closed

local orbits. Depending on these effective parameters a variety of phase-locked steady states

can be achieved. We derive a theory that includes two mechanisms for synchronization: the

flexibility of the motion along the predefined orbit and the modulation of the driving force.

We show that modest tuning of the cilia beat properties, as could be achieved biologically,

results in dramatic changes in the collective motion arising from hydrodynamic coupling.
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Coordinated motion is crucial for the effective functioning
of cilia and flagella, which are the elements of eukaryotic
cells involved in generating fluid flow and motility1–4.

Motile flagella and cilia also interact with the velocity field in the
fluid, which is in the low Reynolds number (Re) regime5,6. These
important organelles act simultaneously as mechanical actuators
and mechanical sensors7. In arrays of cilia, the beating is
known to be synchronized under normal conditions, and the
synchrony helps to generate wave-like patterns called metachro-
nal waves8–10. While this phenomenon could, in principle, result
from contributions from a wide range of different mechanisms,
such as excluded volume interactions or biochemical signaling,
long-range hydrodynamic interactions provide a rich and versa-
tile means of achieving coordination11–14. Synchronization is a
general phenomenon15, and the class of driven microscopic
mechanical actuators with hydrodynamic coupling offers a rich
phenomenology16. We aim to understand how architectures
leading to stable synchronized states of multiple cilia could have
evolved, and this could be exploited in engineering artificial cilia
systems17–19 and micro-swimmers20–25.

The bi-flagellated alga Chlamydomonas reinhardtii has been a
test-bed for experiments exploring synchronization of flagella26.
Direct hydrodynamic interaction can describe the phase-locked
cilia dynamics when the alga is mechanically clamped27, in
conjunction with elasticity-mediated coupling28, while for a freely
swimming alga the hydrodynamic flows resulting from swimming
are sufficient to keep the two cilia in synchrony29. While these
studies have shed considerable light on the underlying
mechanisms behind flagella synchronization, the complexities
involved in working with biological systems (such as the

possibility of inflicting several changes of different nature when
using mutations) makes it desirable to have complementary
studies on simpler and more controllable systems.

Particle-based conceptual models have been extremely helpful
in understanding the underlying mechanisms behind the
dynamic coordination16. Experimental and theoretical studies
have identified the role that geometry9,30–34, type of drive or beat
pattern35–38, variability of the intrinsic frequencies39, and details
of the driving potential30,37,40–42 can have on the emerging
dynamics of coupled arrays of driven colloidal phase oscillators.
By enabling selective control of individual parameters, and
providing analytical results in some limiting cases32,36,40, these
models form a solid foundation to build our understanding of
natural systems such as mucociliary tissues: they maintain the
correct far-field form of the hydrodynamic flow caused by a
cilium, they can describe the presence of a nearby solid surface,
and most importantly, they can account for the physiological
properties of the beating cilia (i.e., shape of the stroke, with power
and recovery phases) by matching the properties of the cilia cycles
in living systems as the driving rule. Since phase-dependent forces
exerted by a flagellum on the fluid have been measured in living
systems such as Chlamydomonas27,43, quantitative linking
between the models and the living filaments has become more
accurate27,37, and the models can be made more realistic.

A series of novel results has been obtained modeling cilia as
rotors36,44,45, with recent work40 probing independently the
flexibility of the orbit45,46 or the beat pattern36 in the force
profile, and their corresponding contributions to determining
the strength of synchronization. A combination of the two effects
has been observed in ref. 41, but not described by a formal theory.
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Fig. 1 Complete control over the phase-locked state is demonstrated experimentally with colloidal rotors. a Schematic of optical tweezers “rotors”
experiment: two rotors are made by driving colloidal particles along predefined closed circular trajectories of radius R, using a feedback-controlled optical
trap to exert a force-clamp. The force magnitude depends on the angular position [Fi= F(ϕi)] by maintaining the optical trap a distance ε(ϕ) ahead of
the particle. In addition to the optical trap, the particles experience viscous friction, hydrodynamic interaction with each other, and thermal fluctuations. The
confinement to the circular trajectory is soft, and the radius can deviate from R. This arrangement results in a pair of rotating particles for which the phase
difference is not controlled externally; we show that control over the strength of coupling and the properties of the dynamical steady state can be achieved
by tuning a set of parameters. b An example of temporal evolution of the phase difference Δ=Φ1−Φ2 between rotors when varying the amplitude A of
the modulation force over time as indicated (δ= 3π/4, R= 4.63 ± 0.03 μm, d= 15.60 ± 0.03 μm and h= 10 ± 1 μm). In these experiments, the imposed
optical force F(ϕ)= 6πηav(ϕ) has an angular dependence; c shows for one condition the imposed (line) and actual (points) force over an experimental run
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Moreover, the experimentally observed run-and-tumble behavior
of Chlamydomonas47, which is a priori not an expected behavior
of the system due to the continuous nature of the configuration
space of the beating cilia, can be understood in the context of a
conceptual three-sphere model with intrinsic noise in the
amplitude of the beat pattern48. It has also been demonstrated
within the same model that modulating the beat pattern can lead
to control over the state of synchronization49 as well as robust
steering and phototactic response in the stochastic trajectory of
freely swimming Chlamydomonas50.

