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1 Introduction.

In this paper, we shall consider some technical results about the time-dependent be-
haviour of the eigenvectors, or eigenprojections, of reduced density operators and discuss
the relevance of these results for modal interpretations of quantum mechanics. The idea
common to the modal interpretations of quantum mechanics, in the versions by Kochen
[1], Krips [2], Dieks [3], Healey [4], Vermaas and Dieks [5], and Clifton [6], is that, by using
the spectral resolution of a system’s reduced density operator, one can always attribute
certain (generally time-dependent) properties to a quantum system. We shall focus on the
version of the modal interpretation presented in [5]. A brief survey of other versions is
given in [7].

Suppose a quantum mechanical system S to be defined on a Hilbert space Hg, with
its environment defined on H. and the total Hilbert space of the universe taking the form
H =Hs ® H.. Given a density operator state on H, S can be assigned a reduced density
operator p, by partially tracing over the degrees of freedom of H.. p will also be referred
to as the reduced state. We shall assume, in general, that the state on H is a pure state
|W><W|, in which case p, which will be denoted by (|J¥><¥|), is closely related to the
Schmidt decomposition of the vector ¥. This means that our results are also relevant to
naive versions of the many-worlds interpretation. Indeed, confrontation with some of the
same problems that we shall raise here for modal interpretations was a motivation for one
of us to develop a technically sophisticated version of the many-worlds interpretation [8].

Whether or not the state on the total Hilbert space is pure, p may well be mixed. p
has a unique spectral resolution of the form

p=> DPmPn, (1.1)

with 0 < p,, <1, >, pm =1, and p,, # p, whenever m # n. As density operators are
compact operators, this spectral resolution is discrete and p,, > 0 implies that P, is a
finite-dimensional projection. Vermaas and Dieks [5] interpret the projections P, in the
spectral resolution of the reduced state as representing definite properties of the system,
corresponding to propositions which are either true or false. For each m, p,, dim(P,,) is
the probability that P,, is the property that is actually possessed and corresponds to a
true proposition, and the P,, with n # m are then actually not possessed and correspond
to false propositions.

p also has “eigenvector decompositions” which take the form

N
p = Zrn|¢n><¢n|v (1.2)
n=1

where N denotes the dimension of H, (N may or may not be finite), (1,))_; is an
orthonormal basis of H, and (r,)N_; is a sequence of non-negative real numbers summing

2



to one. The sequence (1,)"_; is unique if the eigenexpansion is “ordered” in the sense
that 1 > r9 > .... The sequence of the p,, of (1.1) is the sequence of distinct values of the
rn, and the eigenprojections P, of (1.1) are given by P, = Z{]wn><wn\ ST = Pm}-
The 1,, however are not unique; any union of orthonormal bases of the subspaces P,,Hs
will give a possible sequence of eigenvectors. The non-uniqueness is insignificant only if all
the P,,Hs are one-dimensional, in which case it corresponds merely to the possibility of

multiplication of each 1,, by an arbitrary phase factor.

This paper addresses questions connected with the continuity and stability of the time
evolution of these decompositions of reduced states. In general, we shall consider time
evolution driven by a Hamiltonian acting on the total Hilbert space H. We shall see that
not only can the continuity of the eigenvalues r,, be established, but also that it is possible,
under fairly mild conditions (laid out in section 4), to find eigenvectors which are analytic
in time; even at instants when the dimensions of the P,, change (degeneracy points). In
addition to these questions of continuity, we shall also examine the quite separate question
of the stability of eigenprojections in the neighbourhood of a degeneracy.

example 1.3 Suppose that H, is two-dimensional. Consider, for 0 < ¢ < %, reduced

0 s —¢€

1
density matrices p. and o. given in some fixed basis by p. = <2 te 1 0 ) and
2

o, = Then, as long as ¢ > 0, p. and 0. each have unique pairs of one-

VR
oM Nf=
N|—= (0

11
dimensional eigenprojections, given by ((1) 8) and <8 (1)> for p. and by ( ? 2 ) and
2 2
11
( 2 > for o.. Continuity and stability problems arise because, although these pairs
2 2
are independent of €, p. is arbitrarily close to o. for € sufficiently small. € = 0 is the de-

generacy point, where p. = 0., any normalized vector is an eigenvector, and the spectral

resolution (1.1) contains only the two-dimensional eigenprojection ((1) (1))

example 1.4 Ignoring for the moment the question of existence of total spaces and
Hamiltonians, possible time-dependent two-dimensional density operators include

Lite 0 ) L . .
A) p(t) = 2 0 1 t) for —5 <t < 5. In this case, the degeneracy point is passed

2
through at t = 0, but a continuous eigenvector decomposition is given by

=G+ (y o) +d-0(p 7).

1

1
B) p(t) = (QJt %(it> for =2 <t <0, p(t) = (% g) for 0 <t < 1. In this case,

p(t) is continuous, but there are no continuous eigenvectors.

In the next three sections, we discuss general mathematical results relevant to prob-
lems of continuity of eigenprojections. In section 3, we argue that it is possible to claim,
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at least for finite-dimensional systems, that degeneracy points are non-generic and so have
zero probability of ever being hit by real physical systems. In section 4, we present the
most important and surprising of the continuity results. This is a consequence of a theorem
due to Rellich. It shows that, under fairly mild conditions on ¥ and leaving aside eigenpro-
jections with vanishing eigenvalue, a reduced density operator has an eigendecomposition
into eigenprojections which, in some neighbourhood, evolve analytically, even where there
are degeneracy points. Section 5 is devoted to examples relevant to this result, demon-
strating the behaviour which is possible for eigenprojections with vanishing eigenvalue and
showing that discontinuous evolution of eigenprojections is possible if our conditions on ¥
are not satisfied. In section 6, we consider the implications of eigenprojection analyticity
for the modal interpretation. In this case, one can define an eigenvector decomposition
of p that is continuous even at degeneracy points. This allows us to define “assignable”
projections that are finer than the eigenprojections in the spectral resolution (1.1), and we
suggest using these to attribute properties to S. This extension of the modal interpretation
does not suffer from the discontinuity problems of the version based only on the spectral
resolution (1.1).

This investigation is obviously relevant to the problem of defining dynamics for ac-
tually possessed properties in the modal interpretation. Nevertheless, it should be noted
that, because of the time dependence of the probabilities imposed by the modal interpre-
tation, the continuous evolution of the assignable projections cannot, in general, represent
the only way in which possessed properties may change in time; the property possessed
by an individual system must also make random jumps from one continuously changing
property to another.

Instabilities in the neighbourhood of a degeneracy are not ruled out by these continuity
results. In section 7, we shall demonstrate that arbitrarily small variations, either in the
pure state |U><W| on H, or in the splitting of H by which the system S is defined, can
induce significant variations in the eigenprojections of the reduced state. Questions linked
to such instabilities have not been raised explicitly in the modal interpretation. However,
the possible sensitivity of eigenprojections to the exact form of the state has been used
by Albert and Loewer [9, 10] in their criticism of the modal interpretation’s account of
measurements. Their work is discussed extensively in [7]. We shall argue that, quite in
general, these instabilities pose a serious problem for the modal interpretation, even in our
extended version.

