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ABSTRACT: Elastic capsules, prepared from droplets or
bubbles attached to a capillary (as in a pendant drop
tensiometer), can be deflated by suction through the capillary.
We study this deflation and show that a combined analysis of
the shape and wrinkling characteristics enables us to determine
the elastic properties in situ. Shape contours are analyzed and
fitted using shape equations derived from nonlinear mem-
brane-shell theory to give the elastic modulus, Poisson ratio
and stress distribution of the membrane. We include wrinkles,
which generically form upon deflation, within the shape
analysis. Measuring the wavelength of wrinkles and using the calculated stress distribution gives the bending stiffness of the
membrane. We compare this method with previous approaches using the Laplace−Young equation and illustrate the method on
two very different capsule materials: polymerized octadecyltrichlorosilane (OTS) capsules and hydrophobin (HFBII) coated
bubbles. Our results are in agreement with the available rheological data. For hydrophobin coated bubbles, the method reveals an
interesting nonlinear behavior consistent with the hydrophobin molecules having a rigid core surrounded by a softer shell.

■ INTRODUCTION

Elastic capsules are ubiquitous in nature as red blood cells,
bacterial or virus capsids, while synthetic capsules play an
important role in numerous technological applications,
including drug delivery and release systems. For stability and
applications, the elastic properties of the capsules are crucial,
and techniques for the mechanical characterization of single
capsules have received much attention (see refs 1 and 2 for
recent reviews). Most often, these methods involve contact
between the capsule and a probe such as an AFM tip (e.g., refs
3−5). However, only very few noncontact techniques are
available, and those that are require motion in a surrounding
fluid (e.g., shape analysis in shear flow6 and spinning drop
rheometry7).
Synthetic capsules can be fabricated by various methods,8

many of which are based on reactions at interfaces such as
polymerization or the adsorption of surfactants.9 The latter
techniques can be applied to enclose a drop or bubble emerging
from a capillary within an elastic membrane. A pendant capsule
produced in this way can then be deformed by suction through
the capillary in order to analyze its elastic response. Because of
the simplicity of this procedure, various membrane materials
have been studied in this geometry.10−13 The analysis of those
experiments, however, used models developed for pendant
drop tensiometry, a technique widely used to determine the

surface tension of liquid−liquid interfaces by fitting the drop
shape to that predicted by the Laplace−Young equation.14 This
technique is not valid for elastic capsules, since it neglects the
elastic stresses within the membrane.15,16

In this Article, we present a noncontact elastometry method
for individual capsules, inspired by the pendant drop method
but adjusting the theoretical model to account for elasticity.
Elastic capsules that are attached to a capillary are deflated by
sucking some of the enclosed medium back into the capillary.
We describe deflated shapes (see Figure 1 for examples) using
shell theory for axisymmetric membranes and accounting for
the wrinkling induced by deflation. By analyzing the capsule’s
shape and wrinkling pattern, we can determine its elastic
properties, namely, the surface Young modulus, Y2D, describing
the membrane’s resistance to stretching, and the Poisson ratio
ν2D describing the lateral contraction upon stretching. By
adjusting these parameters, the theoretical capsule contour can
be fitted to the observed shape (Figure 1a and b), and the
elastic moduli of the membrane can be determined over a
whole range of capsule volumes.
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The determination of the membrane’s bending stiffness EB
represents another challenge for elastic capsules because it only
has a small influence on the capsule contour on large scales and,
thus, cannot be obtained by the fitting. Therefore, we combine
the shape analysis described above with an analysis of the
wrinkles that generically form during deflation, and deduce the
bending stiffness from the wavelength of the wrinkles.17 This
combined approach enables us to determine all elastic
constants of individual capsules in situ from images of the
initial and deflated capsule, thus offering a valuable alternative
to rheology in planar geometries. In particular, the capsules
studied here have a geometry similar to that of capsules used in
applications in pharmacy or industry.

