
Hydrodynamically synchronized states in active colloidal arrays

Loı̈c Damet,a Giovanni M. Cicuta,b Jurij Kotar,a Marco Cosentino Lagomarsino,c and Pietro Cicuta∗a

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Colloidal particles moving in a low Reynolds number fluid interact via the induced velocity field, described to a good approxi-
mation by the Oseen tensor. We consider the collective dynamic states for a class of actively forced colloids, driven by harmonic
potentials via a non-linear switching rule that couples forces to configurations, establishing oscillations between prescribed po-
sitions. Experiment, simulations and theoretical arguments show that these states are determined by the equilibrium eigenmode
structure of the Oseen interaction matrix and thus by the system’s geometry. The stable dynamical state is predominantly formed
by the eigenmode with longest relaxation time. This has the surprising consequence that while 2 particles, or polygonal arrays of
4 or more colloids, synchronize with the nearest neighbors in anti-phase, 3 equally spaced colloids synchronize in-phase. Odd-
numbered arrangements with 5 or more particles sustain traveling waves. The emerging complex dynamical state can therefore be
predicted from the simple mean spatial configuration of the active colloids, or equivalently from an analysis of their fluctuations
near equilibrium.

1 Introduction

At low Reynolds number, when inertia is irrelevant, the mo-
tion of a fluid is described by Stokes’ equation, whose funda-
mental solution, the Oseen tensor, H(r) = (I+r̂r̂)/8πηr (where
I is the identity 3x3 matrix and η is the fluid viscosity) dictates
the velocity field of point-like objects applying a force on the
fluid, which decays as the inverse distance r. Hence the Oseen
tensor describes a long-range, and often dominating, interac-
tion in flowing colloidal systems. Force transduction through
the velocity field has key consequences in diverse biological
phenomena such as the motility of microorganisms1, circu-
lation in the brain2 and functioning of the ear3. In various
tissues, a macroscopic number of cilia display synchronized
dynamics, or so-called “metachronal waves”4. Nearby cilia
may beat in-phase or out of phase, and may be in a condition
where is it possible to readily switch between the two dynam-
ical states1.

One outstanding question is what determines the character
of the dynamical steady state. Recent progress in “hydrody-
namic synchronization” is reviewed in ref5; see ref6 for an
overview of low Reynolds number (Re) flows. Despite the
complexity of the biological cilia structure, and its driving
mechanisms, it is possible to study the issue of synchroniza-
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tion on much simpler systems, because in the far field limit
the hydrodynamic flows (and hence interaction) do not de-
pend on the detailed configuration of the driving object. In-
deed the beating filament can be “replaced” by a solid sphere,
driven in periodic fashion. In an attempt to model (both ex-
perimentally and theoretically) the physics of hydrodynamic
synchronization, two main ideas have emerged. The first is
to consider the coupling of two or more objects driven by a
constant force over closed two-dimensional differentiable or-
bits7. Within this cilia model, the phase of each “rotor” is
free, and there can be synchronization of different rotors un-
der certain conditions, recently studied very generally in ref8.
A different, one-dimensional model consists of a “geometric
switch”, and was proposed in ref9; here the force is discon-
tinuous, and this is not described within the formalism of ref8.
We previously investigated the geometric switch model for the
simple case of two active elements, showing the robustness of
synchronization in the presence of noise10. A linear chain of
geometric-switch oscillators was studied numerically, in the
absence of noise11, and shown to have different synchronized
states depending on the structure of the internal drive. How-
ever, no simple recipe is available to predict the synchronized
state.

In this work we show by experiment and simulations how
the non-equilibrium dynamical behavior of the geometric
switch model can be understood from the eigenmode structure
of the Oseen interaction tensor, and thus on the system geom-
etry, without the need of solving complicated dynamic equa-
tions. We consider systems of a small number of elements in
the presence of thermal noise: between three and five colloidal
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Fig. 1 Sketch of experimental configuration. Colloidal spheres
are trapped by a harmonic potential realised by an optical trap. For
each bean, the trap is centered at one of two positions: −λ/2 or
+λ/2. The choice of potential is dictated by the particle position; the
potential is switched when the bead arrives within ξ of the active
trap. Experiments and simulations are carried out varying the
number of particles N from N = 3 to N = 5 (and beyond,
numerically); the circle radius R is increased to maintain constant
the distance between bead centers d = 2R sin(π/N) = 8 µm. The
optical tweezers system performs image analysis on every frame to
determine particle positions, and thus implement the “geometric
switch” condition described in the text, at rates between 200 and 300
frames/s. Each colloidal particle in the system is effectively a phase
oscillator, undergoing a motion bound in amplitude but free in
period and phase. The oscillators are driven independently, and
coupled only by the flow field in the liquid.