The paper concludes with a brief discussion and with some further examples.

2 Continuity.

Questions about the continuity of the eigenvalues, eigenvectors and eigenprojections
of an operator depending on a parameter have been intensively studied for many years.
Much original work on the mathematical theory was done by Rellich (see his lectures, [11]).



A development and exposition of his work is given in the textbook by Kato [12] and a brief
survey in [13], chapter XII. In this section and in section 4, we shall review some of these
results in the comparatively simple context in which we wish to apply them. Background
for the mathematics used in these sections is widely available. In particular, we would
mention [14], chapter VI, for the theory of trace class operators and [15], chapter IX, for
the theory of analytic functions with values in a Banach space.

lemma 2.1 Let p, 0 be density operators on a Hilbert space H, and let (r,(p)))_,,
(rn(0))N_, be the corresponding sequences of ordered eigenvalues, as in equation (1.2).
Then |r,(p) —rn(0)| <||p—ol|1 forn=1,...,N.

proof (Amplifying a remark by Simon [16]).

The min-max theorem states that

rn(p) = max{min{ (¢, pv) : ||¢|| = 1,4 € V'} : V is an n-dimensional subspace of H,}.

Choose for V' the space spanned by eigenvectors (¢x)7_, of o with oy = ri(0)pk.
Let € = ||p — o||1. Then

rn(p) = min{(¢, py) : ||| = 1,9 € V'}
> min{(¢,0¢) —e: |[[P] = 1,4 € V} = (on,00n) — =rn(0) — €.

Exchanging p and o, the result follows. 1

In the statement of this result, we have used the physically relevant norm for density
operators which is the trace norm, denoted by || ||1. The proof, however, is valid also for the
operator norm. It is an immediate consequence of this lemma that if p(t) is a continuous
density-operator-valued function of ¢ then, for each n, the n'? ordered eigenvalue r,, (p(t))
is a continuous function of ¢.

For A C R, let Pa(p) denote the spectral projection of p, so that, with the notation
introduced above,

Pa(p) = D {ln(p)><tn(p)] : Talp) € A},

Suppose that a < b and that a and b are not eigenvalues of p. If dim Hs = oo then
suppose also that a,b # 0. If o3, converges in norm to p, then P, ;) (o) converges in norm
to Pap)(p). This is a standard result that can be proved using the convergence of the
resolvents. Indeed, a similar result holds for general bounded self-adjoint operators ([14],
theorem VIII.23(b)). We shall give an alternative proof of a somewhat stronger result for
the situation of present interest, that provides explicit error bounds.

lemma 2.2 Let p be a density operator on Hs. Suppose that a < b and that a and b
are not eigenvalues of p. If dim ‘Hs = oo then suppose also that a,b # 0. Choose € € (0, %)
such that

inf{|r,(p) —al|} >, and inf{|r,(p) —b|} >e.



Then, for any density operator o such that ||o — p||; < 5€2,

tr((Pa,p)(0) = Plap(p)?) < e.

proof Suppose that the conditions of the lemma hold. Write Py = Py, ) (p) and P, =
P(a,b) (U)

By lemma 2.1, inf{|r,(c) —a|} > e— 32 > Ie and inf{|r,(c) —b|} > e—3e? > Ie, s0
that tr(P;) and tr(Ps) are both equal to the number of elements of {r,(p) : a < r,(p) < b}.

We may assume without loss of generality that tr(P;) < oo, as tr(P;) = oo only if
dimHs = 0o and a < 0. In this case, either the result is obvious (for b < 0 or b > 1),
ora < 0 < b< 1. But then 1—P1 = P(b71}(,0), 1—P2 = P(b71](0'), tI'(l—Pl) < 00,
tr((Pla,p)(0) = Plapy(p))?) = tr(((1 — P) — (1 — P2))?) and the result follows from the
result for the interval (b, 1].

Write P3 = Py (o) if b<1 and P3=0 if b>1.
Write Py = Pjgq (o) if a>0 and Py=0 if a<0.
Py =1~ P3 — Py as, by lemma 2.1, Pg,y(0) = Py (o) = 0.
tr(pPrPs) = Y {ralp) <tu(p)| P3|t (p)> : @ < i (p) < b}
< (b - 8) tI‘(P1P3).

Similarly, tr(cP1Ps) > (b+ L&) tr(PP3), tr(pP1Py) > (a+ ) tr(PPy), and tr(o P Py) <
(CL - %8) tI‘(P1P4).

Thus, 2e? > tr((o — p)P1P3) > Letr(P1Ps), 3% > tr((p — o) P1Py) > Letr(P Py),

and  tr((P, — P2)?) = tr(Py) + tr(Py) — 2tr(Py) + 2tr(PLP3) + 2tr(PLPy) <e. g

corollary 2.3  Let p(t) be a continuous density-operator-valued function on an interval
I C R and suppose that, for t € I, r,(t) is an isolated eigenvalue of p(t) with one-
dimensional eigenspace. (This is equivalent to ry,41(t) < rp(t) < rp—1(t) if2<n < N-1.)
Then the corresponding eigenvector 1, (t) can be chosen to be continuous.

proof 1, (t) is unique up to a phase factor. Choose ty € I and fix ¢, (tp). By lemma
2.2, the phase-independent projection |, (t)><1,(t)| is continuous on I. v, (t) can be ex-

_ |¢n<t)><¢n(t)|l/}n(t0)>

tended to an interval around ¢y by an expression of the form v, (t) = < ) [ (f0) >
n n\t0
and similarly to the whole of I. 1

example 2.4 Let p(t), t € [0,1], be a continuous path of density matrices on C* with
1 1
5 + 50 0 =5 — 51 O 1
= 2 — 2 < 1l
p(0) ( 0 % B 50) and p(1) ( 0 % +€1), where 0 < g9,e1 < 3
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If p(t) avoids the degeneracy point for all t then the eigenvector (é) of p(0) will

move continuously to the eigenvector ((1)) of p(1).

Corollary 2.3 allows a complete description of the eigenvectors of a density operator
in terms of continuous trajectories, provided that, at all times, all its eigenvalues are
isolated and all its eigenspaces are one-dimensional. Such a density operator is never
degenerate and both eigenvalues (by lemma 2.1) and eigenvectors (by corollary 2.3) will
evolve continuously. This means that, according to the modal interpretation, the definite
properties and the corresponding probabilities will also evolve continuously, although as
mentioned in the introduction, this does not rule out the possibility, or even the necessity,
of jumps for the properties actually possessed by an individual system. In the next section,
we shall propose that avoiding degeneracy points is generic behaviour, at least for finite-
dimensional systems.

3 The Co-Dimension of the Space of Degenerate Den-
sity Operators.

In this section, we shall demonstrate that, on a finite-dimensional Hilbert space, the
space of degenerate density operators has co-dimension 3 in the space of all density op-
erators. The state of a typical physical system will be subject to random environmental
fluctuations, and can be expected to undergo some sort of local Brownian motion. This
means that the state will change continuously and will have probability zero of ever hit-
ting a degeneracy. It follows that, with probability one, the eigenvalues of the state are
always isolated, and so, even without invoking the analyticity conditions to be introduced
in the next section, the eigenvectors can be chosen to be continuous by corollary 2.3. As
in example 2.4, these continuous eigenvectors always correspond to the same ordering of
the eigenvalues. Thus, if p(t) = 25:1 Sn (1) (t)><1,, (t)|, where the s, (t) and v, (t) are
continuous and if s1(0) > s2(0) > ... > sy(0), then, for all ¢, s1(t) > sa(t) > ... > sn(t).

definition 3.1 Let X(H;) denote the set of all density operators on H, a Hilbert space of
dimension N < co. Let X"(H,) (respectively ¢(H,)) denote the subset of non-degenerate
(resp. degenerate) density operators.

