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Abstract
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid
interfaces remains surprisingly poorly understood for a relatively simple physical chemistry
system. By measuring the pair correlation function g(r) for different densities of polystyrene
particles at the decane–water interface, and using a powerful predictor–corrector inversion
scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and
these reproduce the experimental g(r) in forward simulations, so are self consistent. While at
low densities these potentials agree with published dipole–dipole repulsion, measured by
various methods, an apparent density dependence and long range attraction are obtained when
the density is higher. This condition is thus explored in an alternative fashion, measuring the
local mobility of colloids when confined by their neighbors. This method of extracting
interaction potentials gives results that are consistent with dipolar repulsion throughout the
concentration range, with the same magnitude as in the dilute limit. We are unable to rule out
the density dependence based on the experimental accuracy of our data, but we show that
incomplete equilibration of the experimental system, which would be possible despite long
waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted
potentials. We conclude that to within the precision of these measurements, the dilute pair
potential remains valid at high density in this system.

Keywords: colloids at interfaces, two dimensional, liquid interfaces, electrostatic interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

Charged colloidal particles confined to an oil–water interface
have attracted significant attention since Pieranski showed that
they exhibit strong two-dimensional confinement and long
range electrostatic repulsion [1]. Particles are so effective at

stabilizing fluid interfaces [2] that they prevent [3] or tune [4]
coalescence in emulsions. Polystyrene and silica micron-sized
spheres have been often studied, and are the typical model
systems. They can be deposited on the interface between water
and an alkane, where they exhibit a repulsive interaction that is
orders of magnitude stronger than, and qualitatively different
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from, the interparticle potential that those same particles have
in the bulk aqueous phase. In the bulk, the interaction is always
sub-micron ranged, and fairly well described by the DLVO
form [5]. In stark contrast, the repulsion energy between
particles on water/oil interfaces can be greater than thermal
energy at distances of tens of micrometers.

The puzzle of particle interaction on surfaces has been the
object of extensive experimental and theoretical work: optical
tweezers measurements of the pair interaction potential have
shown clear dipolar repulsion [6] in dilute conditions, and
have highlighted many-body effects, appearing at very close
range in the formation of small particle clusters, attributed
to capillarity [7, 8]. On the theoretical side, interparticle
interaction has been estimated with increasingly sophisticated
arguments: the linearized Poisson–Boltzmann theory, for two
charged particles near an interface between phases with
different dielectric constants, was solved in [9, 10]; non-linear
effects were addressed by Oettel and Dietrich [11]. Other
subtle effects such as possible charges on the oil side [12]
and finite ion size have also been considered [7]. All these
potentials are repulsive, of approximately dipole–dipole form,
and efforts have been directed at understanding the amplitude
of this interaction.

A few experiments in the literature have hinted at more
complex shapes of the potential, including stable long range
clusters [13], and long range (but shallow) minima [14].
Various experiments are discussed in [15] where several
sources of interaction are also overviewed. Short ranged
minima in the pair potential of interfacial particles have also
been reported, and are easier to account for: in optical trap
experiments [16] an attraction range of around 4 or 5 µm
was seen, and attributed to capillarity, while the presence
of a deep (�kBT ) minimum was reported in [17] based
on AFM measurements, and attributed to anisotropy in the
charge distribution on the colloid surface giving rise to in-plane
dipoles (this interpretation was then criticized in [18]). In these
last two reports the range of attraction is just a few microns
which, while still remarkable with respect to dispersion forces
and generally DLVO theory, is much smaller than the tens
of micrometers reported in [13, 14]. Large particles (over
∼50 µm for typical materials) can individually indent the
surface [19], or impose undulations [20, 21], giving rise to
long-range interaction, but these processes are not expected for
micron-sized colloids. Small colloids might still interact long
range, via undulations coming from a pinned rough contact
line [15]. One should also consider that most experimental
techniques one can use on colloidal scale particles are only able
(either intrinsically or through averaging of pairs at random
orientation) to measure the radially averaged pair interaction,
and this can hide the details of an underlying anisotropic
interaction.

Our aim in this work is to explore the interaction potential
of small particles, beyond the dilute regime, and verify if the
pair potential measured in the dilute phase still holds with
increasing density. While the experiments appear at first as
relatively straightforward, obtaining reliable potentials in the
concentrated regime is difficult, and indeed we present two
methods of doing this. We discuss why measuring the potential

from particle fluctuations around their mean position is a better
way of approaching the experimental data in the dense regime,
and we show that the results of this method agree with the
dilute limit pair potential.

2. Materials and methods

2.1. Chemicals

The oil–water interface has to be very clean; following previous
protocols, we worked with n-decane (Across Organics,
99+%) and ultrapure water (Elga) of resistivity >18 M�cm.
Following standard protocol, the decane was cleaned by
twice passing through an aluminium oxide powder column,
as in [22–24], to remove polar components, followed by
distillation.