particles are arranged on equally spaced average positions on
a circumference (larger systems are studied numerically), and
each one is driven in small tangential oscillations, with fixed
amplitude but free phase and period. The main result is that
the fundamental (longest lived) hydrodynamic mode (an easily
derivable quantity, in contrast to finding full solutions of the
system) dominates the collective motion in the driven steady
state. As a consequence, the steady state can be strikingly
different depending on the number of particles and their ar-
rangement.

This system is realized experimentally with optical traps,
with fast video feedback to impose the fixed amplitude driven
oscillation. The only interaction between the elements is
through the hydrodynamic flow arising from the colloid move-
ments. As a further consequence of hydrodynamic interaction,
there are correlations in the Brownian fluctuations of different

particles. The dynamics of systems where spheres are held
by fixed harmonic potentials on the vertices of arbitrary pla-
nar regular polygons has been solved exactly within Oseen’s
description of hydrodynamics12, giving a basis from which to
understand the active scenario.

2 Materials and Methods

2.1 Experimental System

Optical traps are used to confine colloidal beads within har-
monic potentials, the system hardware is described in greater
detail in refs10,13. In this work, a varying number of silica
beads of radius a = 1.5 µm (Bangslabs) are trapped from be-
low by a time-shared laser beam, focussed by a water immer-
sion objective (Zeiss, Achroplan IR 63x/0.90 W). A pair of
acousto-optical deflectors (AOD) allows the positioning of the
laser beam focus anywhere in one plane, with sub-nanometer
precision; time-sharing is at a rate ∼ 105 Hz, corresponding to
negligible diffusion of the beads in each laser cycle. The sol-
vent is a solution of glycerol (Fisher, Analysis Grade) in water
(Ultrapure grade, ELGA) 50% w/w, giving a nominal viscos-
ity of η = 6 mPa s at 20oC14. Experiments are performed in
a temperature controlled laboratory, T = 21oC. The trapping
plane is positioned (20 ± 1) µm above the flat bottom of the
sample, in a sample volume that is around 100 µm thick.

To realize the geometric switch condition, an active driving
of each colloid is implemented here, similarly to10, but for 3,
4 or 5 particles, driving the colloids on segments tangential to
the ring on which they are positioned on average, see Figure 1.
A boundary is set at a pre-defined particle position, a distance
ξ from the minimum of the currently active optical trap. The
trapped particle moves (on average) towards the trap minimum
and, when it crosses the boundary, the current trap is switched
off and the other trap, with its minimum a distance λ away, is
activated; the amplitude of oscillations is λ− 2ξ. In the exper-
iments this process is implemented via image analysis in the
computer giving particle positions on each camera frame, and
feedback is sent to the AOD for laser deflection (and as a con-
dition in the numerical simulations). Since the configuration is
analysed experimentally only at each frame, the correspond-
ing time interval should be considered as a feedback time (see
brief discussion in Appendix). Colloidal particles are always
being driven, never reaching the minimum of the active trap.

The optical trap potential is harmonic to a very good ap-
proximation, with stiffness κ in the range 1.0 to 2.6 pN/µm,
depending on the number of beads trapped (before each run,
κ is calibrated from the distribution of displacements in static
traps, with precision ±0.2 pN/µm). The relaxation time τ0 =

γ/κ (where γ is the Stokesian drag γ = 6πηa) is of the order
of 0.1s. The experiments have been performed with λ = 2 µm,
ξ = 0.31 µm and d = 8 µm. The period of an isolated oscillator
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Fig. 2 Regular arrays of actively driven colloidal particles synchronize into steady collective dynamical states. Images showing one
snapshot of the system, where the particles are highlighted in red. Particle positions after 20 frames (green) and 40 frames (blue) are
overlayed. Videos are available as SM, and show clearly the N = 3 system performing in-phase oscillations, the N = 4 with neighbors in
anti-phase, and N = 5 with phase locking between neighbors.

