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abstract The original development of the formalism of quantum mechanics in-
volved the study of isolated quantum systems in pure states. Such systems fail to
capture important aspects of the warm, wet, and noisy physical world which can
better be modelled by quantum statistical mechanics and local quantum field theory
using mixed states of continuous systems. In this context, we need to be able to
compute quantum probabilities given only partial information. Specifically, suppose
that B is a set of operators. This set need not be a von Neumann algebra. Simple
axioms are proposed which allow us to identify a function which can be interpreted
as the probability, per unit trial of the information specified by B, of observing the
(mixed) state of the world restricted to B to be σ when we are given ρ – the restriction
to B of a prior state. This probability generalizes the idea of a mixed state (ρ) as
being a sum of terms (σ) weighted by probabilities. The unique function satisfying
the axioms can be defined in terms of the relative entropy. The analogous inference
problem in classical probability would be a situation where we have some informa-
tion about the prior distribution, but not enough to determine it uniquely. In such
a situation in quantum theory, because only what we observe should be taken to be
specified, it is not appropriate to assume the existence of a fixed, definite, unknown
prior state, beyond the set B about which we have information. The theory was de-
veloped for the purposes of a fairly radical attack on the interpretation of quantum
theory, involving many-worlds ideas and the abstract characterization of observers as
finite information-processing structures, but deals with quantum inference problems
of broad generality.
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Quantum mechanics started with the study of simple isolated systems like an
electron and a proton in empty space. Such systems can be described by pure states
— by wavefunctions. When we turn to non-isolated systems, however, in quantum
statistical mechanics, or many body theory, or quantum optics, or local quantum
field theory, description by wavefunctions is often inappropriate. Density matrix
descriptions are called for not least because our observations of complex systems are
always incomplete.

In this paper, I shall present a mathematical tool for dealing with incomplete
information in quantum systems. I shall start by commenting briefly on the foun-
dational questions which haunt any serious consideration of ignorance in quantum
mechanics. I have expressed my views on these matters more fully in [1–3], in which
I attempt to start from first principles and give a complete quantum measurement
theory, but the mathematics given here does not depend on the details of those pa-
pers, and it is my hope that it might be of more general use. Indeed, it is that hope
which motivates this attempt to bring the mathematics to a wider audience.

In spite of the importance of infinite-dimensional spaces, I shall leave aside some
mathematical technicalities by assuming for most of this paper that we are working
with a finite-dimensional Hilbert space. This assumption is merely for convenience
of exposition and may ignored by those who normally ignore mathematical details.
Such details are to be found in [2, 4, and 5].

The formalism will be introduced here through some elementary examples which
are sufficient to demonstrate the essential ideas. These examples are given in terms
of probability distributions which correspond to quantum states on sets of mutually
commuting operators. Following the examples, a set of simple axioms is given which
allows the generalization to arbitrary states and sets of operators. Finally, the full
definition and some of its properties are presented in a theorem which also states the
extension to infinite-dimensions.

According to theory, time propagation in a closed quantum system is governed by
a deterministic evolution defined by unitary maps of the form e−itH/h̄. This evolution
is well understood and experimentally confirmed in many circumstances. Neverthe-
less, the fundamental problem of the interpretation of quantum theory remains. This
is that such Hamiltonian evolution does not seem sufficient to describe the world
that we see. From time to time, the quantum state of the world appears to change
abruptly. These changes are referred to as “collapses”.

Orthodox wave mechanics, describes “collapse” as the replacement of a wave-
function by an eigenfunction of some “measured” operator. However, there are several
problems with this idea. In a real experiment it is often hard to see how the operator
being measured can be unambiguously defined. For example, in a bubble chamber
experiment, are we measuring bubble positions or particle positions? For practical
purposes, it doesn’t make much difference, but, if “collapse” is a genuine physical
process then it ought to be precisely definable. I have suggested in [1–3] that this
problem can be dealt with working at the level of the observer and by characterizing
an observer as an abstract processor of information. Observers however, are complex,
localized, thermal systems and so should be described by density matrices rather than
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simply by pure states. By working with local states, it is also possible to deal with
the problem that an instanteous collapse of a wave-function for the whole universe
would be manifestly non-relativistic.

Suppose then that we are given a density matrix ρ. We want to develop a
formalism to meaure the a priori probability of a “ generalized state collapse” taking
ρ to some other state σ. The physical interpretation I propose, for such a collapse, is
that, although ρ may be the “true” state, it is not a state we are capable of seeing.
It is not possible for us, because of our natures, to see a macroscopic system in a
mixture of macroscopically distinct states. We cannot see a cat except as something
which is either dead or alive. σ — the state collapsed to — is one of the states which
we are capable of seeing.