The particles studied are surfactant-free, negatively
charged (sulphate surface groups) polystyrene (PS) spherical
particles (radius r = 1 µm) from Invitrogen Molecular Probes,
supplied as aqueous suspension (solid%: 3.1). These particles
are re-suspended in ultrapure Elga water, then on the day
of experiments they are diluted between 50 and 500 times
in water, and further mixed with isopropanol to a ratio 3:2
water:isopropanol. Isopropanol, used as-received, serves
to promote the spreading of particles at the interface, as
in [25], and dissolves in the aqueous phase without practically
changing the interfacial tension (the volume of the isopropanol
added is about 0.1% of the total volume of the aqueous phase).

2.2. Assembling the particle monolayer

PS particle monolayers at the decane-water interface were
prepared in a glass-bottom imaging petri dish (50 mm diameter,
MatTek Corporation), for observation with an inverted
microscope. The aqueous subphase was poured first (to a
thickness ∼5 mm), then the decane layer (2 or 3 mm thickness)
was carefully deposited onto the water phase. The particles in
the isopropanol-water spreading solution were added to the
interface by dropping small drops (≈1 µl) from a Hamilton
micro-syringe, into the oil phase about 1 mm above the
interface. Finally the petri-dish was covered5.

The three-phase fluid/particle contact angle depends on
the spreading and interface conditions [26] and is very difficult
to probe directly in situ, and different techniques have been
used to estimate this parameter [27]. In conditions close to
this work, optical observations [12] or interferometry [28]
were possible on larger spheres, whereas on micrometer scale
spheres at decane-water (or aqueous phase) interface there is
data from a gel trapping technique [29] that measured 111◦±4◦

and 101◦ ± 3◦, freeze-fracture measuring 85◦ ± 5.2◦, and gel
trapping combined with AFM that gives 122◦ ± 4◦ [30]. All

5 Despite the enclosure, the absence of vibrations and the long equilibration
times (room T equilibration times of up to 12 h, and at least 1 h, were allowed
before recording) there is invariably drift on the surface. This is well known in
this type of experiment, and very difficult to remove due to the volatility of the
oil phase; it brings some limitations, e.g. on the longest time each particle can
be observed, but overall it is useful in that independent configurations of the
system can be observed without moving the stage (which would itself perturb
the interface).
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Figure 1. The particle monolayer is studied by optical microscopy over a range of coverage, illustrated by the representative images (scale
bars 100 µm). The pair correlation functions g(r) show clearly the transition from a dilute regime to a more structured phase in which a
peak develops in g(r), with g(r) > 1 for some r . Notice how the positions of the first peaks, traced by the dashed line, gradually shift
towards smaller values, indicating that the average interparticle distance decreases with increasing surface density.

these values point to the PS latex spheres sitting approximately
half way at the decane water interface.

Other work [6, 8] has shown that the stability and structure
of these interfacial systems is almost independent on the ionic
strength in the subphase.

2.3. Imaging

A Nikon Eclipse microscope, with a 10× dry objective (Plan
Apo, NA = 0.45) was used in brightfield transmission
mode. Images were recorded on either of two AVT cameras:
Pike F-100B (CCD) or Marlin 131B (CMOS). Pixel image
size was, respectively, 0.714 and 0.667 µm. Frame rate
varied depending on the region of interest captured, in the
range between 11 and 60 fps. In this configuration, focusing
appropriately, colloidal particles appear as dark dots in a
brighter background; contrast is stretched to highlight the
particles in figure 1. Using image analysis software developed
in house for correlation filtering, sub-pixel resolution of
particle positions [31], the position of each particle is obtained,
from which the pair correlation function g(r) is calculated for
each frame. Particle trajectories are then obtained following
standard methods [32]. Around 4000 frames are recorded on
each experiment.

2.4. Inversion of pair correlation functions

One method for extracting pair potentials U(r) in colloidal
monolayers is to invert their structural data, such as the
pair correlation function g(r) and the structure factor S(q).
Such inversions are based on integral equation theory and are
therefore only valid if the colloidal monolayer is in the fluid
phase. Note that the interaction potentials obtained via this
route are effective pair potentials which may involve three-body
and higher-body contributions, especially at higher colloidal
densities [33–35]. Specifically, we use a hard-disk predictor-
corrector (HDPC) method to carry out the inversion [36], where
the bridge correlation function is approximated by a hard disk
reference system and solved iteratively. Such a method has
been shown to be much more accurate compared to standard
hypernetted chain closure (HNC) or Percus–Yevick closure
(PY) based inversion schemes whilst being computationally
inexpensive and robust with respect to experimentally realistic
levels of noise in the input g(r) data [36, 37]. We use both
the g(r) and S(q) as the input data for the HDPC method
in order to avoid numerical errors that are often encountered
when performing numerical Fourier transforms [38, 39]. The
input g(r) and S(q) curves are calculated directly from particle
coordinates obtained from experimental micrographs and are
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Figure 2. The colloid particle layer is studied in dilute and solid phases, as characterised by two measures. (a) The height of the g(r) peak
at r = a; (b) the mean value of angular order ψ6, averaged over all particles.

averaged over multiple snapshots. In order to check that
the inverted potentials are self-consistent with the input g(r),
we perform forward Monte Carlo simulations of the inverted
potentials to see if they reproduce the input g(r).