■ MATERIALS AND METHODS
Elastic Model. We model the capsule as an elastic membrane

covering a droplet or bubble, which is attached to a capillary of
diameter a. We neglect the bending resistance for simplicity. The
axisymmetric reference configuration (Figure 1c, left) is assumed to be
free of elastic stresses; the capsule shape is determined by the balance
between an isotropic interfacial tension γ and gravity, which is
described by the Laplace−Young equation.18 We make this
assumption because the elastic capsule is formed in this initial state
from a fluid interface. In the undeformed state, gravity causes the
capsule to form the tear drop shape seen in Figure 1. In the absence of
gravity, it is well-known that the capsule would take the shape of a
spherical cap; we therefore incorporate gravity in our analysis.
Upon deflation, the capsule changes to a deformed configuration,

which we assume is axisymmetric (Figure 1c, middle). The local
deformation is measured by the meridional and hoop stretches given
by

λ λ= =ϕs s r rd /d and /s 0 0 (1)

respectively (see Figure 1c). They lead to elastic tensions according to
a Hookean constitutive relation,19,20 which reads for the meridional
tension
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with the surface Young modulus Y2D (which for isotropic media is
related to the bulk Young modulus Y3D and membrane thickness H0 by
Y2D = Y3DH0) and surface Poisson ratio ν2D. The surface (two-
dimensional) Poisson ratio is, for stability reasons, limited to the range
−1 < ν2D < 1, as opposed to the bulk (three-dimensional) Poisson
ratio which is confined to the range −1 < ν3D < 1/2.18,21 The
constitutive law for the hoop tension τϕ is obtained by interchanging
all indices s and ϕ. An equilibrium capsule configuration has to satisfy
the force balance equations19

ψ τ
τ

ρ κ τ κ τ

= − +

− Δ = +

ϕ

ϕ ϕ

r r
d r

ds
p gz

0
cos 1 ( )s

s s (3)

Here, p is the pressure inside the capsule at the apex and Δρ g z is the
pressure contribution caused by gravity and the density difference
between the inner and outer fluids. The principal curvatures are
denoted by κs and κϕ, and the slope angle ψ is defined in Figure 1c.
This system of differential equations must be solved numerically
subject to boundary conditions that fix the capsule radius to the inner
radius of the capillary, a/2, and ensure that the capsule is closed and
smooth at its apex. Using these boundary conditions, eq 3 determines
the capsule shape (and, therefore, also the capsule volume V) for given
material parameters Y2D and ν2D and given pressure p. More details are
given in Appendix I.

If the capsule is deflated sufficiently, regions with compressive hoop
stress (i.e., τϕ < 0) develop and wrinkles form in order to release this
stress, which a membrane with small bending modulus cannot
support.22−25 For fully developed wrinkles, the hoop stress is almost
completely relaxed,22 and so we modify the shape equations by setting
τϕ = 0 in the wrinkled region. Assuming wrinkles of small amplitude,
the membrane can be described by an axisymmetric pseudosurface
with radial coordinate r(̅s) around which the wrinkled non-
axisymmetric midsurface oscillates;19 see also Appendix I. Using the
condition τϕ = 0 in eq 2 to find λϕ(λs) we then obtain a modified
expression for τs in the wrinkled region in terms of λs, in which λϕ is
eliminated. This allows us to obtain a closed set of modified shape
equations in the wrinkled region by applying the axisymmetric force
balance (eq 3) to the pseudosurface. Theoretical axisymmetric shapes
obtained from integrating eq 3 can then be fitted to experimental
images by varying the two material parameters Y2D and ν2D and the
pressure p.

We have not included a bending energy in the model described
above because, for thin membranes with a small bending modulus (EB
∝ Y2DH0

2 in the case of isotropic materials), the bending moments
give only small corrections in the shape equations (eq 3). These
corrections are controlled by the dimensionless parameter EB/γa

2.
Using a ∼ 1 mm as the capillary diameter, we find that this parameter
is only of the order of 10−6 for OTS and 10−10 for HFBII capsules.
Therefore, EB cannot be inferred directly from an analysis of the
capsule’s shape.

Wrinkle Wavelength. The shape equations can predict the
regions where wrinkles will occur, but not their amplitude and
wavelength. These characteristics are mainly determined by the
bending modulus EB of the membrane.

As shown in Figure 2, the wrinkled region is curved in both
meridional and circumferential direction with curvatures κs = 1/Rs and
κϕ = 1/Rϕ, which we assume to be approximately constant. Within this
region, we assume a homogeneous state of stress with tensional τs > 0
and (without wrinkling) compressive τϕ < 0. The wavelength of the
wrinkles can be determined by balancing the main contributions to the
deformation energy: bending in the circumferential direction and
stretching in both circumferential and meridional directions. Changes