It follows from lemma 2.1 that X" (H,) is an open set in 3(#H,). It is a dense set,
because, if p = 27]:[:1 Pn|t0n><1y| is an arbitary density operator, with p; > py > ... >
pn, and 0 = ——x 22;1 3|t ><tp|, then (1 — z)p + zo € ¥"(H,;) for 0 < 2 < 1 and
(1—x)p+x0—>pasz—0.

The set of self-adjoint operators on H, is a real vector space of dimension N2, and
Y (Hs) is a subset of dimension N2 — 1.



proposition 3.2  X%(H,) has co-dimension 3 in % (H,).

proof Let A = (di,da,...,dpya)) be a partition of N with 1 < dy <dy <... < dya)
and dy +da + ... +dpya) = N. Let Y2 be the set of density matrices p with eigenvalues
that can be partitioned according to A; so that, in other words, p has exactly M(A)
distinct eigenvalues and these can be arranged so that exactly d,, eigenvalues have the
mt" value. For example, Z(11-1) = o7

Let G be the unitary group on H. G is a compact Lie group of dimension N? with
Lie algebra given by the self-adjoint matrices on H. G acts on ¥ by U -p = UpU*. Let G,
denote the stabilizer of p, so that U € G, <= U -p = p. G, is a closed subgroup of G
and, for p € X2, G, has dimension an\fi?) d2, so that G/G, is a manifold of dimension
N2 -y

Let p = Eﬂmﬁ?) PmPm(p). Choose € > 0 such that m # m’ = |p,, — pms| > 2e. Let
O={o:|lp—o|l <e}nxA.

Suppose that ¢ € O. By lemma 2.1, there is a unique ordering (qm)%i?) of the
eigenvalues of o so that |p,, — ¢m| < €, and then ¢ has a unique representation of the form

0 = Z%i?) qum(U)'
There exists U € G such that U*cU = Z%i%) dm P (p).

If 0 has two such representations,

M(A) M(A)
oc=U Z Qum(p)U* =V Z Qum(p)V*7
m=1 m=1

(A) M(A)
then VU > gmPu(p)UV = Y gmPulp),
m=1 m=1

so that V*U € G, and U € VG,,.

Thus, O takes the form {U an\ﬁ?) SmPm(p)U*}, where s, > 0 and |py, — sm| < €
for k =1,...,M(A), Zn]\;ﬁ?) sm = 1, and U belongs to a neighbourhood of the identity
in G/G,. There are M(A) — 1 dimensions of variation possible in the s,,, so that 2 is a

manifold (with boundary) of dimension N? — Zn]\ﬁ?) d? + M(A) — 1.

N2 S M g2 4 prA) —1 = N2 = M (@2 1) — 1 so, as d, > 1, dim(S2)
is maximized at N2 — 1 when d,, = 1 for all m, which is when ¥4 = 21511 = 57
and is next to maximal when d,, = 1 for m = 1,...,N — 2 and dy_1 = 2, for which
dim(X?) = N? — 4. 1



4 Analyticity.

If a density operator p(t) is an analytic function of ¢, then strong results on continuity
of eigenfunctions are available.

definition 4.1 Let I C R be an open interval. Suppose that p(t) is a density operator
on a Hilbert space H for t € I. Let J;(H) denote the space of trace class operators on
H. We shall say that p(t) is an analytic function on I if there is an open complex domain
D D I and an analytic function from D into J,(H) which agrees with p(t) on I.

We shall see below that if H is a Hamiltonian on a tensor product Hilbert space
H = Hs ® H then there is a dense set of vectors ¥ € H such that the reduced density
operator p(t) = (e " |U><W|e!) is analytic on R.

theorem 4.2  Let p(t) be analytic on I and suppose that to € I. Let r be an isolated
eigenvalue of p(tg) with K-dimensional eigenspace, where K < oo. Then, there is an open
interval Iy C I with ty € Iy on which there exist K (not necessarily distinct) numerical
analytic functions (ry(t))X_, and K vector-valued analytic functions (¢ (t))E_,. ri(to) =1
and, for each t € Iy, (Yx(t))E_, is an orthonormal sequence of eigenvectors of p(t) and
r,(t) is the eigenvalue corresponding to )y (t).

proof See[l1], §1.1 and §2.2, or [12], §II.1, §I1.4, §I1.6, §VII.1 and §VIL.3.

Kato’s proof ([12]) involves finding, for some M < K, M distinct numerical ana-
Iytic functions (7, (¢))_; on an interval Iy containing tq which are such that #,,(ty) = r
and which, for each t € I, are all the eigenvalues of p(t) close to r, and then construct-
ing a corresponding sequence (P&(t))%zl of projection-valued analytic functions on I
which, for each t € Iy, form an orthogonal sequence of eigenprojections for p(¢) such that

Z%Zl dim P’ (t) = K. The 13 (t) are constructed from the P7 (t). I

corollary 4.3

A) IfdimH = N < oo then, on the whole interval I, there exist N numerical analytic
functions (r,, (t))N_; and N vector-valued analytic functions (1, (t))_,, such that, for each

t € I, (¥ (t))N_, is an orthonormal basis for H consisting of eigenvectors of p(t) and r,,(t)

is the eigenvalue corresponding to ¥, (t).

B) Ifdim’H = oo then each pair of functions ri(t) and 1 (t) given by the theorem can
be analytically continued at least until i (t) — 0.

proof In case A, theorem 4.2 and its proof can be applied to any eigenvalue of p(t).
At all but a finite number of points of Iy, the functions 7,,(t) constructed in the proof
are distinct and the P,Tn(t) are the unique eigenprojections of p(t) corresponding to those
distinct eigenvalues. Thus, A is a consequence of the principle of uniqueness of analytic
continuation for vector-valued functions ([15], §IX.4).
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In case B, theorem 4.2 can be applied to any strictly positive eigenvalue. If dim H = oo
then, of course, 0 cannot be an isolated eigenvalue with finite-dimensional eigenspace.

Suppose, in case B, that r,(t) is an analytic eigenvalue given by theorem 4.2 and that
I, is the maximal interval containing ¢y to which it can be analytically extended. Suppose
that T = sup I; and that 7' € I. Choose € > 0. There is a finite subsequence (r, 7)Y,
of the ordered eigenvalues of p(7T") such that ZTJLI rnr > 1— 1e. As N is finite, there
is an open interval I with T' € Iy on which each of these eigenvalues has an analytic
extension r, r(t) which is an eigenvalue of p(t) for ¢t € I and such that ¢ € Iy implies
Zi:;l rn,r(t) > 1 —¢e. By uniqueness of analytic continuation, none of these functions,
which are extendable to T', can agree with r(¢) on I1 N Iy. It follows that rx(t) < € on
I1NI; and so ri(t) > 0ast —T. ]

Theorem 4.2 enables us to decompose p(t) further, even at degeneracy points.

definition 4.4  Let p(t) be analytic on I and suppose that to € I. Call a projection P
“assignable” for p(t) at to if and only if there exists a sequence (t,)p,>1 C I with t,, # tg
for all n and t,, — ty as n — oo and there exists a sequence (P, (t,))n>1 of projections
such that P,(t,) is a spectral projection of p(t,) and P, (t,) converges strongly to P as
n — oo.