A weaker interpretation just says that measurement in quantum mechanics in-
volves state change. We have information, which is far from complete, about the
state before the measurement. We also have information about the possible states
after the measurement. For example, we know that, as long as the experiment works,
our macroscopic measuring device is going to give us a definite result. At this general
level, we want to be able to compute probabilities.

Our preliminary goal then, is a function which we shall denote by app(σ|ρ) which
we can interpret as the probability of being able to mistake the state of the world for
σ, despite the fact that it is actually ρ.

At the simplest level, a density matrix ρ can be expanded, in terms of eigenstates,
into a sum ρ =

∑M
m=1 rm|ψm><ψm| and the number rm is interpreted as the proba-

bility of observing state σm = |ψm><ψm| given the prior state ρ. The first question
in generalizing this idea is to ask for the probability of observing a general state σ.
The second question asks whether it is appropriate to assume that our observations
are sufficient to give us complete knowledge of either ρ or σ.

The second question goes to the heart of this contribution. In general, we can
have very limited information about a complex system. But this is quantum mechan-
ics! Nothing which is not observed should be taken for granted. For example, the
EPR experiment may be interpreted as telling us that we must not assume that the
spin of an electron is determined except through the complete circumstances of its
observation. What one sees, depends on how one looks.

Suppose then that we have knowledge of only a few expectation values for ρ. We
want to know the probability of observing different values for those expectations. In a
classical inference problem, we would assume that there was a definite fixed unknown
prior distribution. In quantum theory, because only what we observe should be taken
to be definite, this assumption is inappropriate.

It is possible to express the idea of an incompletely known state either in terms of
sets of states or in terms of restrictions of states. I find the latter to be conceptually
simpler. The former is slightly more general but can be easily accomodated in the
present framework [2].

Definition.
1) Let H be a Hilbert space and B(H) be the set of all bounded operators on H. Then
a state ρ on B(H) is defined to be a density matrix. Such a state can be considered
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to be a complex-valued function on B(H). Thus, if ρ =
∑M
m=1 rm|ψm><ψm| and

B ∈ B(H) then ρ(B) =
∑M
m=1 rm<ψm|B|ψm>.

2) If B ⊂ B(H) then a state ρ on B will be the restriction to B of a state on B(H).
In other words ρ is a complex-valued function which takes the form ρ(B) = ρ′(B) for
some density matrix ρ′.

Definition 2 may seem pernickety, but the central point of the present work is
that if we have only have information identifying a state on B then we should not
identify it with any particular possible density matrix ρ′, but rather with the set of
all possible extensions. In other words, ρ should be identified with {ρ′ : ρ′|B = ρ}.

Classical example 1. Many of the conceptual issues in the present theory can be
understood by considering how the theory applies to inference problems in classical
probability theory. Such problems arise when we consider a set B of commuting
operators. A state on B is then a set of expectations compatible with some probability
distribution corresponding to a state on an Abelian von Neumann algebra containing
B. For example, when B takes the form {An =

∑M
m=1 anmPm : n = 1, . . . , N} for a

sequence (Pm)Mm=1 of commuting projections and some given matrix (anm), then a
state ρ on B is determined by given values ρ(An) : n = 1, . . . , N and

ρ = {(rm)Mm=1 : 0 ≤ rm ≤ 1,
M∑
m=1

rm = 1, and
M∑
m=1

anmrm = ρ(An)

for n = 1, . . . , N}.
In general, we shall work with an arbitrary set of operators B. The specification

of B may well be the most difficult task in using the present theory for a practical
quantum inference problem. B should be a set of operators about which the observer
has direct information. In general, this will be a set of observables for the macroscopic
experimental device rather than for the microscopic system being investigated. ρ will
be the restriction to B of the initial quantum state.

With B, we now have another fundamental element in our interpretation and our
goal must be revised. The aim now is to define a function appB(σ|ρ) which is to be
interpreted as the probability per unit trial of the information in B of being able to
mistake the state of the world on B for σ, despite the fact that it is actually ρ.

A von Neumann algebra represents a complete subsystem. Specifying a state on a
von Neumann algebra, corresponds on the classical level to the complete specification
of a probability distribution. Having a state on a non-algebra corresponds to having
one of an unknown range of probability distributions.

Classical example 2. Suppose that B = Z - a finite Abelian von Neumann
algebra generated by a sequence (Pm)Mm=1 of commuting projections. States ρ and σ
on Z correspond to probability distributions (rm)Mm=1 and (sm)Mm=1 on {1, . . . ,M}.
If the state of the world on Z is actually ρ then, when we choose a sequence of points
from {1, . . . ,M}, the probability of getting m is given by rm. We would mistake this
state for σ, if in N trials we found that, for each m, we got m roughly smN times.
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The probability (A) of such a result can be explicitly calculated using the multinomial
distribution. Indeed, if each smN is an integer, then

A = N !