Figure 1. (a, b) Comparison between fitted contour (solid curve) and
original image for OTS (a) and HFBII (b) capsules. The first image
shows the equilibrated capsule, while the next three show increasing
levels of deflation. The extent of the wrinkled region predicted by the
model is shown by the horizontal lines. (c) Arc-length para-
metrizations in cylindrical coordinates of the undeformed (r0(s0),
z0(s0)), deformed (r(s), z(s)) and wrinkled midsurface (from left to
right).
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in the gravitational potential energy caused by wrinkling are neglected
since the wrinkles are largely parallel to the z-axis.
Upon wrinkling, the membrane is displaced sinusoidally in the

normal direction resulting in local strains εs = |∂r/∂s| − 1 and εϕ = |∂r/
∂t| − 1 (see Figure 2). As they are working against the meridional and
circumferential tension, respectively, the stretching energy during the
formation of wrinkles is

∫ τ ε τ ε= + ϕ ϕW s td d { }S s s (4)

The bending energy is mainly determined by the curvature change
Δκϕ in the circumferential direction and reads

∫ κ= Δ ϕ{ }W s t Ed d
1
2

( )B B
2

(5)

The evaluation of these integrals is performed in Appendix II.
Wrinkling occurs because of a competition between the increase in
elastic energy caused by bending and meridional stretching and the
decrease in energy achieved by releasing the compressive stress τϕ.
The wrinkled state becomes energetically preferable if WS + WB < 0,
corresponding to (see Appendix II)
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where Lw is the length of the wrinkles and Λ their wavelength; see
Figure 2a.
The first wrinkling mode to be observed has a wavelength Λc that

minimizes |τϕ(Λ)|,
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The final approximation holds if Rϕ ≫ Λ, which is clearly the case in
the experiments presented here (see Figure 1). The approximated
form agrees with the results of ref 17 for a planar geometry.
Fitting Procedure. Based on the theory presented above, a three

step fitting procedure can be used in order to determine the elastic
moduli of the capsule membrane:
(1) The undeformed capsule shape is fitted using the Laplace−

Young equation with the interfacial tension γ and pressure p0 inside
the capsule as free parameters.
(2) Shape analysis: Solutions of the shape eqs 3 are fitted to images

of the capsule with p, ν2D, and K2D = Y2D/2(1 − ν2D) (area
compression modulus) as free parameters at each stage of deflation.
(3) Wrinkle analysis: The wavelength Λ in the center of the

wrinkled region is measured from images. The length Lw of the
wrinkles and a mean value of τs over this region are obtained from the
fitted solution. Then, the bending modulus EB is determined from eq 7

(or eq 29, see Appendix II). Using the relationship EB = Y2DH0
2/12(1

− ν3D
2) from classical shell theory,26 an effective membrane thickness

H0 can also be estimated27

Note that the position and height Lw of the wrinkled region are not
fit parameters but can be used as an independent check of the
goodness of the fit. Technical details of the fitting procedure and the
underlying image analysis are contained in the Supporting
Information. Lw is determined from the fitted numerical solution as
the arc length over which the modified shape equations (with τϕ = 0)
were integrated, see the Appendix I.

We now demonstrate this method on two rather different types of
capsules: polymerized OTS capsules and bubbles coated with an
interfacial monolayer film of the protein hydrophobin.

Preparation of Capsules. To prepare a pendant capsule, a glass
cell is filled with p-xylene containing OTS. Then a drop of water is
placed into this phase using a syringe. The polymerization process
starts immediately after the oil/water interface is formed. Hydro-
phobin coated bubbles are prepared in a very similar fashion. As
described in previous work,28 an air bubble is placed into a solution of
HFBII in water using a J-shaped needle and HFBII molecules adsorb
at the interface over the course of 20 min.

After equilibration, the capsules are deflated slowly (i.e., quasi-
statically, on a time scale of ∼10 s for a deflation of OTS capsules and
even slower for HFBII capsules) by sucking the enclosed medium back
into the syringe. The OTS capsule is subsequently reinflated to check
whether the deformation is reversible.

■ EXPERIMENTS AND RESULTS

Test of Shape Analysis. We first test our elastometry
approach by applying it to fit numerically generated capsule
shapes. To this end, we take an initial capsule configuration (γ
= 49.8 mN/m, Δρ0 = 1000 kg/m3, and V0 = 8.23 mm3, values
taken from the HFBII capsule) and use our shape equations
with fixed elastic moduli (K2D = 600 mN/m, ν2D = 0.3) to
compute deflated configurations. From a contour, we calculate
a set of approximately 150 sampling points, optionally add
some noise to simulate an imperfect contour analysis, and pass
them to the fitting procedure to see if it finds the correct
solution.
Figure 3 shows that all fits to the clean contour (green

triangles) are successful and recover the original compression
modulus. The elastic fits to the noisy contour (blue points)
succeed if the deformation is large enough, that is, for V/V0 ≤

Figure 2. (a) The wrinkled region of a capsule is curved in the
meridional and circumferential directions. (b) Geometry for the
analytic calculation of the deformation energies. The membrane patch
has two radii of curvature, Rs and Rϕ, and is parametrized via the arc
lengths s (in meridional direction) and t = ϕRϕ (in circumferential
direction). (c) An initially curved fiber (in either s or t direction) is
wrinkled by adding a sinusoidal normal displacement.