Call a projection P “decomposition-assignable” for p(t) at tq if either it is the pro-
jection onto the null space of p(ty) or if it is a minimal assignable projection such that
tr(p(to)P) > 0.

“Spectral projections” are the eigenprojections P, of (1.1) or sums of such projections,
and “minimal” is intended in the usual sense of the ordering of projections in Hilbert space.
corollary 4.5 Let p(t) be analytic on I and suppose that ty € I.

A)  Let r be an isolated eigenvalue of p(ty) with finite-dimensional eigenspace H... Let
P" be the projection onto H,..

Then P" has a unique decomposition of the form P" = Zi\r{;l I:’fn, where the f’;l are
decomposition-assignable projections for p(t) at tg.

B) Every assignable projection P for p(t) at ty is a sum of projections which are either
of the form P, for some isolated eigenvalue of p(ty), or which satisfy p(to)P = 0.

C) Every spectral projection of p(ty) is assignable for p(t) at t.

D)  p(to) has a unique decomposition of the form p(ty) = >, qn(to)@n(to), where the
Qn(to) are an orthogonal family of decomposition-assignable projections satisfying

2 n @nlto) = 1.

proof

A)  The projections P[n are the P’ (ty) constructed in the proof of theorem 4.2. They
are assignable because P/ (t) is analytic and because, at all but a discrete set of points in
the interval Iy, all of the functions in the sequence (,,(t))2, differ. Their minimality
and the uniqueness of the decomposition follow from the proof of B.
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B) Let P be an assignable projection for p(t) at to. Suppose that (t,,),>1 and (P, (tn))n>1
are sequences with the properties required by definition 4.4.

Let r be an isolated eigenvalue of p(ty). Adopt the notation of the proof of theorem
4.2. For N sufficiently large, (t,)n>n C Io. For n > N, either P, (t,)P" (t,) = P’ (t,) or
P,(tn)Pr (t,) = 0. Convergence of P, (t, )P’ (t,) requires that either PP’ (ty) = P’ (to)
or P]%’%(to) = 0. To complete the proof, it is only necessary to show that, in infinite
dimensions, P commutes with the projection onto the null space of p(ty). But this fol-
lows because the null space is the space orthogonal to the space spanned by the isolated
eigenvectors.

C) Let P be a spectral projection of p(tg). P can be written either in the form P =
> ver P orin the form P =1 -3 . P", where R is some set of isolated eigenvalues
of p(tg) and the P" are the corresponding projections. It is sufficient to consider the first
case, because, if P is assignable then so is 1 — P.

For each r € R, P" has a norm-continuous analytic extension P"(t) to some open
interval I,. containing ¢, such that P"(¢) is a spectral projection of p(t). Let

P = Z{Pr(t0+ %) :r € Ryto + % € I, and ||Pr —Pr(t0_|_ %)H < 2—N(7”)}7

where N(r) is the number of elements of R larger than r. P, is a spectral projection
of p(to + %) For any r € R there exists n, such that n > n, implies ty + % € I, and
||PT—Pr(to+2)|| < 27V, Choose 1) € H with ||1)|| = 1 and € > 0. There exists N such
that || Y {P" : N(r) > N}|| < ¢ and such that 2=¥+! < ¢, Let m; = sup{n, : N(r) <
N}. Then n > my implies

(P = P)yl| < ||) {P"%: N(r) > N} + > {|[(P" = P"(to + £))¢[| : N(r) > N}
+ 3 (P = P"(to + 1))l : N(r) < N}
<2+ Y {[[(P" =P (to+ 2))¥|| : N(r) < N}.

But now my > my can be chosen sufficiently large that n > mo implies Y {||(P" —
Pr(to + =)¥|| : N(r) < N} < e. Then n > my implies |[(P — P,)¢|| < 3¢, and so P,
converges strongly to P.

D) This follows from A and B. 1

We shall now establish conditions under which analyticity of p(¢) holds. Suppose that
H=Hs @ He. Let (¢n)n>1 be a basis for H.. Let A € J1(H). Then the partial trace of
A is defined as the unique operator A, on H, which satisfies

<p|Aslp'> = Z <P @ Uy | Al @ 1> for all p, @' € Hs. (4.6)
n>1

lemma 4.7 For A € J,(H), A, exists and is independent of the basis (¢ )n>1. As €
J1(Hs) and [|Asl|1 < [[A]]1.

11



proof This is a well-known result (cf. [13] p. 382, problem 153a).

For ¢ € H, with ||¢|| = 1, let P, be the projection of H onto the subspace ¢ ® H..
Then P,AP, € J;(H) and

tr(P,AP,) = > <@ ® thy|Alp @ ¢h,>

n>1
is absolutely convergent and independent of the basis (1,,)n>1. It follows by the polariza-
tion identity that (4.6) defines an operator As on Hs.

The second part of the lemma is a consequence of the facts that if A € J,(H), then
[|All1 = sup{|tr(AB)| : ||B|| = 1}, and, if B is a bounded operator on H;, then tr(A;B) =
tr(A(B®1)). 1

corollary 4.8 For ®, ¥ € H, (|2><V|), exists and satisfies

(12> <W])s [y < [[[@><P[[[ = [|@[[|[¥]].

definition 4.9 Let H be a self-adjoint operator on H. For T > 0, a vector ¥ € H is an
analytic vector for H in {z : |z| < T}, ([17], p. 201) if ¥ is in the domain of H™ for all n
and

> ||H" ¥
Z—” Lory < co.
= n!

If P are the spectral projections for H and S < oo, then any ¥ € P_g gH will be
analytic for H in C. Thus, for any Hamiltonian, there is a dense set of analytic vectors
and also, every vector is analytic if H is bounded or if H is finite-dimensional.

theorem 4.10 Let H be a self-adjoint operator on H and ¥V € H = H, ® H. be an
analytic vector for H in D = {z : |z| < T}. For|z| < T, write p(z) = (e " #H |[¥><¥|e®*H),.
Then p(z) is an J1(Hs)-valued analytic function on D.

proof p(z) is analytic in D if and only if, for all z € D,

lim (p(2 + h) = p(2))/h

exists in norm. Using corollary 4.8, this is a consequence of the analyticity of e~ |U>. g

12



5 Examples.

The combination of theorems 4.2 and 4.10 gives a satisfactory description of the
behaviour of the eigenvectors of the reduced state of a vector analytic for some Hamiltonian,
except for the question of what may happen when an eigenvalue vanishes and the Hilbert
space is infinite-dimensional. In this section, we address this question and we also show
that discontinuous evolution of eigenvectors is possible if analyticity is not required. The
first example shows that it is possible for eigenvectors to disappear when an eigenvalue
vanishes, even if analyticity is assumed. Time reversal shows that eigenvectors can also
appear. Example 5.1 is ultimately based on work of Rellich and Kato ([12], example
V.4.14), but has been considerably adapted for the present context.