3. Results

3.1. Structure and inversions

Colloidal particles at interfaces are strongly confined to the
plane, and can arrange into states of differing order, depending
on the density of particles, measured in terms of the number
density ϕ = N/A. At very low density, particles are in a
disordered ‘gas’ phase; this can be seen in the pair correlation
g(r) data, which tend to unity smoothly from below in figure 1.
Increasing density, at around the density ϕ � 5 × 10−4 µm−2

(i.e. a = 48 µm assuming already a hexagonal lattice of
spacing a), a peak develops in the g(r), indicating the onset
of some translational order, as shown in figure 2(a). From the
density of 4 × 10−4 µm−2, the average inter-particle distance
(measured as the position of the g(r) peak) scales inversely
with the square root of density, and the proportionality factor
is (2/

√
(3))0.5 as expected for a hexagonal structure. From

around the same density, the angular order parameter ψ6

also becomes finite, as shown in figure 2(b), identifying the
crystallisation concentration to be ϕc ≈ 2 × 10−3 µm−2 (i.e.
a ≈ 24 µm).

For densities below the the crystallization density ϕc, the
monolayer exists in the fluid phase and we can therefore obtain
the pair potential between colloids U(r) by inverting the pair
correlation function g(r). In the ultra-dilute regime, the pair
potential can be approximated by the potential of mean force
and can therefore be calculated from

g (r) = e−U(r)/kBT . (1)

For low density colloidal samples (ϕ = 2×10−4 µm−2), fitting
the pair interaction potential obtained from equation (1) to
the form U (r) = kBT A r−α gives α = 2.94, confirming

the dipolar pair interaction potential between the particles for
low density. Fixing α = 3 gives A � 1.8 ± 0.8 × 105 µm3.
This value is in broad agreement with published results of
other groups, for example in [7] the dipolar repulsion was
measured both with optical tweezers (A = 1.3±0.5×105 µm3)
and through the pair correlation function (A = 0.5 ± 0.5 ×
105 µm3). The same group reported stronger repulsion in [8]
(A = 5.1 ± 2.4 × 105 µm3) and attributed that to stronger
charges on the particles; interactions measured on individual
pairs showed a fairly broad scatter, of one order of magnitude.
Earlier work with optical tweezers on slightly larger particles
had measured A � 4 × 105 µm3 [6].

Equation (1) is only valid in the ultra-dilute regime. In
order to obtain the interaction potential across the entire range
of colloidal densities, we use the HDPC inversion scheme [36]
introduced in section 2.4. Figure 3(b) shows in panels (ii)
and (iii) the interaction potentials U (r) /kBT obtained using
this method for two densities ϕ < ϕc. The inverted pair
potentials clearly show density-dependent behavior: while at
low densities (i), the pair interaction potential is a dipole–
dipole repulsion (analysis of equation (1)), at higher densities
a minimum develops (as also detected via similar methods
in [40]), becoming deeper and shifting to smaller distances as
the density increases.

We will discuss this apparent density dependence in just a
moment. However, we first seek to parameterise these inverted
pair potential using a convenient phenomenological form; this
will be very helpful for our subsequent theoretical analyses.
For the lowest density samples where the pair potential is
dipolar, we use the simple parametrisation

U(r)

kBT
= A

r3
(2)

while for the higher density samples where the pair
potential develops a minimum, we use the more complicated
phenomenological parametrisation

U(r)

kBT
= A

r3
− B

r2
+

1

r2

α

exp
[
γ (r0 − r)

]
+ 1

. (3)
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Figure 3. (a) Comparison between radial distribution functions g(r) obtained from experimental micrographs of the colloidal monolayers
(•) and Monte Carlo (MC) simulations of the corresponding parameterised inverted potentials shown in (b) (lines) for three different number
densities: (i) ϕ = 2.2 × 10−4 µm−2, (ii) ϕ = 7.3 × 10−4 µm−2 and, (iii) ϕ = 1.8 × 10−3 µm−2. (b) In (i) potential obtained from the
potential of mean force (•), fitted with a dipolar repulsion. In (ii) and (iii), comparison between the pair potentials obtained from the HDPC
inversion of the experimental g(r) data shown in (a) (•), and the corresponding parametrisation of these inverted potentials using
equation (3) and table 1 (solid lines).

Table 1. Fitting parameters in equation (3) used to parameterise the inverted potentials of the colloidal monolayer at different densities.

