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Materials and Methods. Materials. Silica beads of radius a ¼ 1.5 μm
(BangsLabs) are suspended in a solution of glycerol 59wt% in
ultrapure water, prefiltered through a 0.2 μm membrane, having
a viscosity η ¼ ð7.4� 0.9Þ × 10−3 Pa s at T ¼ 25°C. The uncer-
tainty is the std over all the measurements. The sample is sealed
in a 150 μm thick cell, sandwiched between a microscope slide
and cover slip.

Experimental protocol. The measurements are performed at the
midheight in the sample, over 20 particle diameters from the
top and bottom surfaces. Video analysis is done by correlation
filtering with an optimized kernel, followed by 2D least square
fitting to determine the particle position with subpixel resolution.
This process is done on each video frame, at 100 frames per
second, using custom software written in C. The computer used
is a multicore and multiprocessor server PC running Linux with
RT PREEMPT patch, making it capable of real-time operation.

Laser power (wavelength 1,064 nm) at the sample is around
160mW, divided between two traps, giving trap stiffness
κ ¼ ð1.55� 0.07Þ × 10−6 N∕m. The optical trap is described in
more detail in ref. 1. Around 5 min of video (30,000 frames)
are taken as calibration, to measure trap strength (from position
distribution) and sample viscosity (from autocorrelation time).
Then, approximately 30min of data (180,000 frames) are acquired
with the position feedback activated, enforcing the geometric
switch described above. Runs are started from inphase particle
positions.

Calibration. The trap stiffness κ is determined by fitting the distri-

bution of particle positions in the trap with PðxÞ ¼ Ae−
κðx−x0 Þ2

2kT ,
where T ¼ 25°C. The viscosity η is determined by fitting the time
autocorrelation function of the positions, with gðtÞ ¼ Ae−

t
τ0 þ B,

giving η ¼ κt
6πr.

Data analysis. The phase correlation is quantified using the para-
meter

Qj ¼ − ∑
ðjþ1Þn
i¼jn

x1ðtiÞx2ðtiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

ðjþ1Þn
i¼jn

x1ðtiÞ2 ∑
ðjþ1Þn
i¼jn

x2ðtiÞ2
q ; [S1]

where n ¼ 110 frames (approximately three periods of oscilla-
tion). This order parameter is Q ¼ 0 for uncorrelated signals,
Q ¼ 1 for motions in antiphase, and Q ¼ −1 for inphase. The
distribution of Qj is obtained running the window over the entire
experiment.

The delay time δτd is obtained by finding the local maximum of

Qj;k ¼ − ∑
ðjþ1Þn
i¼jn

x1ðtiÞx2ðtiþkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

ðjþ1Þn
i¼jn

x1ðtiÞ2 ∑
ðjþ1Þn
i¼jn

x2ðtiþkÞ2
q [S2]

as a function of the lag k.

Numerical simulation. The equations of motion (see main text)
are integrated numerically using a timestep equivalent to
1∕400; 000 s. Thermal noise is generated following the procedure
outlined in ref. 2. The algorithm has been coded in the C

language, and tested extensively by verifying that fluctuation
amplitude, autocorrelation function of single beads, and the
cross-correlation function of two beads in stationary traps, all
agree with experimental data from our lab and with the published
results of ref. 3.

Numerical simulation allows to change some parameters that
are fixed or difficult to access experimentally. The most impor-
tant of these is the feedback time, which is set in the experiment
by the time required for image analysis. Experimentally it can be
made longer, but not any shorter than 0.01 s as in this work. In
numerical simulation on the other hand, the feedback time is
introduced artificially as the time interval between “observations”
of the bead positions, i.e. the choice of moving (or maintaining
fixed) each potential is made every feedback time. This can be as
short as the numerical integration time.

Numerical simulation proves that feedback time is not impor-
tant for any of the features in this work, but for consistency with
the experiments (except where explicitly labeled differently) all
simulation results in the main text are done at feedback time
of 0.01 s, equivalent to the experiments. The most delicate point
where one could be concerned of an effect of feedback time is
with respect to Δt. Fig. S4 shows that the observed delay Δt is
not an artifact of the feedback time of the system: a finite delay
time is found for any feedback time that is implemented in the
numerical simulation. Only very a long feedback time, much high-
er than in the experimental work, affects the results.

The other parameters which are simpler to change in the
simulation than in the experiment are temperature and viscosity.
Experimentally the problem is that these variables are coupled
together (viscosity has a strong temperature dependence) and
are also coupled to other experimental parameters (the trap stiff-
ness depends on the difference in index of refraction between
particles and solvent, and the latter changes on addition of
viscosity modifiers).