The results discussed above hint at the fundamental notion
that it might be possible to achieve control over the state of
coordination between cilia by engineering the effective potential
landscape so that more than one stable state of synchronization
exists, and by precise tuning of the system near the boundaries
between these states in the configuration space. Biological systems
could achieve this by modulating the molecular motor activity or
binding affinity, or by tuning the length and orientation of the
cilia. This would provide a robust mechanism for controlling the
system’s behavior through choosing the collective dynamical
state.

Here, we combine experimental and theoretical investigations
to demonstrate concretely how this scenario works using the
rotor model of cilia. The theoretical work combines the two
previously discovered contributions to synchronization (flexibility
and beat pattern) and includes the effect of a nearby wall (as is

relevant in many biological systems). It derives synchronization
potentials not limited to phase differences close to the stable
states as opposed to most studies on the “strength” of synchro-
nization. Therefore, we provide the method for a full character-
ization of the synchronization properties in this system.

Results
Experimental realization of coupled “rotors”. The system is
composed of two spherical beads moving on separate, almost
circular, trajectories, both embedded in a plane at height h above
a hard surface (Fig. 1a). The position of each bead i ∈ {1, 2} is
described by a radius Ri (which can deviate slightly from the
predefined circle orbital radius R) and a phase angle ϕi. The
centers of the trajectories are separated by a distance d.

In the absence of coupling (e.g., at far distances), two rotors
will exhibit a random phase difference. We observe and study the
phase locking that can occur due to the presence of hydro-
dynamic coupling, and demonstrate how it is possible to achieve
full control over the state of synchronization by small adjust-
ments of the system’s physical parameters (Fig. 1b). A necessary
condition for synchronization is a breaking of the time reversal
symmetry11. This model system breaks symmetry because: (i) the
trajectory is not infinitely rigid, as there is a harmonic radial
restoring force Fi,r=−kr(Ri− R), where kr is the radial stiffness;
(ii) the tangential force is not constant, Fi(t)= F(ϕi)= ktε(ϕi)
where kt is the tangential stiffness. These factors represent in a
coarse grained fashion the elastic properties and the mechanical
activity (due to the internal forces) of biological cilia, which are
themselves an open area of study51–55; the parameters can
be chosen so that the far-field fluid flow approximates well the
field created by a biological cilium of a specific system. We have
chosen the family of driving forces described by

F ϕð Þ ¼ F0 1þ A sin ϕþ δð Þ½ �; ð1Þ

and investigate the modulation parameter, A and the angle at
which the particle speed will be maximum or minimum,
δ together with the flexibility and radius of the orbits, and
the distance between them. Figure 1c shows an example of the
angular dependence of the driving force acting on a single
particle. Since we want to model synchronization of identical
motile cilia, we drive the two particles (with independent
feedback) with the same parameters.

We explore different values of R, d, and h, in the far-field limit
in which the distance between the rotors is much larger than the
size of the trajectory R=d � 1ð Þ. In all the cases, we also have
R=a � 1ð Þ. We also examine a range of behavior when approach-
ing solid surfaces, with h > d and h > d, but maintaining h > a.

Phase locking and synchronization of colloidal rotors. Force
modulation can affect the state of synchronization. Two particles
driven along a circular orbit interact through the hydrodynamic
flow induced in the viscous solvent. This hydrodynamic coupling
is sufficient to induce the synchronization of the two rotors. The
resulting motion is phase-locked, either in-phase (IP) or at any
other phase difference (out-of-phase, OP). It is convenient to use
a geometrical gauge to rescale the phase Φ=Φ(ϕ) in such a way
that, in absence of hydrodynamic interactions, the intrinsic phase
velocity is constant: _Φ ¼ 2π=T0 ¼ Ω.