Density/µm−2 A/µm3 B/µm2 α/µm2 γ /µm−1 r0/µm

7.3 × 10−4 3.1 ± 0.7 × 105 7 ± 2 × 103 5 ± 2 × 103 0.11 ± 0.03 77 ± 1
1.05 × 10−3 2.2 ± 0.1 × 105 6.7 ± 0.4 × 103 5.2 ± 0.4 × 103 0.11 ± 0.04 60 ± 4

1.8 × 10−3 3.27 ± 0.04 × 105 1.58 ± 0.03 × 104 1.08 ± 0.03 × 104 0.22 ± 0.02 39.4 ± 0.2
2.2 × 10−3 2.40 ± 0.01 × 105 1.20 ± 0.05 × 104 8.4 ± 0.8 × 104 0.29 ± 0.05 34.8 ± 0.8

where A, B, α, γ and r0 are fitting parameters. The first
term in equation (3) generates dipolar behaviour at small r ,
the second term produces a minimum in the potential and the
third term, which contains a Fermi–Dirac-like cut-off function,
ensures that the pair potential decays rapidly to zero at long
distances. The combination in equation (3) is to be thought of
as an empirical fit to the data, and our main purpose is to have
a convenient smooth function that works well enough fitting
the data that we can then use it in ‘forward’ simulations; the
terms, particularly the second and third term, are not intended
to model an underlying physical process.

In figure 3(b), we plot the parameterised potentials for
different densities (curves) and we see that they accurately
represent all the key features of the original inverted potentials
(•). The fitting procedure used to obtain these parameters
for the higher density samples was as follows. The small r

data was first fitted to the first two terms to obtain A and B.
The residuals were then fitted to the third term to obtain the
remaining parameters α, γ and r0. The fitting parameters for
the different densities studied are given in table 1. We note that
the values of A obtained from these higher density samples
are consistent with the value A determined from dilute sample
analysis and with previous measurements of the dipole strength
for this system.

In order to check the reliability of the inversion scheme,
we performed forward Monte Carlo simulations based on these
parameterised potentials. In figure 3(a), we compare the g(r)

calculated from these simulations (curves) with the original
input g(r) (•) for different densities and see that there is
excellent agreement between the two, thus confirming that the
inverted potentials are self-consistent with the input g(r) up to
the crystallization density.

We now turn our attention to the origin of the apparent
density dependent attractive well in our colloidal systems at
higher densities. One possible explanation for this behaviour
is that it could be a signature of many body effects. As
discussed earlier, the interaction potentials obtained via the
inversion of g(r) are effective pair potentials which may
involve three-body and higher-body contributions at higher
colloidal densities that lead to a density dependent attraction
in the pair potentials [33–35]. However, such an effect could
also arise as an artefact of the system becoming increasingly
non-ergodic on experimental timescales, as we approach
the crystallization point; the input g(r) might no longer
reflect equilibrium structure (see section 3.3). For such non-
ergodic systems, the pair potentials obtained via the inversion
of g(r) no longer accurately represent the underlying pair
potentials.

5
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A more accurate method for determining the pair potential
in the non-ergodic regime is to measure the mean squared
displacement (msd) of particles as a function of the average
spacing between particles. This is the subject of the next
section. As we shall see later, harmonic lattice theory
calculations of the msd based on a dipolar potential with
the same magnitude as in the dilute limit appear to yield
better agreement with the experimental data compared to
the density dependent pair potentials, suggesting that the
underlying interaction potential at high densities may in fact
be dipolar and density independent. However as the msd
calculations based on the density dependent pair potentials lie
within the error bounds of the dipolar repulsion fluctuations,
unfortunately on this very intriguing point, we do not feel
that the msd calculations allow us to categorically rule out
(or confirm) the presence of long range attraction.

3.2. Fluctuation dynamics

The dynamics of a colloidal particle can be characterized by
measuring the mean square displacement (msd) of the particle,
defined for each directional component as the time average:

�2 (τ ) = 〈(x(t + τ) − x(t))2〉t (4)

where x(t) is the x coordinate of the particle at time t . We shall
refer to the msd defined in equation (4) as the dynamic msd.
The dynamic msd characterizes the kind of motion exhibited by
the particle, allowing to distinguish between free (Brownian)
motion where �2 (τ ) = 2D0τ (where D0 is the diffusion
coefficient and τ the lag time), from restricted motion where
the square displacement grows sublinearly or even plateaus
at large τ for strong confinement. In general the features that
characterize the motility regimes depend strongly on the details
of the interaction, and on the density of the system. The
case of particles confined within a fixed harmonic potential
is particularly relevant, since it is a good approximation
to motions in local minima over short timescales, such as
the fluctuations around the equilibrium lattice positions in
colloidal crystals. An expression for the dynamic msd for such
a system was derived by Pusey and van Megen [41], which is
given by

�2 (τ ) = 2〈�x2〉
[

1 − exp

(
− D0τ

〈�x2〉
)]

(5)

where 〈�x2〉 is the mean squaredx-displacement of the particle
from its equilibrium lattice position. We shall refer to 〈�x2〉
as the equilibrium msd. Equation (5) predicts that the dynamic
msd �2 (τ ) plateaus exponentially with time to twice the
equilibrium msd.