is T0 = 2τ0 log[(λ − ξ)/ξ] (in the absence of noise)10, which
under the experimental conditions is about 0.3 s. With image
acquisition through an AVT Marlin F-131B CMOS camera,
operating at shutter aperture time of 1.5 ms, and frame rate
between 200 and 300 fps (depending on the ring size, hence
captured region of interest) there are multiple frames captured
within the relevant timescales τ0,T0. Video is acquired for
over 4 minutes, i.e. over 48000 frames. There is typically a
transient lasting around a few periods before the systems reach
the steady state discussed below. In addition to the trap drive,
colloids are affected by stochastic thermal fluctuations and by
the net flow induced by all other moving particles. Experi-
ments are performed increasing the number of beads N, main-
taining constant the arc-distance between neighboring beads
as shown in Fig 2.

2.2 Numerical Methods

Brownian Dynamics (BD) simulations, in which the hydrody-
namic interaction is calculated through Oseen’s tensor15, are
performed to provide a comparison to the experimental data.
The algorithm simply solves the equation of motion of the sys-
tem, with a constant timesteps of 10−5s. The code has been
developed in-house, written in C, and can readily simulate the
behavior of systems much larger (e.g. N ∼ 100) than in the
currently possible experiments. The same code was used by
ourselves in previous work10? . The assumptions for this treat-
ment16 are a low Re, particles far relative to their diameter, and
a steady flow, all of which are satisfied in the physical context.

The “geometric switch” condition is implemented exactly
as in the experiment. The “feedback time”, i.e. the time inter-
val over which a configuration is tested to actuate the switch in

the position of the potential (which is fixed in the experiments
by the acquisition frame rate) can be varied; its effect has been
tested previously10 and is reviewed in the appendix.

3 Theoretical background

The steady state dynamics of the geometric switch model can
be obtained in principle by solving the dynamic system of
equations17

F(t)i −
n∑

j=1

(H−1)i, j
dr j(t)

dt
+ fi(t) = 0,

ri(t) · t(ri) = 0, i = 1, 2, · · · ,N (1)

where the force F(t)i acting on the ith-particle is harmonic and
tangent to the ring, and t(ri) is a versor tangent to the ring,
at the position ri, with anti-clockwise direction. In Eq (1),
the second equation imposes that a constraint for each bead to
move only along its fixed tangential direction, which is a good
approximation for displacements in the physical system due to
the active driving of each bead along its tangent direction. The
coupling forces scale as a/d. As in other work12,18,19, Eq (1),
is describing how the motion of each jth-particle originates via
the Oseen tensor a force on the ith-particle that depends on the
whole configuration. The Oseen tensor is given by16

γHαβi j = δi jδαβ + (1 − δi j)
3a
4ri j

δαβ + rαi jr
β
i j

r2
i j

 ,
α and β = 1, 2. (2)

This can be represented as an 2N × 2N matrix, or equivalently
as an N×N matrix of 2×2 elements. The distances ri j between
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Fig. 3 Experiments show collective dynamics: the steady state is
strongly affected by system geometry. Shown here are the bead
displacements x(t) relative to the mean position, and the projections
of the configuration in the steady state onto the hydrodynamic
modes of the system. Systems of N = 3, 4, 5 are considered, in
panels (a,b), (c,d), (e,f) respectively. Large panels show a
one-second window of data versus time, whilst the small panels
show the mean of the same quantities but plotted versus the position
of bead one. The color code red, green, blue, cyan, magenta
identifies different beads, anticlockwise. The system dynamics can
be globally in-phase for N = 3 (a), or nearest neighbors in
anti-phase N = 4 (c), or a propagating wave for N = 5 (e). This is
rationalized from the character of the dominant equilibrium modes.
In (b), (d), (f) the projections Pm(t), m = 1, 2, ...N, onto the
eigenvectors of the coupling matrix show an important result: the
mode with longest relaxation time (red) dominates the displacement
configuration in the non-equilibrium steady state. For N = 5, as for
larger odd-numbered systems, there are two degenerate modes (red,
green), which are seen to alternate in amplitude. The color code
indicates decreasing relaxation time: red, green, blue, cyan,
magenta. Small panels give the average trajectories over many
cycles, plotted as a function of the position of bead-one.
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Fig. 4 Brownian Dynamics simulations with Oseen coupling
match the experimental results. Bead trajectories and projections
onto modes for systems of N = 3, 4, 5 beads. See the caption of
Figure 3 for a description of the colors. These displacements
obtained computationally show that the description of
hydrodynamic coupling via Oseen’s tensor is valid, and confirm that
the non-equilibrium dynamics is dominated by the equilibrium
normal mode with the longest relaxation time. Small panels give the
time average behavior, by plotting bead positions and model
projections as a function of the position of bead-one.