example 5.1  For any 6 > 0, there is a Hilbert space H = Hs®H., a vector ¥ in H and a
bounded Hamiltonian H on H, such that the density operator p(t) = (e~ |U><W|eftH),
has the following properties:

p(0) has a complete orthonormal set of eigenvectors (¢, ),>1. For each m > 1, there
is a unique vector-valued analytic function v, (t) on (—oo, ") such that v,,,(0) = v,,, and
such that the sequence (¢, (t))n>m is a complete orthonormal set of eigenvectors for p(t)

Whenwgt<%

Thus, despite the fact that p(t) is analytic — because H is bounded — any given
eigenvector of p(0) disappears in a finite time.

proof Let Hy = H. = L?[0,1]. Let u,(x) = v/2sinnrz and ug(z) = v/3z. ug is normal-
ized and (u,),>1 is a complete orthonormal basis for L?[0, 1].

>° /90
Define W 4,¥p € Hs @ He by Uy = Z

n=1

n2m2 |un Qup>, ¥p = |U0 & ug>.

[Wall = [¥p]] = 1.

Set A= /([Us><Wal)s =)

n=1

Up — <Uu|Up>T 5 2

The vectors W4 and B 4|¥p>Va = \/i\I/B - \/j\IIA are orthogonal and
V1= [<U4[Tp>]2 3 3

normalized, so, for # € R, there exists a bounded Hamiltonian H on Hs; ® H. such that

, 2 5
ey, = (cos Ot — \/;sinet)\IfA + \/;sinet Up.

) ‘ 2
(e W 4> <W 5 |e), = ((cos Ot — \/;sin 0t)A + \/gsin 0t B).

It is possible to give a complete analysis of the eigenvectors and eigenvalues of any
operator on L2[0,1] of the form (aA + bB)? for a,b € R. To do this, it is convenient to

E

—n27T2 ]un><un| and B = (l\I’B><\IfB|)S — |UO><U()|.

13



set A" = A//90. Let ¢ € L?[0,1] be an (unnormalized) eigenvector of A’ + bB satisfying
(A" 4+ bB)p = Ap. Suppose that ¢ = Z Cr Uy,

n=1
If A\ =0 then A’ = —bByp and so

n+1

1
Cn = —b<up|up><upl|e> = \/_b( ) <uglp>.

n2m?

This is impossible because either <ug|e> # 0, in which case ¢, ~ n, or <ug|le> =0, in
which case ¢, = 0 for all n. Thus A # 0.

MNp=\NA"+bB)p = (A +bB)%p

oo
C
= Z —n47;4 Uy + (A ug<ug|o> + upg<ug|A’|@>) 4+ bug<ug|p>.

n=1

Thus, Me(z) =2 Z

4 SlI’l nmx
n

+b(——=(2® — z)<ug|p> + V3r<ug|A'|p>) + V3bz<uo|p>.

2f

The first term and its first and second derivatives are uniformly convergent in x. Thus ¢
is twice continuously differentiable, and

Mo’ ( \/_Z 5 sinnmr — b3z <uglp> = —((A' + bB))(x) = —Ap(x).
Also go(O) = 0.

©"(x) = —p(x), p(0) = 0 has solutions ¢(z) = sinpz with g = 1/v/X for A > 0,
and ( ) = sinh pz with g = 1//—=X for A < 0. As sinpz = —sin(—pz) and sinh ux =
— sinh(—px) we may take p > 0.

¢ satisfies <ug|(A" + bB — \)|p> = 0. For p(z) = sinh pz this is equivalent to
sinh g = 3b(sinh p — p cosh p), (5.2)
and for ¢(x) = sin pz it is equivalent to

sin p = 3b(sin p — pcos ). (5.3)

It is straightforward to check that any solution either to equation (5.2) or to equation
(5.3) does correspond to an eigenvector of A’ + bB. This means that, for any b, we can
identify the set of all eigenvectors of A’ + bB and, as A’ + bB is a compact operator, this
set will be complete ([14], theorem VI.16).

14



There are then two distinct cases. If b > 0 then there is no solution to (5.2). There is
a solution to (5.3) with 0 < p < 7 which we shall label as 111 (b) as well as a solution which
we shall label as p,11(b) in each interval nm < p < (n+ 1)m. For b < 0, there is a unique
solution () to (5.2). Asb 07, pup(b) — oo. There is also a single solution i, (b) to
(5.3) in each interval nm < p < (n+ 1)m with n = 1,2,.. ., but there is no solution with
O<pu<m.

4pin ()
24, (b) — sin 241, ()

sin pu, (b)x for n = 1,2, ... and write

Write ¢, (b) = ¢n(b,z) = \/

4p10(b)
sinh 2419 (b) — 240(b)

©0(b) = po(b,x) = \/ sinh 1o (b)z.

If b > 0 then A’ + bB is positive, all its eigenvalues are positive, and a complete
orthonormal eigenbasis is given by (¢, (b))n>1-

For b < 0 a complete orthonormal eigenbasis is given by (¢, (b))n>1 U {¢0(b)}.

It follows from the general, textbook, version of theorem 4.2, that for n > 1 the
functions pu,(b) are analytic in b on R as are the corresponding eigenvectors ¢, (b), and
also that po(b) and ¢o(b) are analytic in b on (—o0,0).

It is also necessary to follow the eigenfunctions of aA’ + B = a(A’ + %B) through
a = 0. In fact, as a increases through 0, ¢,(1) continues analytically to ¢,41(2) for
n > 0.

Now careful tracing of the eigenfunctions of p(t) yields the required result. 1

In this example, p(t) is periodic with period 27/6, but none of the eigenvectors is
periodic. This demonstrates that eigenvectors may fail to reflect fundamental physical
properties of density operators.

Many variations of example 5.1 are possible:

example 5.4  For any 6 > 0, there is a vector ¥ in a Hilbert space H = Hs ® H. and a
bounded Hamiltonian H on H such that the density operator p(t) = (e~ |[U><|eiH),
has the following properties:

p(t) is periodic with period 2w /6. For each n > 1, there is a vector-valued analytic

function ,,(t) on R which is also periodic with period 2w /0, and there is a vector-valued

analytic function 1o (t) on (%, %) such that, for every integer m, a complete orthonormal

set of eigenvectors for p(t) is given by (¢ (t))n>1 when 2an <t < w and by
(Y (8))n>1 U {ho(t — BTy ywhen Gmlm oy o 2mm

Thus, in this case, p(t) has eigenvectors which appear and then disappear.
proof Let Hy = He = Ho @ L? [0,1], where H, is a one-dimensional space with basis
vector xo. Let C = |xo><xo| Let H =H; @ He.

Define ¥ 4 and ¥ as in example 5.1.
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Define U = |x0 ® xo0>-
(‘\Ifc><\pc‘)s = (C and (|\IIC><\IIA’)3 = ’\Ilc><\IfBDs =0.
For a,b,c € R, (|[aV4 +bVUp + cVUo><a¥ s +b¥p + cVcl|)s = (aA +bB)? + A2C.