M∏
m=1

rsmNm

(smN)!
.

As N →∞, logA is asymptotic to

N{
M∑
m=1

(−sm log sm + sm log rm)}.

This suggests that it would be appropriate for app to satisfy

appZ(σ|ρ) = exp{
M∑
m=1

(−sm log sm + sm log rm)}.

Classical example 3. In a specific case of example 1, we take
B = {P = P1 + P2, Q = P1 + P3} where (Pm)4

m=1 are orthogonal projections such

that
∑4
m=1 Pm = 1. A state ρ on B is a set of probability distributions on {1, . . . , 4}

with Prob{1, 2} = ρ(P ) and Prob{1, 3} = ρ(Q) determined:

ρ = {(rm)4
m=1 : 0 ≤ rm ≤ 1,

4∑
m=1

rm = 1 and r1 + r2 = ρ(P ), r1 + r3 = ρ(Q)}.

It is possible to make a complete computation of appB when B has the form
given in this example [5]. It would be interesting to find a physical situation where
such a set was relevant. More typical, physically, might be a case where we have
non-commuting projections P and Q and know ρ(P ), ρ(Q), and ρ(P ∧ Q), but not
ρ(PmQn) for m,n > 1.

Classical example 4. In the situation of example 3, knowledge of ρ on B does
not yield a complete prior distribution (rm)4

m=1. In example 2, we considered ob-
serving a sequence of N trials of the set {1, . . . ,M}. Each trial can be thought of
as an evaluation of the M random variables (Xm) on {1, . . . ,M}, where Xm is the
characteristic function of {m}. In example 3, however, we only have access at a trial
to two random variables: XP — the characteristic function of {1, 2} and XQ — the
characteristic function of {1, 3}. All that is known about the distribution of these
variables is that E(XP ) = ρ(P ) and that E(XQ) = ρ(Q). We want to find a value
for the probability per trial that some distribution compatible with ρ gives values
compatible with σ. If we make a choice of (rm)4

m=1, then an appropriate value would
be given by the asymptotic probability per trial that, under the distribution (rm)4

m=1,
the set {1, 2} is visited with relative frequency σ(P ) and the set {1, 3} is visited with
relative frequency σ(Q). A mathematical expression for this value is given by

V = lim
ε→0

lim
N→∞

(
Prob(| 1

N
(
N∑
n=1

XP
n )− σ(P )| ≤ ε, | 1

N
(
N∑
n=1

XQ
n )− σ(Q)| ≤ ε)

)1/N

where Prob is defined by (rm)4
m=1, and (XP

n )Nn=1 and (XQ
n )Nn=1 are the relevant se-

quences of independent identically distributed random variables with distributions
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determined by Prob. According to Sanov, [6, thm. 2],

V = sup{exp[
4∑

m=1

−sm log(sm/rm)] : 0 ≤ sm ≤ 1,
4∑

m=1

sm = 1 and

s1 + s2 = σ(P ), s1 + s3 = σ(Q)}.
The definition I am proposing suggests that, in this situation, given no other

information, it is appropriate to choose (rm)4
m=1 so as to maximize this value. This

suggestion is definitely a quantum mechanical one. It is appropriate because what
we do not measure has no influence, or even, no reality. We see what we are capa-
ble of seeing, in the form which our apparatus has been set up to allow us to see.
The situation pulls out one of the states which is possible for us with probabilitities
determined only by the information available to us.

These examples have demonstrated the concepts at issue. The generalization
to states on arbitrary sets of operators will now be given by the following set of
axioms. The first three axioms are entirely self-explanatory. It should be noted that
the arguments for the other axioms are merely arguments — they are not proofs. A
much more extensive discussion is given in [2], but the reader of this paper may be
more impressed just by the simplicity of the axioms and by the fact that they are
consistent. Ultimately, the axioms are justified if they provide a definition which is
useful and compatible with observation.

Axiom 1. 0 ≤ appB(σ|ρ) ≤ 1.

Axiom 2. appB(σ|ρ) = 1 if and only if σ = ρ.

Axiom 3. Let U ∈ B(H) be unitary and define τ : B(H) → B(H) by τ(B) =
UBU∗. Then

appB(σ|ρ) = appτ−1(B)(σ ◦ τ |ρ ◦ τ).

Axiom 4. Suppose that ρ = p1ρ1 + p2ρ2 where p1, p2 ∈ [0, 1] with p1 + p2 = 1.
Supppose that there exists a projection P ∈ B with ρ1(P ) = 1 and ρ2(P ) = 0 then
appB(ρ1|ρ) = p1.

In this case, ρ is a mixture of the distinct states ρ1 and ρ2 so axiom 4 means
that app is a generalization of the idea that a mixed state can be written as a sum of
terms weighted by probabilities.