the ith- and jth-particle are in principle time dependent, but
can be approximated by their mean values provided that the
driving amplitude A is small relative to the mean separation,
i.e. A = λ − 2ξ ≪ d. This makes the Oseen tensor in this
work independent of time, and just a function of the geometric
arrangement of active oscillators.

Eq (1) has a fixed structure (the set of Fi drive towards a
fixed set of positions) in between any bead switch, with the
geometric switch rule acting on each bead

F(t)i = −κ
[
xi(t) ∓

λ

2

]
t
(

2π(i − 1)
N

)
, (3)
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where xi is the displacement along the tangent of the ith-bead,
one of ± λ2 is the coordinate of the active well minimum, see
fig.1.

The stochastic force fi(t) in Eq. (1) represents the thermal
noise on the ith-particle, and it can be assumed that ⟨fi(t)⟩ = 0,
⟨fi(t1)f j(t2)⟩ = 2kBT (H−1)i j δ(t1 − t2)18.

Eq. (1) changes structure at every switch, making its so-
lution difficult. In a recent paper17 we have shown how to
build analytical solutions in the absence of noise, for symmet-
ric configurations like the ones explored here. The results of
the present work show that remarkably the main properties of
the steady state solutions can be predicted quite simply from
the equilibrium coupling tensor, and hence how they depend
on N and the geometry. In the discussion section we outline
why this is the case.

4 Results

Figure 3 shows the particle positions versus time, for a
1 second interval at steady state during an experiment (data
is shown after 120 s have elapsed from the beginning of the
driven motion, much longer than the time required to settle
into the steady state, which is a few cycles). Movies showing
the entire run of these experiments are available as Supple-
mentary Material. Figure 3(a) shows that for N = 3 the three
beads move in phase with each other, in contrast to N = 4
(Fig. 3(c)) where the nearest neighbors are in anti-phase. The
behavior of N = 5 (Fig. 3(e)) is an apparently more complex
synchronized state. We return to this in the discussion section.

Figure 4 shows results of Brownian Dynamics simulations,
run for conditions matching the experiments of Figure 3. The
BD numerical results have slightly different period in the
steady state compared to the experiments, this is simply a dif-
ference in the trap stiffness. Performing BD simulations in
parallel to experiments has been valuable in this work for two
reasons: (1) it is possible to access experimentally challenging
conditions (e.g. large N), and to isolate the effect of Brown-
ian noise; (2) There are potentially a large number of factors
(outlined in the Appendix) that make the experiments poten-
tially more complicated than the simple picture of identical
harmonic traps we develop as our model.

It is important to see that the experimental results are
very close to the simulations (in which all traps have iden-
tical stiffness, perfect harmonicity, etc.). The experiments,
in other words, appear to be quite robust to all the potential
issues discussed in the Appendix (of which the most impor-
tant is the resolution of bead position), although some occa-
sional glitches can be observed in the Supplementary Material
movies.

In the presence of increasing thermal noise, the bead tra-
jectories and mode amplitudes deviate increasingly from the
solutions of the deterministic system, but the solutions remain
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Fig. 5 The 7-particle system has a traveling wave dynamic state,
which is robust to the presence of Brownian noise. In numerical
simulation it is straightforward to tune the level of noise, and it is
seen that reducing noise the behavior of the system converges to the
deterministic analytical solution. Here, the trajectories and the mode
projections of a system of 7 particles are shown for different
amplitude of noise, corresponding to temperatures of T=1K (a,b),
273K (c,d) and 1000K (e,f), plotted versus time and versus position
of bead one. Other physical parameters are set to the experimental
values, and κ=2 pN/µm, ξ = 0.3 µm. Colors match those in
Figures 3, plus yellow and black used for beads (and modes) 6 and 7
respectively. As in previous figures the small panels give the average
behavior, plotted as a function of the position of bead-one. The
balance of noise relative to hydrodynamic coupling forces can be
tuned by changing the physical parameters of the system, as
discussed in the text.

stable. This is illustrated in Fig. 5, with numerical data for the
system with N = 7, in which like N = 5 (Figs. 3(f) and 4(f))
and all other odd N > 3, there is a degenerate fundamental
mode17, and the dynamic state shows an alternating amplitude
of the projections onto these two modes. The trajectories dis-
play a fixed phase relation between beads: The nearest neigh-
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bors are almost in anti-phase, but delayed by the small interval
TN/N. Next-nearest neighbors are almost in-phase, with a de-
lay 2TN/N, and so on, describing a propagating wave.