Figure 3. Fit results for theoretically generated capsule shapes with
K2D = 600 mN/m (green line). Green triangles represent the fits of the
elastic shape equations to the clean contour, blue dots the elastic fits to
the noisy contour, and red points the Gibbs elasticity calculated from
Laplace−Young fits. Vertical green lines indicate the positions of the
capsule pictograms shown in green.
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0.94 in the present case. For smaller deformations, there are
some deviations in the fit results, but the error bars are large
enough to reach the real value, except for the very first fit (V/V0
= 0.98). This problem arises due to the very small deformation:
The root-mean-square deviation between the initial shape and
the shape at V/V0 = 0.98 is about 0.01 length units, the noise
amplitude is 0.005, and the offset used for the error bars is
±0.007 (corresponding to ±1 pixel at usual image resolution).
So the sampling points passed to the fitting procedure have an
offset from their original place which is of the same order as the
deformation; we could not have expected the fits to work.
Comparison to Laplace−Young Analysis. For compar-

ison with our new method, we also consider the performance of
the usual Laplace−Young analysis used by many scientists.10−12

In a Laplace−Young analysis, elastic capsules are fitted with the
Laplace−Young equation to obtain the interfacial tension γ and
capsule surface A over the course of the deflation; these tools
are provided by the software of common pendant drop
tensiometers. The Gibbs elastic modulus EGibbs = A dγ/dA is
often then calculated from these values. In applying this
method to theoretically generated capsules shapes, we find that
EGibbs is significantly smaller than the actual area compression
modulus; see Figure 3. It appears that for elastic capsules, the
intricate interplay between membrane geometry and elastic
tensions renders the Laplace−Young analysis more erroneous
than intuitively expected: Not even for small deformation does
the Gibbs elastic modulus approach the real area compression
modulus. This explains the observations of Stanimirova et al.
that pendant drop tensiometry gives misleading results if
applied to capsules with high surface elasticity.11

Fit Results for OTS and HFBII Capsules. For OTS and
HFBII capsules, several images of the undeformed reference
configurations are fitted to the solution of the Laplace-Young
equation. The results are averaged to obtain the surface tension
γ = 11.2 mN/m for OTS and γ = 49.8 mN/m for HFBII. Both
values are lower than the respective values of the clean
interfaces because the OTS and HFBII molecules are surface
active agents that lower the interfacial tension during
adsorption.
Deflated capsule configurations with varying volume are

fitted using the elastic model. Figure 4a shows the results for an
OTS capsule. All data points in Figure 4a represent wrinkled
shapes, because even the slightest deformation gives rise to
wrinkles due to the low initial surface tension and high
compression modulus. We find an area compression modulus
K2D which decreases with decreasing V/V0. Although the error

bars in Figure 4a are overlapping, this result is reliable because
the error bars represent worst case systematic errors (see the
Supporting Information). The deformation is not perfectly
reversible, and we observe hysteresis: The area compression
modulus obtained for reinflated capsules is lower (lower red vs
upper blue data points in Figure 4a). The presence of hysteresis
indicates that the decreasing modulus is not an artifact of the
method but a result of creep, for example, by viscous effects,
that is, breakage or rearrangement of bonds in the OTS
network, or by the formation of microdefects such as shear
cracks. The video in the Supporting Information shows,
however, that computed contours with the moduli fixed to
the small-deformation values K2D ≈ 500 mN/m and ν2D ≈ 0.6
are in good agreement with all experimental observations,
implying that the nonlinear effects are moderate. The resulting
surface shear modulus21 is G2D = K2D(1 − ν2D)/(1 + ν2D) ≈
125 mN/m. In ref 9, larger values of 200−300 mN/m
(obtained by interfacial shear rheology) are reported for similar
OTS membranes. In another experiment with three deflation/
inflation cycles of an OTS capsule, we saw that the capsule does
not weaken further after the first deflation, but hysteresis was
observed in all cycles. The hysteresis may possibly depend on
the deflation velocity and may thus contain information about
the viscous part of the membrane viscoelasticity, this issue is left
for future research. Since all viscous effects have been neglected
in the elastic model, our analysis should only be applied to
quasi-static experiments.
In the case of HFBII, we can reduce the number of fit