When considering particle fluctuations in a two-
dimensional colloidal crystal, an important technical
complication is the fact that the msd of a particle from its
equilibrium position diverges logarithmically with system size
in two dimensions [42]. However Bedanov et al [43] and later
Zheng and Earnshaw [44] showed that if instead, one defines
the msd of a particle with respect to a local reference frame
defined by its neighbours, we obtain a well defined quantity

for an infinite 2D system. Following Zheng and Earnshaw, we
therefore define the equilibrium msd to be the mean squared
x-displacement of the colloidal particle from the average x-
coordinate of its 6 nearest neighbours, i.e.

〈�x2〉 =
〈(

x0 − 1

6

6∑
l=1

xl

)2〉
(6)

where x0 and xl are the x coordinates of the particle and its l-th
nearest neighbour, respectively.

One further complication is that in real colloidal crystals
where there are defects, in addition to homogeneous collective
drift of particles, there are instances where localized movement
occurs along disclination lines [45, 46]. Therefore, when
calculating the equilibrium and dynamic msd, in addition to
using the local neighbors of each particle as a reference frame,
we also remove the small fraction of any outliers with high-
mobility.

Representative dynamic msd data as a function of density
is shown in figure 4(a): At low densities the mean square
displacement is linear with time, indicating a diffusive regime;
Increasing the density the particles are forced closer, and
become caged. The high density data shows a deviation from
the diffusive regime (which is still visible, at short lag times,
with the same D0), into a sub-diffusive regime. This deviation
happens at ever smaller lag times the greater the surface density.
At the highest density presented here, particles are in the sub-
diffusive regime already at the smallest lag times. A totally flat
plateau, as expected from equation (5), is not observed, most
likely because because the cage formed by the particle’s six
neighbors is itself fluctuating.

We can obtain D0 and 〈�x2〉 at each monolayer density by
fitting the dynamic msd to equation (5). Note that equation (5)
is only applicable to particle fluctuations in a colloidal crystal
for small lag times τ , when the particle is near the minima of the
confining potential which is well approximated by a harmonic
potential; at larger lag times, the particle explores regions far
from its equilibrium lattice position and begins to ‘feel’ the
anharmonic terms in the confining potential. We therefore fit
the dynamic msd at short τ (up to just after the deviation is
seen from simple diffusion) to equation (5), to obtain D0 and
〈�x2〉. Applying this procedure to colloidal monolayers across
the entire density range studied, we obtain an average value
for the diffusion coefficient D0 = 0.28±0.02 µm2 s−1, which
is close to D0 = 0.23 µm2 s−1 expected from the Stokes–
Einstein relation (having taken the viscosity as the average
of water and decane, the latter 0.000 92 Pa s at 20 ◦C). By
normalising the dynamic msd �2(τ ) and lag time τ using the
fitted values for D0 and 〈�x2〉, we can define rescaled msd and
time variables �∗2 = �2/〈�x2〉 and τ ∗ = D0τ/〈�x2〉 and
construct a master curve from the dynamic msd curves of the
different densities, as shown in figure 4(b). The collapse of the
data on the master curve is reasonable, with some deviations
at the plateau as already discussed earlier. Notwithstanding
these deviations, the caging effect is clearly visible at large τ .

The various measurements extracted so far can be brought
together in considering the mean displacements of particles
in their equilibrium positions, (〈�x2〉)0.5 versus the lattice

6
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Figure 4. The dynamic mean square displacement (msd) of the particles (evaluated in one dimension) depends on the density and becomes
sublinear. (a) Example for particles in a dilute (ϕ < 10−4 µm−2), intermediate (3 × 10−3 < ϕ < 10−2 µm−2) and highly concentrated
(10−2 < ϕ < 3 × 10−2 µm−2) conditions. The dashed lines are a linear dependence of the msd on lag time, fitted on this dilute condition
with D = 0.265 µm2 s−1, and shown here to highlight the deviation from linear diffusion at increasing lag time and concentration. (b) The
master curve is obtained by assuming that the caged particle motion is described by equation (5) up to the lag time where deviations from
linear are evident, and rescaling the time and msd variables. The rescaling factors, as described in the text, correspond physically to the
diffusion coefficient and the equilibrium msd.

spacing a. This is plotted in figure 5. The equilibrium msd is
sensitive to the underlying colloidal interaction, thus providing
an independent method for measuring colloidal interactions.
We first consider a simple model that assumes that particles
only interact with six nearest hexagonal neighbors which are
fixed in a plane, and that their interactions are described
by a dipole–dipole repulsion βU(r) = A/r3. A simple
geometrical argument based on balancing the thermal energy
with the energy required to displace a particle by �x relative
to the lattice position (i.e. equipartition) yields

〈�x2〉 � πa5

72A
= 4.36 × 10−2 a5

A
. (7)