The modulation parameter A can even be changed during a
continuous run (hence keeping identical experimental
conditions otherwise): Figure 1b shows how the phase difference
Δ=Φ1−Φ2 equilibrates within a few periods, and depends
strongly on the modulation amplitude A of the force profile. In
these experimental conditions (kr ≈ 3 pN/μm and F0 ≈ 3 pN), the
particles rapidly converge to stable phase-locked states. When the
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Fig. 2 Tuning synchrony by modifying the radius of the orbit: Increasing
R leads to out-of-phase (OP) as opposed to in-phase (IP) synchronization.
a, b The corresponding Δ(t) in experiments (each trace a different initial
condition) considering different R (increased from 3.17 to 4.6 ± 0.03 μm).
Other parameters are fixed: A= 0.6, δ= 3π/4, d= 15.85 ± 0.03 μm, h= 10
± 1 μm. In each run, kr fluctuates over ϕ, with an average value of 3 ± 1 pN/
μm. c The corresponding rate of change of the phase difference _Δ versus Δ,
for the IP (a) and OP (b) cases; this data is used to calculate the effective
potentials V(Δ) plotted in Fig. 3a, b. The rate distributions are represented
as box plots, indicating the median (red markers), the first and third
quartiles (blue boxes), and the maxima and minima (black bars)
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amplitude of the force modulation is sufficiently high, the locked
state can flip from IP to OP. As shown in Fig. 1b, Δ tends to 0 (or
2π) for values of A ≤ 0.5, while the system converges to an OP
motion (Δ ≈ π or −π) if A ≥ 0.65, independently of the initial
positions of the two rotors. When A= 0.6, the system undergoes
stochastic transitions between IP and OP locked states due to
Brownian noise (see Supplementary Note 1 and Supplementary
Figure 4 for a detailed experiment).

As discussed in the theory section, force modulation tends to
stabilize either IP or OP depending on the amplitude of the
driving force and geometric considerations, whereas flexibility (as
determined by kr) always favors IP. Playing these terms together
allows to control phase-locking arbitrarily, and biological systems
could have evolved to exploit this physical mechanism.

The orbit radius influences the phase locking. In addition to
force modulation, geometric characteristics can be used to control
the synchrony between two colloidal rotors. We focus here on
how the radius of the orbit R influences the phase locking state
of the rotors. Figure 2a, b shows the evolution of Δ with time for
two different values of R. For every run, we explore different
initial conditions. We observe a change from IP to OP phase
locking upon increasing R. We rationalize this on the basis that
increasing R (at fixed kr) makes the trajectories effectively less
deformable, so the force modulation will dominate over the orbit
flexibility.

An effective potential can describe the stability of dynamical
states. The observed dynamics of the two rotors can be used to
construct an effective potential that “drives” the phase difference
Δ. A complete range of initial conditions is covered for the

different particle orbital radii explored in Fig. 2a, b. This
procedure allows us to put together data from many experimental
runs, to identify the stable and metastable synchronized states,
and to compare with theory. The potential is calculated through
the temporal evolution of the phase difference _ΔðtÞ. In
experiments, _Δ is calculated as

_Δ tð Þ ¼ Δ t þ T0ð Þ � Δ tð Þð Þ=T0; ð2Þ

where T0= 2π/Ω. Each experimental set of runs in Fig. 2a, b gives
a distribution of _Δ for each value of Δ as shown in Fig. 2c. By first
averaging over time, then the effective potential V(Δ) can be
calculated as

V Δð Þ ¼ �
Z Δ

0

_Δ ~Δ
� �

d~Δ: ð3Þ

This potential V(Δ) allows us to identify the stable and
metastable locked states at a glance: by definition, the pair of
rotors are phase-locked when there is a minimum in the
potential, hence _Δ ¼ �dV=dΔ ¼ 0. Figure 3a, b shows the effect
of the orbit radius and the amplitude A of the modulation of the
driving force on V(Δ). While the IP state is usually dominant
(because the orbit flexibility always favors IP), we find that an
increase of either R or A can shift the synchronized state from
Δ= 0 to about −π/2. Some combinations of parameters lead to
two potential minima in V(Δ). Depending on the size of the
potential barrier that separates them and the level of noise, the
frequency of jumps from a minimum to the other can vary: at
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high noise level, the system can be considered as synchronized in
a single global minimum, but with large fluctuations of Δ (see the
steady states reached in Fig. 2); at moderate noise level, jumps can
be distinguished (Supplementary Figure 4); and at low noise
phase, jumps do not occur, and the system can remain trapped in
a metastable state. Note that, except for A= 0, the potentials
are tilted (despite that the oscillators are identical with the same
intrinsic frequency, see the theoretical investigation below for the
origin of this behavior). Such tilted potentials can induce biased
phase slips between the oscillators (Supplementary Figure 5).