parameters by constraining ν2D = 0.6 to a value measured in an
independent experiment29 and determine the area compression
modulus only. Figure 4b shows that the area compression
modulus K2D increases for small deformations, where the
capsule does not wrinkle (blue squares in Figure 4b), to values
around 500 mN/m. The onset of wrinkling coincides with a
sharp increase of the modulus to a maximum value of K2D ≈
2000 mN/m. This sharp increase is consistent with the
molecular structure of HFBII,30 which contains a rigid core
consisting of four β-strands and is stabilized by disulfide
bridges. The modulus K2D increases sharply when compression
of this rigid protein core sets in, while at small deformations,
only contacts between hydrophobin proteins or a soft shell
consisting of coil and loop structures surrounding the rigid β-
barrel are compressed. The sharp rise of the compression
modulus triggers wrinkling. Subsequently, the compression
modulus decreases again (blue circles in Figure 4b) likely
signaling creep as also observed for the OTS capsules. Possible

Figure 4. Fit results for (a) an OTS capsule and (b, c) an HFBII capsule, with nonwrinkled (■) and wrinkled (●) shapes. Error bars were generated
by displacing the sampling points by about ±1 pixel; see the Supporting Information. Lines are drawn to guide the eye. (a) Upper blue curve is for
deflation, and lower red curve for reinflation. The deflation was driven to even smaller volumes than shown, but for these the contour analysis failed.
(b) For HFBII, the Poisson ratio was fixed to ν2D = 0.6. (c) The same HFBII capsule fitted with free Poisson ratio.
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explanations for the creep behavior are the formation of
microdefects such as shear cracks or localized bulges into the
subphase, which weaken the hydrophobin layer.
The choice of the fixed value for ν2D influences the absolute

values obtained for K2D and the size of its jump when wrinkling
sets in, while the characteristics described above are robust.
Taking the Poisson ratio as a fit parameter also results in a
similar course of the elastic modulus; see Figure 4c. And yet the
results for ν2D differ substantially from the previously assumed
value of ν2D = 0.6. Especially for small deformations, this results
in higher values for the area compression modulus.
The values K2D < 500 mN/m for the compression modulus

for small deformations and prior to wrinkling are in good
agreement with values reported previously for HFBII.12,31,32

The large values around K2D = 2000 mN/m at the onset of
wrinkling have not been reported before, since the experimental
methods used in the literature are not reliable in the presence
of wrinkles. However, a comparison to viral capsids consisting
of densely packed proteins is possible. In ref 33, the bulk Young
modulus of a viral capsid is measured as 1.8 GPa, which is
comparable to our result for the bulk modulus Y3D = Y2D/H0 ≈
1 GPa, where H0 ≈ 2 nm is the hydrophobin layer thickness.34

Analysis of the Wrinkle Wavelength. Finally, the
wrinkling pattern shall be analyzed and be related to the
bending stiffness. The wavelength of the wrinkles on the HFBII
capsules cannot be measured directly: due to the low bending
stiffness, the wavelength is too small to be resolved in the
experimental images (note that the observable folds in Figure
1b are not primary wrinkles, but rather secondary or higher
order structures). However, using eq 7 with Lw, τs, and EB =
Y2DH0

2/12(1 − ν3D
2) obtained from the elastic fits, we expect

wavelengths between 7.6 and 11 μm. In the literature, similarly
small or even smaller wrinkle wavelengths for compressed
HFBII films in a Langmuir trough have been reported.24,29,32

For OTS capsules, however, wrinkle wavelengths Λ may be
determined from images. Values for τs in the wrinkled region
and Lw are taken from the elastic fits and are documented in
Figure 5 (dark blue and dark red dots). The resulting bending
stiffness is EB ≈ (2.5 ± 0.7) × 10−14 Nm; that is, 3 orders of
magnitude larger than previous estimates17,35 which used an

experiment with a smaller capsule of the same material in shear
flow, resulting in wrinkles with a shorter wavelength.36

Moreover, OTS capsules in ref 36 were prepared in a different
aqueous solution (glycerol and NaOH) and using longer
polymerization times. These differences can give rise to distinct
membrane thicknesses and cross-link densities, which can
explain the differences in the bending modulus: the bending
modulus varies with the third power of the membrane thickness
(Cerda and Mahadevan estimated in ref 17 a thickness around
20 times smaller than that of the capsules used here).
Combining this value for EB with measurements of Y2D from
the shape analysis we estimate the membrane thickness H0 ≈
(0.77 ± 0.07) μm, which is in approximate agreement with
capsule thicknesses 0.86 < H0 < 1.4 μm measured by electron
microscopy; see the Supporting Information. Also the extent
and position of the wrinkled region are in good agreement with
the experimental data (see Figure 5): Except for the last part of
the reinflation curve, the curves for the wrinkle length of the
elastic fits (dark symbols) and for the directly measured wrinkle
length (light symbols) are quite close to each other.