Property 4. Suppose that ρ = p1ρ1 + p2ρ2 where p1, p2 ∈ [0, 1] with p1 + p2 = 1.
Supppose that there exists a projection P ∈ B with ρ1(P ) ≥ 1− ε and ρ2(P ) ≤ ε for
some ε ∈ [0, 1

2 ]. Then p1 ≤ appB(ρ1|ρ) ≤ p1 − 3ε log ε.

This is a significant improvement on axiom 4.
Quantum measurement theory has long been concerned with providing models of

“state decomposition with negligible inference effects”. Recently, for example, this has
been done under the banner of “environment-induced decoherence” [7]. Such models
demonstrate the validity of the sort of state decomposition proposed in property
4 at the macroscopic level with p1 playing the role of a physically significant and
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experimentally measurable probability. They can be taken as providing justification
and experimental confirmation for the theory proposed here. The central problem
in measurement theory is to justify the coarse-graining involved. Here that coarse-
graining is represented by the restriction of attention to the set B. An appropriate
fundamental choice for B is justified in [3].

Property 5. Let B1 ⊂ B2 and σ2, ρ2 be extensions to B2 of states σ1, ρ1 on B1.
Then appB2

(σ2|ρ2) ≤ appB1
(σ1|ρ1).

This is justified in terms of the proposed interpretation of appB(σ|ρ) because an
observer who can draw finer distinctions is less likely to make mistakes.

Axiom 5. Let B1 ⊂ B2. Then

appB1
(σ1|ρ1) = sup{appB2

(σ2|ρ2) : σ2|B1 = σ1, ρ2|B1 = ρ1}.
This improvement on property 5 is justified because although we know nothing

else about the extension from B1 to B2, we do know for certain, as a consequence of
definition 2, that σ1 and ρ1 are restrictions of states on B2.

By axiom 5 and definition 2, app on an arbitrary set B is determined by app on
B(H).

Property 6. Let σ1, σ2 and ρ be states on a set B. Let p1, p2 ∈ [0, 1] with
p1 + p2 = 1. Let σ = p1σ1 + p2σ2. Then

appB(σ|ρ) ≥ appB(σ1|ρ)
p1appB(σ2|ρ)

p2 .

This is plausible because one of the ways for an observer to observe the state σ
is to observe σ1 a fraction p1 of the time and σ2 a fraction p2 of the time.

Axiom 6. Let σ1, σ2 and ρ be states on a finite-dimensional von Neumann algebra
A. Let p1, p2 ∈ [0, 1] with p1 + p2 = 1. Let σ = p1σ1 + p2σ2. Then

Λ = appA(σ1|ρ)
p1appA(σ2|ρ)

p2/appA(σ|ρ)

is independent of ρ.

Consider sequences of trials of the information in A performed on a system which
is in the state ρ. Suppose that all the results from all the sequences are compatible
with the state σ. Some of these sequences may have the property that the results are
compatible with the state σ1 a fraction p1 of the time and with the state σ2 a fraction
p2 of the time. Because A is a von Neumann algebra and all the states involved
are completely specified, Λ is a measure of the relative probability of this property.
Whether a sequence of trials compatible with σ has the property in question or not
depends only on σ. On a non-algebra, however, it is possible for Λ to depend on ρ
because ρ is not a complete specification of the situation being tested by a trial.

In the classical context of examples 1–4, this argument is a correct factual state-
ment. In the wider context of non-commutative probability theory, it tells us not just
about the definition of app, but also about the meaning of a “trial” and of a state
being “completely specified”. It is, perhaps, remarkable that it is possible to extend
such an argument to the non-commutative situation.
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Theorem. Let H be a finite-dimensional Hilbert space and B ⊂ B(H). Then
there is a unique function appB(σ|ρ) satisfying Axioms 1–6. appB(σ|ρ) also satisfies
properties 4, 5, and 6. When B is B(H) — the set of all bounded operators — then

appB(H)(σ|ρ) = exp(tr(−σ log σ + σ log ρ)).

For general B ⊂ B(H), appB(σ|ρ) is then defined by axiom 5. If B is a von Neuman
algebra then appB(σ|ρ) is the exponential of the relative entropy of σ with respect to
ρ. The formula given in example 2 is correct as is the value proposed for example 4.

There is also a unique function appB(σ|ρ) on infinite-dimensional systems. Ax-
ioms 1 - 5 and properties 4, 5, and 6 are satisfied as stated, except that the supremum
in axiom 5 has to be taken over all states (non-normal as well as normal). Axiom 6
holds for normal states on an injective von Neumann algebra. Uniqueness is achieved
by requiring that appB(σ|ρ) be the minimal w∗ upper semicontinuous function having
these properties.
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