For these parameters, again we investigated the behavior
of the stochastic difference in switch times Δt. Numerical data
showing the trends with temperature and viscosity are shown
in Fig. S5. The behavior with temperature is particularly revealing
for T → 0, showing that also Δt → 0, in agreement with the
analytical solution that predicts exactly antiphase motion.

Analytical Results on the Synchronized State. For the deterministic
system, it is possible to explore the synchronized state analytically
by solving the equation of motion in all the possible states of the
two potentials and propagating the initial conditions.

The general solution of the equation of motion (Eq. 1 in main
text) is x�ðtÞ ¼ x�ð0Þ expð−t∕τ�Þ, where x� ¼ x2 � x1 and x1, x2
are the displacements of the two beads about their reference
positions, and we take τ� ¼ τ0ð1� 3a∕2dÞ−1 assuming for simpli-
city that the particles are at fixed distance d along the x axis
(in our case this is a better approximation than fixing their
distance as the equilibrium position of their potential in each
of the four possible states of the potentials).

We will call ϵ ¼ 3a∕2d and use it to quantify the strength of the
hydrodynamic coupling. The most instructive results can be
obtained by considering the effect of small perturbations at weak
coupling strength. Let us consider a perturbation from the
antiphase state, i.e. we start from the configuration where particle
1 has displacement x1ð0Þ ¼ −ρ and particle 2 starts from a
displaced position x2ð0Þ ¼ r < ρ, where we have called
ρ ¼ λ − ξ (this is measured relative to the minimum of the second
potential). The switches for the two particles are at ∓ξ. Note that
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with our convention, the equilibrium point of the potentials is
always at zero displacement.

We call h ¼ 1 − r∕ρ the normalized displacement with respect
to the antiphase state at time t ¼ 0, and we compute the propa-
gation of h after a cycle of the dynamics. We will assume that h is
of order ϵ.

STEP 1: We have to compute the time t̄ before the first switch
(when particle 2 reaches position ξ) and the position −x1s of the
first particle when this occurs. For h ¼ 0 the relaxation involves
only x− and thus t̄ ¼ τ− logðρ∕ξÞ and x1s ¼ ξ. For general h, one
has to solve the equations:

2ξ ¼ ðr − ρÞ expð−̄t∕τþÞ þ ðr þ ρÞ expð−̄t∕τ−Þ;
2x1s ¼ ðρ − rÞ expð−̄t∕τþÞ þ ðr þ ρÞ expð−̄t∕τ−Þ: [S3]

For t̄ and x1s. These can be solved in a straightforward way with a
perturbative expansion in ϵ and h.

STEP 2: The procedure is then iterated, and one has to solve
the same problem with new initial conditions (resetting t ¼ 0 as
the initial time) x1ð0Þ ¼ −x1s and x2ð0Þ ¼ r < −ρ (thus in this step
the particles feel a force in the same direction). Similar equations
as above can be used to determine the switch time for particle 1
and the switch position x2s. These two calculation steps are suffi-
cient, as the third and fourth substeps of the cycle are formally
symmetric to the first two.

For each semicycle we find that the initial perturbation hmaps
into the perturbation:

h0 ¼ h½1 − ϵBðρ; ξÞ�; [S4]

where

Bðρ; ξÞ ¼ ρ2 − ξ2

ρξ
þ 2 log

ρ

ξ
: [S5]

Note that for our geometrical choice of the parameters B > 0
always, proving the stability of the antiphase mode. Perhaps
surprisingly, the linear corrections to the perturbation are irrele-
vant, and the first relevant corrections are to second order in ϵ.

An analogous result holds for the instability of the inphase state.
One can use the result of Eq. S4 to make a prediction for the

correlation time of the phase difference observed in the experi-
ments. Rewriting the evolution equation for h as _h ¼ −ϵBh, where
the dot indicates a discrete derivative and the time unit is half a
cycle, it is evident that this variable should relax exponentially with
the characteristic time (in half cycles) of ðBϵÞ−1. This prediction
fits reasonably well the observed behavior in the experiments,
as can be seen in Fig. S3 where in particular the linear increase
with d is confirmed.

We have also obtained the full map r0ðrÞ relating any arbitrary
initial condition of the system, which is not very transparent.
However it can be written explicitly and explored numerically.
We have performed this analysis, which confirms that the anti-
phase state is the only stable one. It is also possible to verify using
the full map that the inphase and antiphase state are fixed points
of the dynamics.

Going back to the equation for the normalized displacement
from the antiphase state,

_h ¼ −ϵBh;

we would like to point out that this equation is directly compar-
able to the effective equation for the phase difference that is
sometimes used in the context of synchronizing oscillators (4, 5).