■ CONCLUSIONS
The proposed theory for axisymmetric capsule shapes in the
presence of wrinkling describes deflated experimental shapes of
both OTS capsules and hydrophobin coated bubbles accurately.
It is possible to fit the solutions of the shape equations to
contours extracted from experimental images in order to find
the elastic properties (area compression modulus and Poisson
ratio) of the membrane. Additionally, a subsequent analysis of
the wavelength of wrinkles which occur during the deflation can
determine the membrane’s bending stiffness. With this
combination of analyses, the elastic properties of the capsule
are completely characterized.
Applying this method to OTS capsules gives reasonable

values for all three elastic constants: K2D ≈ 500 mN/m, ν2D ≈
0.6, and EB ≈ 2.5 × 10−14 Nm for the small deformation
behavior. Furthermore, we observe a softening or creep of the
capsules with decreasing volume, which we also observe for
hydrophobin capsules (see Figure 4).
For hydrophobin capsules, the area compression modulus

initially grows upon deflation, K2D = 160 to 500 mN/m when
we assume ν2D = 0.6. At the onset of wrinkling, it jumps to
2000 mN/m because compression of the rigid protein core sets
in (see Figure 4b and c). Obviously, this complex behavior
cannot be explained by simple Hookean elasticity, and we hope
that these results will inspire future work on possible nonlinear
elastic laws for HFBII membranes or other membrane materials
consisting of hard core particles. According to our observations,
this should include an immense strain stiffening upon
compression. In the application of the Laplace−Young analysis
to elastic capsules, we found that the shape analysis reacts
delicately to inaccuracies in the model for the membrane
tensions. Likewise, a certain amount of caution is advisable
when our elastometry method indicates a strongly nonlinear
elasticity, as in the present analysis of the HFBII capsule. In this
case, obviously nonlinear elasticity is fitted with a simple
Hookean constitutive law, and we cannot be sure which
characteristics of the results reflect limitations of the linearly
elastic model.
These two applications prove the concept of the elastometry

method, which could be added to the features of pendant drop
tensiometers in the future. The method can reveal changes in
elastic constants with decreasing volume that are not accessible

Figure 5. Wrinkle length Lw (upper curves) and mean tension τs
(lower curves), both in reduced units for the wrinkled OTS capsule;
the unit length is a = 1.44 mm, and tension unit γ = 11.2 mN/m. Blue
dots indicate the deflation results, and red dots the reinflation. Dark
blue and dark red represent results taken from the fitted shape
equations, and light blue and light red represent direct measurements
from the images.
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by other methods. It can be further improved by using data
from a simultaneous pressure measurement during deflation,
which would eliminate one of the fit parameters.

■ APPENDIX I: SHAPE EQUATIONS

The Nonwrinkled Case
In this Appendix, we show how the elastic model, defined in the
main text by Figure 1c and eqs 1−3, can be treated numerically.
This is best handled when a system of first order differential
equations is constructed from the force balance, constitutive,
and geometrical equations.
The axisymmetric reference configuration of the pendant or

rising capsule is described in cylindrical coordinates by a
midsurface parametrization (r0(s0), z0(s0)) with s0 ∈ [0, L0]
being the arc length. It is free of elastic tensions; the capsule
retains its shape only because of an isotropic interfacial tension
γ. Accordingly, the reference shape is described by the
Laplace−Young equation18

γ κ κ ρ+ = − Δϕ p gz( )s0 0 0 0 (8)

where κs0 and κϕ0 are the principal curvatures and p0 − Δρgz0 is
the hydrostatic pressure caused by the density difference of
inner and outer fluid.
When exerting forces on the capsule, it changes to a

deformed configuration (r(s0), z(s0)), with the so-called
“material coordinate” s0 still running from 0 to L0. Alternatively,
we can choose an arc length parametrization (r(s), z(s)) plus a
mapping s(s0) to describe this configuration.
In the latter notation, some geometric relations can be

written quite conveniently. For later use, we introduce the slope
angle ψ (see Figure 1c) defined by

ψ ψ= =r s z scos d /d and sin d /d (9)

and the principal curvatures

κ ψ κ ψ= =ϕs rd /d and sin /s (10)