For 6 € R, there exists a bounded Hamiltonian H on H, with ||H|| = 6, such that
ey, =Wy, and

. 5 2
ey = cost U + SinGt(\/;\I/B — \/;\IJA).

Let ¥ = \L@\I’A + \/Li‘lfc.

) 1 1 5 1
eT Y — (—_ — —_sinft)¥ +\/jsin0t\11 + —cosOt V.
( 7 YU 4 5 B+ 75 c

\)

1 1

1
5T sin 0t) A + \/gsin 0t B)? + B cos? 0t C.

p(t) = (e HT><Ple™), = ((

The eigenvector analysis now follows example 5.1, using the fact that \/Li — \/Lg sinft > 0

for all ¢. |

example 5.5 Let (t,)n>1 be any sequence of real numbers (for example, some counting
of the rational numbers). Then there is a vector ® in a Hilbert space K = Ky ® K. and a
bounded Hamiltonian K on K such that the density operator o(t) = (e " |®><®|eiK),
has an eigenvector disappearing at each point of the sequence (ty)n>1.

proof Let Hs, He, H, and ¥ be as in example 5.1. For each n > 1, let H? be an
isomorphic copy of H, and let H? be an isomorphic copy of H.. Let s = 22 ;H? and
Ke = @52, HY. Define a bounded Hamiltonian K on K = Ky ® K. by K = &2 H,,
where H, is the copy of H on H? @ H}. Define ® = Y | —tzenHnW, where ¥, is the
copy of ¥ on H? ® H2. Then o(t) = (e~ K|®><D[eH), = 22, Lp, (t — t,,), where p,
is the copy of p on H?. p,(t — t,) has an eigenvector disappearing at t,,. 1

When we work with unbounded Hamiltonians in quantum mechanics, it is usually
necessary to place some restriction on the wave-function; at the very least, that it have
bounded expected energy. Analyticity (definition 4.9) is a comparatively strong restric-
tion, but the final example of this section shows that it may be required if the modal
interpretation is to avoid the possibility of discontinuous definite properties. In fact, with
an appropriate choice of total space H and Hamiltonian H, we can obtain the situation
envisaged in examples 1.3 and 1.4.

example 5.6 There is a Hamiltonian H on a Hilbert space H = Hs ® H,. and a vector
W in H which is in the domain of H™ for all n, such that for no € > 0 is there any
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continuous vector-valued function (t) which is a normalized eigenvector of the density
operator p(t) = (e |U><W|eH ) for all t € [—¢,€].

proof Let H = L*(R)* = {¢© = (1,92, 03, ¢4) : pi € L*(R)} with

4
szz/mmwﬂ
=1 R

., .d d . d . d . —itH _
Define H = (—Z@J%, —i %) on the standard domain so that (e o)(z) =

(901(37 - t)v 502(37 + t)v 903(1' - t)a 904(33 + t))

H is isomorphic to C* @ (L?*(R) @ L?(R)) under an isomorphism which sends
(9017 Y2, L3, 804) to ( Ei;, i;% > ) where 1?1 (.CL’) = X(—oo,O] (33)@4([1)) + X[0,00) ([13)@3 ('CU) and
wZ(x) = X(,Oo’o](l')@:g(l') + X[O,oo)(ﬂf)@4($)

o= (2)- () o

/w1|m+/wlrm
(|I><P|)s =
(1) mm+/¢wwm»

Je

, 2

]R
) (x daz+/w1 Yoo () d

901
/|902 |d$+/|¢2 )|*da

To see this, consider, for example, the 1-2 component of (|¥><W|),. This is given by
S <&l f><gl&n>, where (€,)n>1 is a basis for L?(R) @ L?(R). Let (1,,)n>1 be a basis
for L?(R) and set &, = (10,0), E2n1 = (0,75).

o0

Then Z <&ulf><glén>

=Z::/nn )1 (¢ )d:z;/Rgog( ) (z dw+2/nn )1 ( dx/wz )1 (z)d.

Now let u be a C*° function such that u(x) = 0 unless z € (0,1), u(x) > 0 for

1
€ (0,1), and / u(z)?dx = 1. Set
0

U(z) = (¢1(2), p2(x), 3(2), a(2)) = (J5u(x), ulz + 1), su(z + 1),0).
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w* =1.

%—f—%/o lu(z + 1 —t)|*dx ﬁi Ru(w—t)u(a:—l—l—f—t)dw

(e HH | U><Wle™), = 0
ﬁ/ﬂ%u(w—t)u(x—{—l—kt)dw i#—i/ lu(z + 1 —t)|*dx

/ lu(z + 1 — t)[*dz > 0 and /Ru(a: — tyu(z + 1 + t)de = 0 for ¢ > 0, while
0

/ ]u(:c+1—t)|2dx:Oand/Ru(x—t)u(:v—l—l—l—t)dx>0for—1<t<0.
0

(e | U ><W|e®H), can now be analysed using example 1.3. 1

6 An Extension of the Modal Interpretation.

The conventional modal interpretation uses the spectral resolution (1.1) of the reduced
state p to attribute definite properties to the system S; proposing that at time ¢ system S
possesses P, with probability p,, dim(P,,). This property attribution suffers from discon-
tinuities at degeneracy points, where in particular the dimension of the definite properties
changes.

Theorem 4.10 suggests that it may not be unreasonable to assume that the state p(t)
of a subsystem is an analytic function of time. In that case, we can use the analyticity
properties to extend the conventional rule for property assignment. Recall from corollary
4.5D, that if p(t) is analytic at to then p(fy) has a unique decomposition of the form

p(to) =Y an(to)Qn(to), (6.1)

where the @, (tg) are an orthogonal family of decomposition-assignable projections satis-
fying > Qn(to) = 1. (6.1) can be used to attribute properties to the system S, if we
claim that, at time tp, system S possesses @y (to) with probability g, (to) dim(Q,(to)).
This rule of property attribution defines an extended modal interpretation, because the
decomposition (6.1) is finer than the spectral resolution (1.1).

This extension contradicts a number of discussions in which the main rule of the
conventional modal interpretation is uniquely derived from certain postulates ([6], [18]).
We escape these uniqueness results, because our extended modal interpretation violates
the postulate that the set of definite properties should be determined solely by the reduced
state of the system at a fixed time. In our extension, the definite properties are determined
by the reduced state seen as a dynamically evolving object. We think this postulate is just
as reasonable.
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The advantages of such an extension are twofold: first, degeneracies no longer repre-
sent exceptional points, where something dramatic happens with the definite properties;
second, continuous trajectories can be used in formulating general proposals for dynamics
in the modal interpretation.

In the most straightforward cases, the @, (¢) of (6.1) can be chosen to be continuous
in ¢ on the entire interval on which p is defined. Corollary 4.3A and theorem 4.10 show
that this is always possible for a subsystem of a finite-dimensional Hilbert space H on
which the dynamics is Hamiltonian. Corollary 2.3 shows that an analogous result holds
whenever degeneracies are avoided, at least if we require in addition that the null space of
p be empty if the system Hj is infinite-dimensional.