In our system, since the dynamics is governed by the geometric
switch mechanism and not by an intrinsic phase variable, there is
no natural definition of instantaneous phase difference. However,

the normalized perturbation from the antiphase state is naturally
measured at the switch time bymonitoring the positions of the two
beads.More specifically, we can compare this equation to the ana-
logous one for the model for cilia by Niedermayer and coworkers
(6). In this model, cilia are represented as hydrodynamic beads in
rotary motion on an orbit of harmonically deformable radius, and
reach an inphase synchronized state. The above equation indicates
that, in the case of equal intrinsic frequencies, the relaxation of
dynamics of the two models is identical. Indeed, in both models,
the characteristic relaxation time to the synchronized state in
cycles is inversely proportional to ϵ times a parameter (in our case
B) depending on geometric features of the single oscillator and
affecting its natural beating time.

When the two oscillators’ intrinsic frequencies differ slightly,
κ2 ¼ κ1ð1þ qÞ, with small q, the behavior of the two models also
appears to be similar. The deterministic simulations indicate that
in presence of a small q, the synchronized (antiphase, in our case)
fixed point is linearly displaces by detuning. Analytically, suppos-
ing that the oscillation will be dominated by the mode x− as it
happens for q ¼ 0, we can estimate the value of the fixed point
for h by considering a small deformation of the mode. By this
procedure we obtain the following effective equation for h

_h ¼ q
2
ð1þ ϵÞ − ϵBh;

which confirms the linear effect of detuning that is observed in
deterministic simulations.

Difference in Arrival Time for Two Beads in Stationary Potentials.
Using numerical simulations we show here that a finite delay time
is already present in the simpler situation of twobeads in stationary
potentials. Namely, we consider two beads confined by harmonic
traps centered at distance d, starting from opposite initial displa-
cements �ðλ − ξÞ from their equilibrium positions, as sketched
in Fig. S6. We record their arrival times t1 and t2 at displacements
�ξ for many realizations and we consider the histogram of
jΔtj ¼ jt1 − t2j. Fig. S7 shows that this quantity develops a cou-
pling-dependent (i.e. distance-dependent) peak at a characteristic
time well separated from zero. On the other hand, the realization
average ht1 − t2i ¼ 0 as for the delay times for the antiphase state
overmany cycles.Quantitatively, the two characteristic delay times
are not identical, since in the case of antiphase switching in the
synchronized state the initial conditions for the two beads are
not equal (and not deterministic).

Studying further this simple model, Fig. S7 shows that the
hydrodynamic correlation of the stochastic noise is a key factor
causing the finite time delay in arrival times between the two par-
ticles. In a simulation where the noise term is taken by considering
each bead as an isolated particle (a choice that violates the fluc-
tuation dissipation theorem, but is an interesting control to under-
stand the origin of the finite delay result) themaximumprobability
of arrival is at equal times (jΔtj ¼ 0).

Further Numerical Results on Detuning. Full results of synchroniza-
tion with traps of different stiffness, Fig. S2.

Details of Experimental Trajectories in Synchronized State. As de-
scribed in the text, the trajectories of each bead are composed
of segments that are to a good approximation parts of exponential
functions. Also to a first approximation (absence of noise) the tra-
jectories are in antiphase when there is synchronization. Plotting
x1ðtÞ vs x2ðtÞ would give a line of gradient 1 for inphase, and gra-
dient−1 for antiphasemotion. These are orbits. In the presence of
thermal noise, there is a stochastic delay between the switch times
of the two beads, and the orbits acquire more structure.

The order parameter Q presented in the text and in the
Methods section is a good way to quantify the fraction of time
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that beads oscillate in phase or in antiphase, but a finer analysis is
required to explore the structure of orbits in the presence
of noise.

In a full cycle, there are two trap moves of trap 1 (þ and −) and
two moves for trap 2 (þ and −). For orbits that are close to phase
or antiphase there will be pairs of moves, separated by a longer
time during which the beads relax towards the potential minima.
There are only eight possible sequences of moves to form a cycle,
taking trap 1 moving right as the first move. This is excluding
“quick” return moves of the same particle. Labeling 1þ the trap

1 to the right move, 1− trap 1 to left, 2þ and 2− similarly for trap
2, and P as the long time between moves, these sequences are
listed in Table S1. Pairs of sequences are identical under time
symmetry (switch of all þ and −).