We can rigorously include the interaction of the colloidal
particle with all other particles in the colloidal crystals (not
just its six nearest neighbours) as well as the fluctuations of
these particles into our calculation of the equilibrium msd by
using harmonic lattice theory [47, 48], see appendix A. For a
dipolar potential, harmonic lattice theory yields

〈�x2〉 = 5.31 × 10−2 a5

A
, (8)

i.e. the equilibrium msd has the same scaling with a and A as in
equation (7) but with a modified prefactor (about 20% higher).
Using the dipole interaction strength A ≈ 1.8 × 105 µm3

measured in the dilute regime in equation (8), in figure 5 we
compare the predictions of this model with the experimental
data for the equilibrium msd. Interestingly, this simple dipole
model describes well the msd, especially given that it is
a parameter-free fit to the data. In particular, it correctly
predicts the slope of 〈�x2〉 versus a curve, suggesting that

6 8 10 20 30 60
10
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10
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1

(〈
∆x

2
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0
.5

 (
µm

)

a (µm)

Figure 5. The average displacements from lattice equilibrium
positions are related to the interaction potential. The experimental
data (◦) is consistent both with the potential from the dilute regime
(equation (8), solid dark line A = 1.8 × 105 µm3, with the lower
and upper bounds, i.e. A = 1.0 × 105 and 2.6 × 105 µm3, dashed),
and also with the deviations calculated using harmonic lattice theory
using the density dependent potentials with the parameters in
table 1; these are plotted as solid line in the region where the
inversions are carried out, and as dashed line in the higher density
region where we extrapolate the inverted parameters. The repulsive
dipole arguably describes the experimental data better, and comes
from a simpler physics. The vertical line is at a = 24 µm which we
identify as the crystallisation point from the data of figure 3.
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the underlying colloidal interaction may in fact be dipolar and
constant in magnitude.

Next we consider the case where the colloids interact with
each other via the density dependent pair potentials given by
equation (3) and table 1. Specifically, we assume that the dipole
term is constant with magnitude given by A = 2.7 × 105 µm3

(i.e. the average value for A in table 1). For all the other
parameters, we assume that their density dependence has a
power law form Cϕm over the density range studied, with the
parameter values C, m determined by fitting to the parameter
values given in table 1. The results of this calculation are also
shown in figure 5 as the red line. Extrapolating the trends
beyond the window of densities in which the inversions were
possible, the red line remains within the error bounds of the
dipolar repulsion fluctuations. However, the experimental data
is arguably closer to the simple dipole calculation as there is
no evidence to suggest that the data exhibits the undulations
predicted by the density dependent potentials. Comparing both
theories, we conclude that the simple repulsive dipole potential
as measured in the dilute regime describes the experimental
msd data better than the density dependent potentials in
figure 3, though we are unable to robustly rule out the density
dependent potentials based on the experimental accuracy of
the data.

3.3. Issue of structure equilibration

As discussed at the end of section 3.1, one reason for the
emergence of the apparent attractive well in the inverted
potentials could be as an artefact of the system becoming
increasingly non-ergodic on experimental timescales as we
approach the crystallization point so that the input g(r) is
no longer the equilibrium g(r). In order to demonstrate
this quantitatively, in appendix B we have estimated the
escape time of a particle from the ‘cage’ formed by its six
nearest neighbours as a function of density. We find that
the escape time rises very steeply with density. We note in
particular that there is a huge increase in τescape going from
ϕ = 2.25 × 10−4 µm−2 to ϕ = 7.33 × 10−4 µm−2, the latter
being the density where we start to see a minima appearing in
the inverted pair potential.

In order to demonstrate that non-ergodicity in the input
g(r) can lead to spurious features in the inverted potential,
we performed two MC simulations for a colloidal monolayer
with system parameters in the range where we observe an
attractive well in the inverted potential: particle concentration
ϕ = 1.05 × 10−3 µm−2; particles interact with each other
through a purely repulsive dipolar interaction βU(r) = A/r3

with A = 1.8 × 105 µm3. In the first simulation, the
maximum trial step length was chosen such that acceptance
ratio was equal to the optimum value of 30%. The g(r) and
S(q) measurements from the simulations are calculated using
100 snapshots, ensuring that the system is well equilibrated
between snapshots. We refer to this simulation as the ergodic
simulation. In the second simulation, we keep all other
parameters the same as the first simulation, but reduce the
maximum trial step length by a factor of 10 and the number of
MC steps between snapshots to 1 MC step per particle, so that

Figure 6. Effective interaction potentials obtained from an HDPC
inversion of (a) ergodic (red points) and (b) non-ergodic (blue
points) Monte-Carlo (MC) simulations of particles interacting
through a dipolar potential βU(r) = A/r3 with A = 1.8 × 105 µm3

at a density of ϕ = 1.05 × 10−4 µm−2. The underlying dipole
potential is plotted as a black curve for comparison.

the simulation no longer explores phase space efficiently. We
refer to this simulation as the non-ergodic simulation. From
figure 6, we see that the inversion of the g(r) calculated from
the ergodic simulation (red points) accurately reproduces the
input dipolar interaction. In contrast, the inversion of g(r)

calculated from the non-ergodic simulation (blue points) shows
an attractive well, with a well depth similar to what is observed
in the experimental systems. These simulations demonstrate
that non-ergodicity can lead to spurious features in the inverted
potential that are not present in the underlying potential. Very
long-term imaging experiments (challenging for many reasons,
amongst which the need to prevent evaporation of both liquids
and avoid sample drift), looking for large scale equilibration
times and aging, might be carried out in future to test this
scenario.