Theoretical investigation of the model system. The experimental
system can be described theoretically by a coupled-
oscillator equation for the phases ϕ1(t), ϕ2(t)36,40, which is
derived by balancing the force Fi due to the optical tweezer and
the viscous drag force gi. The viscous drag force is given by gi=
γ[v(ri)− ri], where ri is the particle velocity and v(r) is the flow
velocity field. The latter is linearly related to the drag force on the
particles as v(r1)=−G12 ⋅ g2 and v(r2)=−G21 ⋅ g1, where Gij=
G(ri, rj) is the Green function of the Stokes equation with no-slip
boundary condition at the substrate (Blake tensor)56. Solving the
equation of force balance, Fi+ gi= 0, we obtain the coupled-
oscillator equation in the form

_ϕi
ωi

¼ 1þ
X
j≠i

F ϕj

� �

F ϕi
� � et;i � Ĝij � et;j �

F ϕj

� �
krR

er;i � Ĝij � et;j

2
4

3
5: ð4Þ

Here, ωi= F(ϕi)/(γR) is the intrinsic phase velocity (i.e., the
phase velocity in the absence of hydrodynamic coupling and for
the unperturbed trajectory Ri= R), er,i= (cos ϕi, sin ϕi, 0) and
et,i= (−sin ϕi, cos ϕi, 0) are the radial and tangential unit vectors,
and Ĝij ¼ γGij is the normalized (dimensionless) Green function.
The first term in the square bracket on the RHS describes the stiff
limit as in ref. 40. We also include here in the second term a
correction due to flexibility, for which we assume λ ¼ F0=krR �
1 and only retain O(λ) terms in the equation (see Supplementary
Note 3 for details of the derivation). Therefore, this theory
includes the two main mechanisms for cilia synchronization.

Since we assume weak coupling, time evolution of the phase is
dominated by the intrinsic phase velocity ωi∝ F(ϕi), the periodic
modulation of which causes rapid oscillation of the phase
difference ϕ1− ϕ2. In order to extract the slow dynamics due to
hydrodynamic coupling, we change the gauge of the phase
variable from ϕ to Φ(ϕ) so that the latter has the constant
intrinsic velocity Ω= 2π/T0. The intrinsic phase velocities _ϕ ¼
F ϕð Þ=γR and _Φ ¼ Ω give dΦ=dϕ ¼ _Φ= _ϕ / 1=F ϕð Þ and thus

Φ ϕð Þ ¼ 2π � K ϕð Þ
K 2πð Þ ; K ϕð Þ ¼

Z ϕ

0

dϕ′
F ϕ′ð Þ : ð5Þ

In the new gauge, the phase difference Δ=Φ1−Φ2 becomes a
slow variable as it is driven only by the hydrodynamic coupling.
Using the mean phase �Φ ¼ 1

2 Φ1 þΦ2ð Þ and substituting Φ1;2 ¼
�Φ±Δ=2 into Eq. (4), we obtain the dynamical equation for Δ in
the form _Δ ¼ W �Φ;Δð Þ. We can set �Φ ¼ Ωt up to the lowest
order in the hydrodynamic coupling and coarse-grain the
timescale by taking the period average as

_Δ ¼ 1
2π

Z 2π

0
d�ΦW �Φ;Δð Þ � � dV Δð Þ

dΔ
: ð6Þ

This equation defines the effective potential V(Δ) up to a
constant, which we fix by the condition V(0)= 0 as in Eq. (3).