In more general cases, we must be more cautious. Example 5.6 demonstrates that an
assumption of analyticity may be required, even given Hamiltonian dynamics and a finite-
dimensional subsystem. Indeed, we have restricted the definition of assignability to cases
in which p(t) is analytic precisely because of such cases. If H is infinite-dimensional and
p(t) is analytic on an interval I, then by corollary 4.5D there is at each ¢y € I a unique de-
composition of the form (6.1) in which the @, (to) are orthogonal decomposition-assignable
projections. However, theorem 4.2 only shows that for each @,, in the decomposition (with
qn(to) # 0) there is an open interval I,, containing ¢, such that an analytic function @, (t)
can be defined on I,,. @Q,(t) cannot in general be extended further than a point at which
qn(t) tends to zero. As shown in examples 5.1 and 5.4, @, (t) can be born or die at such
points. As example 5.5 shows, there may be no open interval I containing ¢y such that all
@, (t) are analytically extendable to the whole of I. Thus, at any one time, we can write
down a decomposition (6.1), but since trajectories can be born or die, there is in general
no labelling of the projections such that for two different times ¢; and t; and for all n,
Qn(t1) and @Q,(t2) can be connected by an analytic trajectory.

Whenever p(t) is analytic, the functions g, (t), with ¢, () > 0, are distinct analytic
functions on their intervals of definition. This means that they can agree only at isolated
instants: they can only cross, and not split or merge. Such degeneracies, which might be
called passing, do not lead to discontinuities in the corresponding @, (t). What happens
to Qn(t) as g, (t) — 0 or to the null projection of p(t) is of no physical relevance, as such
projections are possessed with arbitrarily small, or zero, probability. If a function @, (¢) is
multi-dimensional, one might say that the corresponding eigenvalue ¢, (t) is permanently
degenerate. While the extended modal interpretation and the conventional modal inter-
pretation agree in their treatment of permanent degeneracies, they differ in their treatment
of passing degeneracies.

In the cases in which continuity of trajectories holds, one can use the continuous tra-
jectories to provide a framework for studying the dynamics of the actually possessed prop-
erties in the modal interpretation. As noted in the introduction, continuity of assignable
projections does not entail continuity of actually possessed properties. Nevertheless, the
two can be related by formulating the general evolution of the actually possessed properties
in terms of stochastic transitions from one continuous trajectory to another. Transition
probabilities in this sense have been derived by Vermaas [19] in special cases. General
proposals for dynamics along these lines, and which comply with the results by Vermaas,
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will be the subject of [20].

7 Instability.

The examples in this section show that, regardless of how well we can control the initial
state of some physical system, radical alterations in the definite properties defined by the
restriction of that state to a subsystem can be caused by arbitrarily small changes either
in an external parameter or in the identification of the subsystem. As these conclusions
relate to behaviour near a degeneracy, they are physically relevant despite the proposal in
section 3 that degeneracy points are almost never actually hit, and despite the continuity
results proved in section 4.

For instability problems, it is not necessary to consider infinite-dimensional spaces.
We shall work on C*. An isomorphism of C* to C*® C? can be specified by identifying an
orthonormal basis (f;)%_, of C* with the sequence (e1 ® ey, ea R eq,e1 ® eg, 65 ® ea), where
(e1,e2) is a basis for C2,

o
B
v

4]

Under this isomorphism, if a pure state ¥ has components ¥ = in the given

AP+ af+1d

basis of C*, then (|¥><¥|), has components ( Ba+o5 |82+ |02

> in the given basis
of C2.

Choose € > 0. The density matrices p. and o. of example 1.3 are given by taking ¥,
with co-ordinates

a= %—FE, f=v=0, and ¢§= %—5,

and by taking W, with co-ordinates

azéz%(\/%+€+\/%—5) and ﬁ:’y:%(\/%—l—e—\/%—s).

For e sufficiently small, these vectors are arbitrarily close, so that arbitrarily small
environmental perturbations can move one to the other.

example 7.1  There exists a Hamiltonian H(n) on a Hilbert space H = Hs ® H. and
a vector ¥ € ‘H such that H(n) is bounded and depends analytically on the parameter n
and (e " HM|W><W|e M), is jointly analytic in t and n. However, there exist to and
1o such that, for any € > 0, there exist t1, ta, n1, and 1, with

t1 —to| + [t2 — to| + [m1 —no| + |n2 —mo| < € (7.2)
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and ||§ — ¢'|| > § for any pair (¢,£) consisting of an eigenvector § of
(em T HM) | P> <W|e®tHm)) - and an eigenvector €' of (e~ "2 2) | > <@ |eit2H (n2))

proof Choose n € [0,27). An orthonormal basis for C* is given by

cos sinn 0 0

1 0 9 0 3 |1 4 |0
¥y = 0 ¥y = 0 Vo= 0 Y= 1
sinn —cosn 0 0

and a Hamiltonian H(n) which depends analytically on n can be defined by H(n)
i([2><p®| — [93><9p?]), so that

e ) = |ipl><pl| + cost(|ipi><ipr| + [1h¥><p?)
+sint([Yi><y’| — [WP><yi]) + [0t ><y?.

Let U =

o O O

e MY = cog 77|¢71,> + sinncost|1/},2]> — sinnsint|@[1f’]>

cos? 1 + sin? 1) cos t 1 —sin?n(1 — cost)
. —sinnsint . —sinnsint
N 0 N 0

sinn cosn(1l — cost) sinn cosn(1 — cost)

Define p(t,n) = (e~ tH(”)|‘If><\I/|etH(77))S

(1 —sin?n(1 —cost))2 —sinnsint(1 — sin®n(1 — cost))
— smnsmt (1 —sin?n(1 — cost)) sin?ncos?n(1 — cost)? + sin® nsin? t

(1 — 2sin? 1’]SlI12 1t)? —sinnsint(1 — 2sin? nsin? 1t)
~ \ —sinnsint(l — 2sin? nsin2 1) 4 sin? 1) cos? n sin? Tt+ sin?nsin?t )
2 1
[ cos*2n 0 -~ _ (35 O
P(Wﬂ?)— ( 0 sin22n)’so that p(ﬂ-78)_ (0 % :
sin? Z=1(1-cosZ)=1(1- \/Li) cos? T = 2(1+ \/Li)
sin &
For t close to 7, define n(t) = sin™! <—18t) sin7(t) sin 5t = sin , so that
sin =
2
i — /(1= \%)COS 1t

p(t,n(t)) = (1— \/Li) cos %t

N[ +—
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The conditions required can be satisfied by taking no = %, to = t1 = 7, and 72 = n(t2).
ty > and 1, > g are to be chosen so that (7.2) is satisfied. 1

By theorems 4.2 and 4.10, for each 7, the eigenvectors of (e~ (1 |W><W|eH (M) in
example 7.1 can be chosen to be analytic functions of ¢t. However the rate at which these
functions change with ¢t becomes arbitrarily large as n approaches 7.

We can also use the vectors ¥, and ¥, to show that the definite properties of
a subsystem can depend with arbitrary sensitivity on the precise identification of that
subsystem. This is a serious problem, because at least at the level of relativistic quantum
field theory [21], there does not seem any reason to believe that there is any splitting
of the world into subsystems of the kind considered that reflects a natural underlying
observer-independent and state-independent splitting.