4. Conclusions

Many physical mechanisms have been discussed and proposed
in the literature to describe the interaction of charged
particles confined to the two dimensional interface between
a water solution and a low dielectric constant oil. These
systems are both fundamentally interesting and relevant to
applications. Without entering into the specific physics of
these often complex models, we instead in this work focus
on exploring experimentally whether a density-dependent
interaction potential is required to explain the observed particle
order beyond the dilute limit. This is a simpler and well defined
question—and answering it would allow to discriminate
between classes of models. We have described a number of
subtle difficulties in answering even this simple question, and
we have shown the usefulness of extracting pair potentials both
from inversions and from the thermal fluctuation dynamics.
Our conclusion is that the experimental data throughout the
density regime is well described by the density independent,
and simple, repulsive dipole form well known previously in
dilute conditions.
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Appendix A. Calculating the equilibrium MSD using
harmonic lattice theory

In this appendix, we calculate the 1D equilibrium msd defined
in equation (6) using Harmonic lattice theory [48]. To do this,
we first calculate the 2D equilibrium msd defined by

〈�r2〉 = 〈�x2〉 + 〈�y2〉 =
〈(

r0 − 1

6

6∑
l=1

rl

)2〉
(A1)

where rl is the 2D vector position of the l-th particle (l = 0
refers to the central colloidal particle, and l = 1 → 6 refers to
the particle’s nearest neighbours) and 〈�x2〉, 〈�y2〉 are the 1D
msd along the x and y Cartesian coordinate axes, respectively.
Since the x and y directions are not defined with respect
to specific crystal orientations in the experiments, we have
〈�x2〉 = 〈�y2〉 so that the 1D msd can be readily calculated
from the 2D msd using

〈�x2〉 = 〈�r2〉/2. (A2)

In order to calculate the 2D msd, it is convenient to decompose
the vector positions of the colloidal particles into

rl = Rl + u (Rl) (A3)

where Rl = n1a1 + n2a2 is the equilibrium vector position of
the l-th particle (i.e. Bravais lattice site of the l-th particle) and
u (Rl) is the displacement vector of the l-th particle from its

equilibrium position. Here a1 = a(1, 0), a2 = a
(

1/2,
√

3/2
)

are the basis vectors and a is the lattice constant of the
hexagonal crystal. It is also useful to define the reciprocal

lattice vectors b1 = 2π
(

1, −1/
√

3
)

, b1 = 2π
(

0, 2/
√

3
)

which are defined such that ai · bj = 2πδij where δij is the
Kronecker delta. Inserting equation (A3) into equation (A1)
and simplifying, the equilibrium 2D msd can be written in
terms of the particle displacement vectors as

〈�r2〉 = 1

36

〈(
6∑

l=1

u (R0) − u (Rl)

)2〉
. (A4)

Next, we express the displacement vector as a Fourier series

uj (R) = 1

V

∑
q

uj (q)eiq·R (A5)

where j = 1, 2 refers to the x and y Cartesian components
respectively of the displacement vector, V is the total area of
the system, uj (q) is the Fourier transform of uj (R) and the
sum runs over all allowed wavevectors q = αb1 + βb2. In the
limit of infinite system size, all wavevectors within a reciprocal

lattice unit cell are allowed, i.e. 0 � α, β � 1 [47]. Inserting
equation (A5) into equation (A4) and setting R0 = 0 without
loss of generality, we obtain

〈�r2〉 = 1

36V 2

∑
j=1,2

∑
q,q′

〈uj (q)uj (q′)〉

×
∑
l,m

(
1 − eiq·Rl

) (
1 − eiq·Rm

)
. (A6)

We next invoke the equipartition theorem for the different
Fourier modes [49]

1

V
〈ui(q)uj (q′)〉 = kBT D−1

ij (q)δq,q′ (A7)

where D−1
ij (q) is the inverse of the Fourier space dynamical

matrix Dij (q) which is given by [47]

Dij (q) = − 2

v0

∑
R

Dij (R) sin2

(
1

2
q · R

)
(A8)

andDij (R) is the real space dynamical matrix which is given by

Dij (r) = −∂2U(r)
∂ri∂rj

. (A9)

In equation (A8), the sum runs over Bravais lattice sites
R = n1a1 + n2a2, i.e. over integer values of n1, n2 such that
n1, n2 � nmax, where nmax is the effective cut-off radius for the
sum. Because Dij (r) decays rapidly with r, a relatively small
value of nmax = 5 is sufficient to ensure good convergence.
Also v0 = √

3a2/2 is the area of the unit cell and it appears in
equation (A8) because we are performing Fourier transforms
of a function of a discrete variable, i.e. Dij (R) [49]. Inserting
equation (A7) into equation (A6) and simplifying, we find

〈�r2〉 = kBT

V

∑
q

[
D−1

xx (q) + D−1
yy (q)

]
f (α, β) (A10)

where

f (α, β) = 1

36

∑
l

∑
m

(
1 − eiq·Rl

) (
1 − e−iq·Rm

)

= 1

9
(cos 2πα + cos 2πβ + cos 2π(α − β) − 3)2 .