The integration has to be done numerically in general, but in
some simplifying limits we can derive the expression of V(Δ)
analytically. The Blake tensor Gij has the asymptotic form Ĝij ¼
GIIþ GDexex with the coefficients GI and GD given by GI=
GD= 3a/4d when R � d � h (bulk, far-field limit), and GI= 0,
GD= 9ah2/d3 for h;R � d (near substrate, far-field limit). In
these cases, the sinusoidal force profile (Eq. (1)) yields
V Δð Þ
Ω ¼ GD

4 A2sin 2δð Þ 1� cosΔð Þ
þλ 2GI þ GDð Þ 1� A2ð Þ 1� cosΔð Þ þ A2

4 1� cos 2Δð Þ� �
;

ð7Þ
up to O(A2). The first term on the RHS arises solely from the
force modulation, and leads to either in-phase (Δ= 0) or anti-
phase (Δ= π) synchronization depending on the sign of sin(2δ).
The second term describes the effect of flexibility and always
favors in-phase synchronization. Thus we can control the
dynamical equilibrium state by tuning the parameters A, δ,
and λ. By taking into account near-field effects (i.e., keeping
R/d finite), the effective potential takes an asymmetric shape
(which is the case in Fig. 3), and its minimum can be tuned
smoothly in the entire range −π < Δ < π. In general, we can
decompose the effective potential into three parts as

V Δð Þ ¼ VA Δð Þ þ Vλ Δð Þ þ Vcross Δð Þ; ð8Þ

where VA(Δ)= V(Δ)|λ→0 is the contribution from force-modula-
tion, Vλ(Δ)= V(Δ)|A→0 is the flexibility-induced term, and
Vcross(Δ) describes the cross-coupling effect. Two examples of
the decomposed potential are shown in Supplementary Note 3
(Supplementary Figure 8).

To verify the theoretical description, we compare the
experimentally constructed effective potentials with Eq. (7).
Figure 3c, d shows such a comparison for two different values
of A with the exact geometric characteristics (R, d, and h) and
force parameters (kr and ε(ϕ)) extracted from the experiments. To
account for the role of noise, we also performed stochastic
Brownian Dynamics simulations using the method of Ermak and
McCammon57, including hydrodynamic interactions through the
Blake tensor (see for details Supplementary Note 4). We find a
good agreement between the experimental potential, the analy-
tical result of Eq. (7), and simulations, for both values of the
force modulation parameter. In particular, both Eq. (7) and
the simulations confirm the experimentally observed trend of the
minimum of the potential shifting from IP (at Δ= 0) to OP (Δ=
−π/2) upon increasing A.

This agreement helps us rationalize the parameters that are
able to tune the shape of the potential, and hence the
synchronized states. Firstly, in the particular example of Fig. 3,
the two rotors lock into IP at a moderate value of the force
modulation A= 0.5 because the potential is predominantly
driven by the elastic component of Vλ(Δ) (always locking into
IP). When A is increased, the force modulation component VA(Δ)
becomes more important, and for δ= 3π/4, the potential favors
an OP synchronized state.

Stringent test: full control over phase locking. The synchroni-
zation of the two oscillators is summarized as a phase diagram in
Fig. 4, obtained from simulations and experiments (a–c), and
theory (d–f). In a large fraction of our parameter space the system
synchronizes in phase, because the orbit flexibility favors this
locked state. Strong deviations from IP can however be seen for
various ranges of parameters, in particular at high modulation A,
small h or small R, when δ= 3π/4. These parameters all increase
the asymmetry of the geometric configuration of the system.
Tuning them allows to control precisely the state of
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synchronization in a wide range of Δ. Simulations with thermal
noise (Fig. 4a–c) show dependencies similar to the theory,
although the average Δ state displays smoother variations with
the parameters. Superimposed markers show experimental points
classified as either IP (circles) or OP (squares) and are in good
agreement with the simulations. To explain the discrepancy with
the theory, we show in Fig. 4(g) (simulations) and Fig. 4(h)
(theory) a cut of the phase diagram as indicated by the dashed
lines in Fig. 4a, b. While in Fig. 4g, the graph still represents the
same quantity arg

P
eiΔh ið Þ, all local minima are indicated in the

theory (Fig. 4h); the theory shows that a bifurcation occurs at
about A= 0.7, with the appearance of a secondary stable mini-
mum that becomes the global minimum. In the simulations, Fig.
4g, the transition is continuous. This is due to the fact that the
barrier that separates the coexisting IP and OP minima for A >
0.4 is small and that switching between IP and OP is possible in
the presence of noise. An example of such stochastic switching is
explored in detail in Supplementary Figure 4. To further explore
the role of the Brownian noise, we have also performed simula-
tions at various noise strengths, see Supplementary Note 1.