This analysis is applied to the experimental data obtained over
various values of d. Fig. S1 shows the histogram of each orbit type
described above, at various d. This confirms the prevalence of ring-
shaped orbits and antiphase motion, although with increasing
thermal noise relative to coupling strength there is an increasing
amount of all types of orbit.
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Fig. S1. Distribution of the types of orbits observed over a long experimental run. Bars of different colors correspond to different distances, with the values of
d ¼ ½4; 6; 8; 10; 15; 20; 30; 40� μm from left to right. The classification of orbits is done to distinguish phase from antiphase, and orbits of x1 vs x2 that are
topologically ring-shaped vs orbits that are 8-shaped. This analysis confirms the dominance of antiphase behavior, and of ring-shaped orbits. For large d,
the synchronization is lost and at the same time the orbits topology becomes random.
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Fig. S2. Distribution of the synchronization parameter Q and of Δt when the trap stiffness ratio is varied (numerical data), for the distances
d ¼ ½4; 5; 8; 16; 32; 64� from top to bottom.
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Fig. S3. The experimental autocorrelation of the difference in arrival times Δt decays exponentially. In the figure this quantity is plotted for experimental
antiphase states at different distances. Solid lines are best fits. The inset shows the decay times as a function of d increasing linearly in qualitative agreement
with Eq. S4 (solid line).
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Fig. S4. Average of absolute switch time delay of two beads at d ¼ 5 μm. Figure shows that the system has a characteristic delay time which is independent of
the feedback time, provided that this is sufficiently short (i.e. high feedback frequency). The system parameters in this simulation are κ ¼ 2 pN∕m,
η ¼ 7.5 mPa s. Markers are the peak position of Δt, and the solid line is y ¼ 1∕x.
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Fig. S5. Movement of the peak value of the Δt distribution as a function of temperature (A) and viscosity (B). Trends show an exponential
dependence of peakðΔtÞ at low T. As a function of viscosity the linear scaling is not surprising, since viscosity sets the timescale of the experiment. The same
trends are seen also for <jΔtj >. The system parameters in this simulation are d ¼ 5 μm, a ¼ 1.5 μm, λ ¼ 1 μm, κ ¼ 2 pN∕m. In (A), the viscosity is η ¼ 7.5 mPa s,
while in (B) the temperature is T ¼ 23C.

Fig. S6. The finite values ofΔt that are seenwith synchronization are also a feature of a simpler system. The diagram shows the simpler scenario that has been
studied numerically, where at time t ¼ 0 two beads are initially placed at opposite (“antiphase”) positions in two harmonic wells a distance d apart. The beads
fall towards the minimum, and hydrodynamic correlations develop. The times of first passage of bead 1 and 2, respectively, at −ξ and þξ are recorded. Then
many realizations of the stochastic simulation build up a distribution of first passage times. No “switch” of the potential takes place in this simple scenario.

Kotar et al. www.pnas.org/cgi/doi/10.1073/pnas.0912455107 6 of 7

http://www.pnas.org/cgi/doi/10.1073/pnas.0912455107


0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

d=40 µm
d=32 µm
d=25 µm
d=19 µm
d=14 µm
d=10 µm
d=7 µm
d=5 µm
d=4 µm

|∆t| (s)

P
(|

∆t
|)

Fig. S7. The arrival times of two particles starting from opposite positions in harmonic potentials a distance d apart are anticorrelated. This is a simpler
situation than in the synchronized state studied in the main text, since here the initial position of the particles is set. The histograms show the distribution
of the difference in time of arrival, obtained in numerical simulation. The parameters used for this figure are η ¼ 3.55 × 10−3 Pa s, κ ¼ 0.428 pN∕μm,
a ¼ 1.735 μm, T ¼ 296 K, ξ ¼ 0.25 μm, ρ ¼ 0.75 μm. No feedback time.
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Fig. S8. The dip in the probability distribution of arrival time intervals disappears if the thermal noise is not taken with the correct correlation property. The
parameters used in the simulation for these data are the same as in Fig. S7, except that there is no interparticle correlation in the noise term included in the
equations of motion that generate the data shown with (○) markers. It should be noted that the only noise term that respects the fluctuation dissipation
theorem is the one with the correct correlation property.

Table S1. Possible sequences of moves to form a cycle

Sequence Type Topology

1+ 2- P 1- 2+ P antiphase ring
1+ P 2+ 1- P 2- antiphase ring
1+ P 1- 2+ P 2- antiphase 8
1+ 2- P 2+ 1- P antiphase 8
1+ P 2- 1- P 2+ phase ring
1+ 2+ P 1- 2- P phase ring
1+ 2+ P 2- 1- P phase 8
1+ P 1- 2- P 2+ phase 8

Move labels are explained in SI Text.
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