Depending on the initial conditions, at low noise the system
will fall into a state where intervals are either positive or nega-
tive going around the ring. At higher noise (i.e. higher temper-
ature, or weaker coupling), whilst the system remains overall
synchronized, the propagating character is lost over long times
because the system is able to flip between the two equivalent
states. The large variations in noise levels considered in Fig. 5
cannot of course be achieved experimentally by changing the
temperature, since the very high and very low values that are
required would affect the physical properties of the media; in-
stead since the hydrodynamic coupling is proportional to κA2

and decays as (a/d), it is possible to tune its importance rela-
tive to thermal kBT by changing the other parameters: κ, A, a
and d. The loss of synchronization due to noise was explored
for the case of two beads in our previous work10.

5 Discussion

The key result of this work is that main features of the com-
plex steady state of the non-linear dynamical system can be
predicted from the equilibrium coupling tensor. Underpinning
this result is the fact that in-between any two switches, the sys-
tem of eq. 1 can be linearized for small displacements, and its
dynamics is dominated by the slowest Oseen normal mode.

For polygonal arrangements, and neglecting noise, the Os-
een coupling matrix is particularly simple: it is the sum of
identity and a real symmetric circulant matrix, hence its eigen-
values m and the eigenvectors e⃗(m) can be obtained readily17.
These eigenvectors are the normal modes of the coupled sys-
tem, and a superposition of them describes the motion in-
between switch events.

It is revealing to decompose the configuration at each time
x⃗(t) onto these normal modes; we consider here the power in
each mode m, given by Pm(t) = |x⃗(t) · e⃗(m)|2, and look at its
time dependence. In between switch events, each Pm decays
exponentially; at each switch, all the Pm are excited, and the
non-linear switching periodically precipitates the system in a
different state. Experimentally it is clear that for N = 3 and
N = 4 there is a single mode which has very high amplitude
(Fig 3(b,d)). In contrast, for N = 5 two modes have high
amplitude, and they alternate periodically (Fig 3(f)). This be-
havior is fully confirmed by BD simulations performed as in
ref10, where the Oseen interaction is assumed, see figure 4.

For every even value of N, the tangential anti-phase mo-
tion of pairs of adjacent spheres is the eigenmode with highest
drag, and therefore longest relaxation time. For odd N clearly
it is not possible for all the neighbors to oscillate in anti-phase.
With N > 3, the eigenmode with the longest relaxation time
is degenerate: there are two equivalent modes, in which the

motion of neighbors is almost in anti-phase, but on cycling
around the ring each particle is time-shifted by +∆T (or −∆T
in the equivalent mode) relative to its neighbor17. The case
N = 3 is unique, in that the longest relaxation mode is one
with all the beads moving in phase. The remarkable result of
this study, shown in Fig 3, is that for all N the mode with the
highest amplitude is consistently the one with longest relax-
ation time.

We recall that a system of N beads held in static traps in
two dimensions has 2N normal modes12,18–20, and these can
be calculated analytically for configurations with high sym-
metry12,18. The constraint for each bead to move only along
its fixed tangential direction reduces the number of modes by
half, so that there are N normal modes for a N bead system
here.

Why is the steady state dynamics largely captured by a
normal-mode analysis, and how does the longest lived mode
determine the steady state dynamics? The modes described
above are a key step in constructing the solutions of the dy-
namical system: The solutions (for the deterministic, absence
of noise, system) are given for each stretch between consec-
utive switches by linear superposition of the eigenmodes; at
each switch, driving potentials change in the system of equa-
tions 1,3, and new mode amplitudes are propagated; the con-
dition of periodicity leads to a finite set of solutions17. The
general feature is that the faster the mode, the more its ampli-
tude has decayed before the following geometric switch. In
other words, it is the amplitude of the longest lived mode that
“dominates” at the geometric switch, and thus enforces the
overall character of the steady state solution.