(A11)

Finally, in the limit of infinite system size, we can replace the
sum over q in equation (A10) by an integral over wavevectors
q which lie within a unit cell of the reciprocal lattice [49].
Substituting equation (A10) into equation (A2) we obtain

〈�x2〉 = kBT

2

∫ ∫
d2q

(2π)2

[
D−1

xx (q) + D−1
yy (q)

]
f (α, β)

= kBT

v0

1∫
0

1∫
0

dαdβ
[
D−1

xx (α, β) + D−1
yy (α, β)

]
f (α, β).

(A12)
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Inserting an interaction potential U(r) into equations (A8),
(A9) and (A12) allows us to calculate the equilibrium 1D msd
as a function of density or lattice spacing a.

For dipole potentials given by equation (2) (or more
generally power law potentials with an arbitrary exponent),
it is possible to explicitly factor out the dependence of the
equilibrium msd on the dipole strength A and lattice constant a
(or equivalently density ϕ) by writing the real space dynamical
matrix as

Dij (r) = AkBT

a5
D̃ij (r/a) (A13)

where D̃ij (r/a) is the dimensionless real space dynamical
matric that is independent of A and a. Substituting
equation (A13) into equations (A8) and (A12), we find

〈�x2〉 =
{

1

2v0

∫ 1

0

∫ 1

0
dαdβ

[
D̃−1

xx (α, β) + D̃−1
yy (α, β)

]

×f (α, β)

}
a5

A
(A14)

where D̃ij (α, β) is the Fourier transform of the dimensionless
real space dynamical matrix (obtained by replacing Dij (R)

with D̃ij (R) in equation (A8)). The term inside the curly
brackets is independent of A and a and can be explicitly
evaluated, yielding equation (8).

Appendix B. Escape times of colloids in a colloidal
monolayer

In this appendix, we estimate the escape time of a colloid from
the cage formed by its nearest neighbours as a function of the
monolayer density. To simplify our calculation, we assume
that the colloidal monolayer is in a hexagonal crystal state
and and that the interaction between colloids has the dipolar
form given by equation (2), with A = 1.8 × 105 µm3. The
escape time of a colloid from the cage formed by its six nearest
neighbours can be estimated from

τescape = τ0eβ�U (B1)

where τ0 = a2/(4D0) is the escape time for a free particle and
�U is the energy barrier for the particle to escape from the
cage. We can explicitly factor out the density dependence of
the energy barrier by writing

β�U = A

a3
�̃U (B2)

where �̃U is a dimensionless energy barrier that is independent
of monolayer density.

We have estimated �̃U in two different ways. Firstly, by
only accounting for the interaction of the colloid with its 6
nearest neighbours and assuming they are fixed in space, we
estimated �̃U by calculating the energy barrier for the lowest
energy ‘pass’ in the energy landscape. Secondly, we estimated
�̃U from the simulation results of Aveyard et al [50] which
takes into account a more realistic transitional state for the
escaping colloid (see figure 8 of that paper). Interestingly,
both approaches yield �̃U ≈ 10. Using �̃U ≈ 10 and

Table 2. Colloid escape times for colloidal monolayers of different
densities.

ϕ/µm−2 a/µm τescape/s

2.3 × 10−4 71.6 6.1 × 105

7.3 × 10−4 39.7 4.6 × 1015

1.05 × 10−3 33.0 4.5 × 1024

1.8 × 10−3 25.3 7.3 × 1050

2.2 × 10−3 15.5 7.8 × 1069

D0 = 0.28 µm2 s−1, the colloid escape time for different
monolayer densities are given in table 2.

From table 2, it is clear that the absolute numbers for
the escape time are unrealistically large, suggesting that the
value for �̃U that we have estimated from colloids in the
crystal phase is unrealistic for colloids in the fluid phase.
Notwithstanding this deficiency, the most interesting feature
about the results in table 1 is the fact that there is a very
strong dependence of τescape on density which is due to the
strong density dependence in the exponent of equation (B1).
We believe that this feature of the calculation is realistic and
supports our claim that colloidal monolayers rapidly become
non-ergodic as we increase density. We note in particular the
huge increase in τescape going from ϕ = 2.25 × 10−4 µm−2 to
ϕ = 7.33 × 10−4 µm−2, the latter being the density where we
start to see a minima appearing in the inverted pair potential.
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