In general, an isomorphism V' from a Hilbert space ‘H of dimension N N, to a tensor
product Hs; ® H., where dimHs; = Ny and dimH. = N, can be determined simply by
choosing a suitably indexed basis (an)fif:l 2’;1 for H and defining V' by V Ximn = ©m @Yn,
where (¢,): | is a given basis for H, and (¢,,)c, is a given basis for H,.

Holding (¢, ), and (v,)Ne | fixed, let (xmn)Ye e, and (x,,,) N Y| be different
bases for H corresponding to two such isomorphisms, V' and V’. This pair of isomorphisms
may be considered to be close if the basis vectors x,, and x/,,, are sufficiently close, for
all m and n, or, equivalently, if the unitary map U = V"*V| which satisfies UxXmn = X

is sufficiently close to the identity.

Let ¥ € H with ||¥]| = 1, and let (|¥><¥|); and (|¥><V¥|)s denote the reduced
density operators with co-ordinates defined using (4.6) by

<90m|(‘\1’><\11|)s’90m’> = Z <an|\D><‘;[j’Xm’n>7

n

<o (10> <)) om> = Y~ X[ ¥> < XG>

It is clear that, at the level of co-ordinates, (|U><V|)y = (U*|¥><¥|U)s,.

In order to make comparisons between different subsystems we lift structure to the
total space H. Thus, given an eigenvector ¢ of (|JU><W¥|); and an eigenvector & of
(|[I><T|)s, we compare the corresponding lifted projections V*(|{><€| ® 1)V and
V™*(|€'><€¢'| @ 1)V’ or, equivalently, we compare V*([¢><€| ® 1)V and UV*(|¢'><¢'| @
1)VU*. Notice that if U is close to the identity, then V*((|¥><¥|); ® 1)V is certainly
close to V*((|[U><V¥|)y @ 1)V,

example 7.3 Choose § > 0. There exists a Hilbert space H which can be expressed as
a tensor product H = Hs ® H, in two possible ways, corresponding to bases (an)ff;: 1 2[;1
and (X)) Ne  which are related by a unitary transformation U and are close in the
sense that ||U — 1|| < §. There is a vector ¥ € H such that for any pair (§,£’) consisting

of an eigenvector & of (|[U><W|), and an eigenvector £ of (|¥><W¥|)s we have that
tr((V*(|é><€| @ 1)V = V™*(|¢><€' | @ 1)V')?) > 1.

22



proof Choose H = C*. For ¢ sufficiently small, there is a unitary map U. arbitrarily
close to the identity acting on H such that U. ¥, =V, . Let ¥ =V, = ,/% +efi1 +

2 — a2, where (fimn)2,_12_, is a basis for C*. Define V:H — C*® C? by Vfnn =

em @ ey, where (e,,)2,_; is a basis for C?, and let V' = VU?.

m=1

\I!:Uglllag:%(\/g%—\/;)lfsﬁ‘F%(\/%"‘g_\/%_g)Uefz
—I—%(\/%—{—E—\/%—E)Ugfg—f—%(\/%‘i‘if‘i‘\/%_5)U8f4-

For e sufficiently small, as U, is arbitrarily close to the identity,
tr(V*(|€><€| @ 1)V — V*(|¢'><¢'| ® 1)V)?) is arbitrarily close to
tr((|€><€| ® 1 — |€/><¢| ® 1)?), which is equal to 2 for any pair of eigenvectors of
([U><¥))s = (|¥)p.><V,_[)s and (|¥><¥|)y = (Vo ><Uy|)s. |

8 Conclusion.

The results contained in this paper can be seen as clarifying certain features of the
modal interpretation of quantum mechanics, and thus as contributions towards an assess-
ment of the merits of that interpretation, at least in the versions considered here. The
paper contains both positive and negative results.

We have discussed theorems about continuity and analyticity of eigenvalues and eigen-
vectors of reduced density operators. We have shown that, under certain conditions, it is
possible to establish the continuity of eigenvectors even at degeneracy points. We have
used these continuity properties to introduce the notion of assignable projections for a
reduced state. We have formulated a version of the modal interpretation which attributes
properties in terms of assignable projections, extending the conventional modal interpre-
tation which uses the eigenprojections in the spectral resolution of the reduced state. The
properties attributed in our extended modal interpretation can be described in terms of
continuous trajectories. This constitutes a major advantage over the conventional modal
interpretation, and also provides a framework for the derivation of the dynamics of the
actually possessed properties.

On the other hand, the physical adequacy of the modal interpretation must be called
into question. We have shown that the continuous trajectories of the definite properties
exhibit instabilities in the neighbourhood of a degeneracy point. Variations affecting only
slightly the reduced state can induce radical changes in the definite properties. These
radical changes may be induced using arbitrarily small energies, or by an arbitrarily slight
misidentification of the system considered.

The properties attributed in the modal interpretation can also fail to be physically
adequate in the sense that they may not reflect the predicted behaviour of a system. A
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similar point is made by Albert and Loewer [9, 10], who concentrate on a specific model
of measurements. In example 5.1, we have seen that eigenvectors can disappear when the
evolution of the system state is periodic. Here are two further examples:

example 8.1 Fort >0, A >0, let

(t) = 11+ e~ cos 20t e~ sin 20t
P\ =2 e~ sin 20t 1—e Mcos20t |-

. cos 0t sin 0t
p(t) has eigenvectors ( <in 01 > and (_ cos 9t> .

In this example, the density matrix is approaching equilibrium, but the eigenvectors
do not reflect this approach.

2
example 8.2 Let H = —% on L?[0,1] with boundary conditions ¥ (0) = (1) = 0.

Let p=e " /tr(e ). p is non-degenerate and has unique eigenvector expansion

oo

p= Z e’ |un><un|/Z,

n=1
where u,,(z) = v/2sinnmz.

This is a model for an individual particle in an ideal gas in one dimension. The
eigenvectors are entirely delocalized states, so that, in this situation, the properties which
are definite according to the modal interpretation are no less “quantum mechanical” than
the original state. One might wish to claim that in a real (non-ideal) gas in three dimensions
with many particles, the eigenvectors would be, or using degeneracy could be chosen to
be, wavefunctions for localized particles. However, it seems implausible that this is always
necessarily true. It may very well be the case that the density operator for such a situation
is close to a density operator with that type of eigenvector, but, as we have seen repeatedly
in this paper, close density operators do not necessarily have close eigenvectors.

Finally, it is perhaps worth remarking that even the most preliminary supposition
of the modal interpretation can be called into question. This is the supposition that a
quantum mechanical system S can be defined on a Hilbert space Hs with its environment
defined on H,. and that the total Hilbert space of the universe takes the form H = H, Q@ He..
In relativistic quantum field theory [21], the natural subsystems to work with are those
associated with subsets of space-time. Such subsystems are defined not by “Type I” von
Neumann algebras, like the set of all bounded operators on H,, but by “Type III” von
Neumann algebras. It is still possible to define the reduction (p) to such an algebra of
the univeral state (|U><W|), but no eigenvector decomposition of p is now possible. The
examples in this paper demonstrating that eigenvector decompositions may not behave
well under approximations suggest that the modal interpretation is not at liberty to ignore
this difficulty by approximating the speed of light to infinity.
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