It is an open question whether this fact is completely generic
or it applies only to a range of parameter values. In line of
principle, it is possible that the time between two switches is
too short for the slowest mode to fully dominate. However, we
have not observed this in any of the systems analyzed here.

6 Conclusion

Our experimental results highlight the importance of geometry
in determining the leading properties of the collective steady
state in a driven system. It is remarkable that in this system the
equilibrium properties are sufficient to describe the main fea-
tures of the non-equilibrium emergent dynamics. One may en-
vision that in biological systems, which present complex and
often disordered arrangements, and a vast number of oscil-
lators, the behavior highlighted by these simple arrays could
represent the local dynamics in tightly coupled sub-systems
whose dynamics is simple. In this perspective, the small-
system patterns of behavior can be thought of as “dynamical
motifs”, linked to the geometrical arrangement of beating ele-
ments, and that can be analyzed to infer the properties of the
individual oscillators.
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Appendix: Experimental Aspects

The experiments (contrast the experiments of Figure 3 to its
numerical counterpart Figure 4) share the character of the
steady state, which is the key observation of this work, but
are somewhat “noisier” than the simulations. We outline here
possible reasons for this.

The switch-position resolution

The particle positions are obtained in real time at the frame
rate of the acquisition (between 200 and 300 Hz, depending
on the image size). The calculation is carried out in the com-
puter, by standard methods: A correlation filtering (with an
optimised mask profile) is followed by sub-pixel interpolation
of the maximum in the filtered image. In principle, as shown
by the Grier group, the resolution of the detection by these
methods can be as good as a few 10 nm. In practice, with
the high frame rate camera and real-time operation, we have
determined that experimentally the standard deviation of the
switch positions of a driven bead is 74 nm. This value is the
significant quantity in our experiment, and its scatter is dom-
inated by the imaging resolution. We know this because run-
ning the Brownian Dynamics simulation, under identical feed-
back time and other parameters to the experiment, we obtain
a standard deviation of the switch positions of 7.5nm. This
latter, simulated value, includes the effects of Brownian noise,
and of the finite feedback time, but in contrast to the experi-
ment it does not include any error in position resolution or in
the time to communicate a switch into the laser trap positions
(the simulation has no such errors).

So particle position resolution is the main source of uncer-
tainty in the experiments, and we think it is the reason for the
increased “noise” compared to simulations with matching pa-
rameters.

The switch-timing resolution

The position detection calculation, written in c++ and carried
out on a fast workstation on each frame, is not the rate-limiting
step. The rate-limiting step in our current feedback system is
that as a result of this position determination, the computer
sends a command to the electronics that controls the AOD
laser deflection. The timing of this command is under the
control of the operating system: We use a server-grade com-
puter with multiple multicore processors, running Linux with
the RT PREEMPT patch to approach real-time scheduling by
the operating system. There remains some timing uncertainty
which is beyond our control. To summarise on timing: an im-
age arrives into the computer RAM from the CMOS camera,
it is analysed, and a control command sent to the electronics,
before the next image arrives.

The total feedback time can in principle be important. The
influence of feedback time was studied extensively in the 2-
bead case in previous work, ref10, and we had found that pro-
vided the feedback loop was accomplished in a small fraction
of the relaxation times, it had no effect on the steady state.
Here in this work we also checked its effect by changing feed-
back time (i.e. the time interval at which the system is interro-
gated to determine if there is to be a switch in the potentials)
in the Brownian Dynamics simulations. Like in the previous
work, in the experimentally relevant range of feedback time
(which is a small fraction of all the relevant timescales in the
system), there is no effect on the character of the stable solu-
tion.

Harmonicity and homogeneity of the traps

Optical tweezer potentials are only imperfect harmonic wells:
(a) even in optimally aligned systems, the linear polarisation
of the laser confers some directional anisotropy; (b) traps
across the field of view may not have exactly the same stiff-
ness; (c) at large displacements, they stop being harmonic; (d)
colloidal particles have themselves a small polydispersity, and
this correlates with how stiffly each is trapped. We do not
think that these factors play a major role in the current experi-
ment, and the excellent qualitative agreement with simulations
in which none of these aspects is present supports this.
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