Discussion
This work provides a comprehensive description of the pair
synchronization of a large class of oscillators: those described by a
flexible fixed orbit, which is parameterized by (R(ϕ), F(ϕ), kr(ϕ)).
While we have limited ourselves to constant R and kr, and to a
given shape for F(ϕ), the extension of the theory to phase-
dependent parameters with arbitrary shapes is straightforward.
The theory therefore describes a model that is a good approx-
imation of many systems of oscillators coupled by hydrodynamic
interaction, as long as the oscillators can be coarse-grained. Our
results illustrate the rich behavior of the system even with the
limited set of parameters we have chosen. We showed that the
pair of oscillators can synchronize in a variety of phase-locked
states that can differ from the usual IP state, in particular when
δ= 3π/4, at high modulation of the force A, close to the wall and
for large orbits.

The results can help to understand synchronization of motile
cilia. Depending on the biological system, different properties
may be desired. In a carpet of many cilia with some fluctuations
of the intrinsic properties from an oscillator to another, and of
their geometric arrangement, it may be relevant to work in a
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region of the phase diagram for pair-oscillators that shows little
variation of the locked state with respect to small variations of the
control parameters.

On the contrary, a switch between two states with a small
variation of a parameter may be relevant to other systems, and
can be achieved by profiting from the bifurcation. The control
mechanism underpinning large scale changes in cilia-driven flows
in the brain during sleep is not known58, and it is tempting to
speculate that this could be a manifestation of two quite different
dynamical states that could be selected via small changes. The
particular case of two cilia occurring in biflagellated organism,
where the state of synchronization plays an important role in
motility, has been addressed quantitatively in detail, and changes
in the state of synchronization manifest as transitions between
“run” and “tumble” phases47. The nature of the cilia coupling
during the tumble phase is not fully understood: it could be either
a “disordered beating”, which mathematically corresponds to one
or more phase slips on an underlying tilted potential. However in
a mutant of Chlamydomonas a stable anti-phase beating, corre-
sponding to tumble motility, was observed59, indicating that
perhaps a correct model description should be in terms of a
stable phase-locked condition, with the possibility of tuning the
locked phase. We cannot speculate here too much on how the
underlying cilia drive parameters (hence orbits) would change in
time during the tumble phase; changes could come from “bio-
logical modulations” internal to the cilium (calcium or motor
activity), but also from the environment, since the cilium is
coupled and subject to external forces. Conceptually our model
would pick up variations of the cilia drive by modifying the shape
of the potential (e.g., small changes in A, kr, or δ). At this level,
the non-linearity of the cilium becomes itself important, and in
future it might become possible to study the full intra/inter-cilium
system. The concept of a potential that can be easily modulated
by cilia beat properties is in contrast with the interpretation of the
phenomenon where the tumble would be described by the system
sliding down in a sine-like tilted potential (detuning leads to tilted
potentials), with slips induced by fluctuations (thermal or biolo-
gical noise).

Many biological systems must manage to balance robustness
against noise (thermal, and from the “biological variations” such
as detuning or biochemical noise) but also maintain the flexibility
to display more than one state (e.g., tumble, which has a biolo-
gical function).

We have shown that the complex shape of the phase diagram—
that could be made even more diverse by including other para-
meters—, makes it in principle possible to manage both robust-
ness against the fluctuations of some parameters and still retain
possibility of a control of the state with other parameters. In this
model, the hydrodynamic coupling is sufficient to provide such a
fine control.

Methods
Building on our previous methods41,60, the displacement of the particles is cap-
tured at 230 frames/second and processed in real time, so that a feedback system
can position an optical trap based on the current position of the particle, a distance
ε tangentially ahead on the prescribed orbit. The trap is effectively a moving
harmonic potential, and by prescribing a dependence of ε on the phase angle it is
possible to modulate the tangential driving force around the orbit, whilst main-
taining the radial stiffness constant (calibration is described in detail in Supple-
mentary Information Methods and Supplementary Figure 1).

The trapping laser is time-shared by steering through an acoustic-optical
deflector (AOD), updating the position of each optical trap based on the current
position of the particle. Silica beads (Bangs Labs) with radius a= 1.75 μm are
dispersed in a solution of water/glycerol with a viscosity η= 6 mPas. Images are
taken through an AVT Marlin F-131B CMOS camera, and trap positions are
updated at the same frequency, with a small delay (feedback time) of τf ’ 5ms;
feedback thus occurs on a time scale much shorter than the relaxation time of the
particle in the trap (τ ¼ γ=k ’ 65 ms, where k is the trap stiffness and the

harmonic traps have kr= kt= k, and γ= 6πηa is the Stokes drag). Videos are
acquired for over 30 min and then analyzed using custom Matlab scripts.

Data availability. All relevant data are available from the authors.
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