Together with the force balance (eq 3), strain definition (eq 1)
and elastic law (eq 2), these relations can be used to construct a
system of first order differential equations with the material
coordinate s0 as variable,
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All functions occurring on the right-hand side of the system
must be expressed in terms of the basic functions r, z, ψ, τs via
the previously mentioned geometric relations and definitions of
stretches and tensions. The boundary conditions are obvious
from the geometry of the capsule, r(0) = z(0) = ψ(0) = 0 and
r(L0) = a/2, where a is the inner diameter of the capillary.
Finally, some limits for s0 → 0 must be evaluated analytically
using L’Hôspital’s rule to start the integration. For the
nondimensionalization, we choose the capillary diameter a as
the length unit and the interfacial tension γ of the initial shape
as tension unit.

Extending the Model to Wrinkled Shapes
Now we want to calculate wrinkled configurations (with wave
vector along the hoop direction). Configurations of this kind
arise because ideal membranes without bending resistance
cannot support negative tensions. They are not exactly
axisymmetric, but can be approximated by an axisymmetric
pseudo-surface in the wrinkled region. The shape (r(̅s0), z(̅s0))
of the pseudosurface is obtained by requiring τϕ = 0 in areas
where the original model would yield τϕ < 0.19

According to Hooke’s law (eq 2), the wrinkling condition τϕ
< 0 is equivalent to

λ γ
ν

λ ν λ< −
−

− −ϕ Y
1

1
( 1)2D

2

2D
s 2D s

(12)

At the point where λϕ falls below this threshold during the
numeric integration of eq 11, we switch to a modified system of
shape equations to continue the integration. This system
describes the pseudosurface and is mainly determined by
setting τϕ = 0 on the wrinkling domain, that is

λ γ
ν

λ ν λ= −
−

− −ϕ Y
1

1
( 1)2D

2

2D
s 2D s

(13)

Note that λϕ is the hoop stretch of the real, wrinkled midsurface
and not to be confused with the stretch λϕ̅ = r/̅r0 of the
pseudosurface (all quantities referring to the pseudosurface are
indicated with an overbar).
In order to eliminate the hoop stretch of the real midsurface

from our system of equations, we insert this expression (eq 13)
into the constitutive relation (eq 2) for the meridional tension,

τ
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λ
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λ γ= − − +
ϕ

⎡
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1

( 1)s 2D s
2D
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However, this tension is not suitable for considering the force
balance since it is measured per unit length of the wrinkled,
non-axisymmetric midsurface. In order to adopt the simple
force balance (eq 3) for the pseudosurface, we have to measure
the tension per unit length of the pseudosurface, τs̅ = τsλϕ/λϕ̅,
resulting in

τ
λ

λ ν γ γ
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2
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(15)

With this constitutive equation for τs̅ and τϕ̅ = 0 and all
geometric relations adopted to the pseudosurface, the modified
shape equations for the wrinkled part are established.
Numerical Integration with Automatic Switching between
the Shape Equations in Wrinkled Regions
The shape equations are integrated numerically using a
shooting method with τs(0) as the free shooting parameter,
which is adjusted until the boundary condition r(L0) = a/2 at
the far end is satisfied.
The integration starts at the apex, using the usual shape eqs

11. In each integration step, the wrinkling condition (eq 12) is
checked. When λϕ falls below this threshold, at s0 = sA, the
integration is stopped. From this point on, the wrinkled shape
equations are integrated, using continuity conditions for all
functions as starting conditions. The integration goes on until
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the point s0 = sB, where the wrinkling condition is not met any
more, that is, where

γ
ν

λ ν λ̅ > −
−

− −r
r Y

1
1

( 1)
0

2D
2

2D
s 2D s

(16)

Then we switch back to the original shape eqs 11, again using
continuity conditions for all functions. This last part should run
up to the end s0 = L0, where the boundary deviation r(L0) − a/
2 can be calculated. The initial guess of τs(0) at the very
beginning of the integration is then adjusted, and after some
iterations the boundary deviation should become close to zero.
The wrinkle length Lw, necessary for the wrinkling analysis, can
be obtained as Lw = sB − sA.
In some cases, especially for high values of Y2D, a simple

shooting method will fail to converge. It turned out that these
cases are reliably handled by a multiple shooting method.37

■ APPENDIX II: WAVELENGTH OF THE WRINKLES
We investigate the wrinkling of a surface that is curved in two
directions (see Figure 2b) with two different average curvatures
κs = 1/Rs and κϕ = 1/Rϕ which are constant within the
wrinkling region. The region is parametrized by the arc lengths
s and t = ϕRϕ. Upon wrinkling, the normal displacement of the
surface leads to stretching in both directions, and to bending
predominantly in the t-direction because the wavelength Λ in
the t-direction is much smaller than that in the s-direction,
where we assume only one half sine period. By balancing these
main contributions to the deformation energy, we can
determine the wrinkling wavelength and critical compressive
stress.
The length change of a curved fibre which is displaced

sinusoidally in normal direction can be calculated from a
parametrization

= +
⎛
⎝⎜

⎞
⎠⎟s R C ks

s R

s R
r( ) [ sin ]

cos /

sin / (17)

up to quadratic order in the wrinkle amplitude C as
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2

cos ( ).2 2 2 3
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For the stretching energy in the meridional direction, we
assume that the wrinkles have length Lw and hence wave vector
k = π/Lw in the s-direction. The amplitude of the wrinkles
depends on the position along the circumferential direction
according to C(t) = C0 sin 2πt/Λ, and we take R = Rs in eq 18
to obtain the strain

ε π π π= +s t
C t

R
s

L
C t
L
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2
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s w

2 2

w
2
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w (19)

Upon wrinkling, this strain has to work against the tension τs,
resulting in a deformation energy

∫ τ ε π τ= = ϕW s t C R Ld d /4s s s
3

0
2

s w (20)

where the tension τs was assumed to be constant on the whole
integration domain s ∈ [0, Lw] and t ∈ [0, 2πRϕ) and the t-
range is a multiple of Λ so that the t integration is performed
over full sine periods.

The stretch energy in circumferential direction can be
calculated analogously, but with wavevector k = 2π/Λ, R = Rϕ,
and amplitude C(s) = C0 sin(πs/Lw) used in eq 18, and reads

∫ τ ε π τ= = Λϕ ϕ ϕ ϕ ϕW s t C L Rd d /3
0

2
w

2
(21)

Since τϕ < 0, this contribution is negative; that is, it is the
energy gain which drives the wrinkling.
The bending is strongest in ϕ-direction, and its energy cost

depends on the curvature change of a circumferential fiber. For
a curve given in polar coordinates, r(ϕ) = Rϕ + C sin 2πϕRϕ/Λ,
the curvature can be approximated to first order in the
amplitude C as

κ
ϕ

ϕ
ϕ

≈ − ″
ϕ r

r
r

1
( )

( )
( )2 (22)

π π≈ + − +
Λ Λϕ ϕ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R

C
R

t1 1 4
sin

2
2

2

2
(23)

Considering that the wrinkle amplitude depends on the
position along the meridional direction via C(s) = C0 sin πs/
Lw, the bending energy reads

∫ κ= −ϕ
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For the wrinkled state to become preferable to the
unwrinkled state, the total deformation energy Ws + Wϕ +
WB must be negative,
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This condition is equivalent to eq 6 in the main text, repeated
here for convenience:
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The wrinkling will first occur with a wavelength that renders
|τϕ(Λ)| minimal, which is

π
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Solving this equation for EB yields

τ
π π

=
Λ

− Λ ϕ
E

L R16 (1 /16 )B
s

4

2
w

2 4 4 4
(29)

which can be used to determine the bending modulus from
measurements of the wrinkle wavelength.
If the wrinkle wavelength is much smaller than the radius of

curvature, Λ ≪ Rϕ, the term 1/Rϕ
2 in eq 27 can be neglected

and the resulting critical wavelength is exactly the result of
Cerda and Mahadevan,17
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Note that the small ratio Λ/Rϕ enters the formula for EB (eq
29) in the fourth power, so that the influence of the initial
curvature of the membrane has only little influence on the
wavelength analysis, and can therefore be neglected.
For the shape equations in the wrinkled region, this

compressive circumferential stress is set to zero. That can be
justified by considering its order of magnitude: The
compressive stress for the critical wavelength reads (in the
limit Λ ≪ Rϕ, for simplicity)

τ τ
π τ

= Λ = −ϕ ϕ
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4
,c c

2
B s

w
2

(31)

Estimating EB ∼ E2DH0
2 by the relation from classical shell

theory and τs ∼ γ leads to a dimensionless parameter

τ
γ γ

| |
∼ϕ E H

L
,c 2D 0

w (32)

Whereas the membrane thickness H0 is of the order of micro-
to nanometers, the wrinkle length is around 1 mm. Thus, the
nondimensionalized critical compression is only of the order
10−6−10−3.
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