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Abstract. A physical and mathematical framework for the analysis of probabilities
in quantum theory is proposed and developed. One purpose is to surmount the prob-
lem, crucial to any reconciliation between quantum theory and space-time physics, of
requiring instantaneous ”wave-packet collapse” across the entire universe. The phys-
ical starting point is the idea of an observer as an entity, localized in space-time, for
whom any physical system can be described at any moment, by a set of (not neces-
sarily pure) quantum states compatible with his observations of the system at that
moment. The mathematical starting point is the theory of local algebras from ax-
iomatic relativistic quantum field theory. A function defining the a priori probability
of mistaking one local state for another is analysed. This function is shown to possess
a broad range of appropriate properties and to be uniquely defined by a selection of
them. Through a general model for observations, it is argued that the probabilities
defined here are as compatible with experiment as the probabilities of conventional
interpretations of quantum mechanics but are more likely to be compatible, not only
with modern developments in mathematical physics, but also with a complete and
consistent theory of measurement.
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1. Introduction and synopsis.

There seems to be a wide gap between the entities traditionally seen as central
in the interpretation of quantum mechanics (particles, eigenvalues, wave-functions)
and the von Neumann algebras associated with localized regions of space-time, which
are focused on by mathematical physicists interested in the conceptual foundations
of relativistic quantum field theories. The purposes of this paper are; first, to draw
attention to this gap; second, to discuss a function measuring relative probabilities
between local algebra states which is intended to be a tool for interpretations based
on field theory; and third, to develop a framework for defining the a priori probability
of a localized observer with a given quantum-mechanically specified life history up to
a given time observing a given set of local quantum states. Most of the paper should
be accessible to physicists unfamiliar with the mathematics of local algebras.
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The characterization of “wave-packet collapse” might well be thought of as the
primary problem of the foundations of quantum theory. We understand very well
how to model many physical situations, at a given moment, by an appropriate wave-
function. The problem is that the wave-function appropriate at one moment appears
to change abruptly whenever an act of measurement or an observation occurs. There
is no widely-accepted detailed theory of such acts.

In this paper, as in Donald (1990), we shall consider a more general idea of “col-
lapse” as being some process, to be characterized, which results in the discontinuous
replacement of one quantum state by another, whether or not these states are pure.
This process must, of course, be distinguished from Hamiltonian time propagation,
which is continuous, and, indeed, does not cause any change in state if we work, as
we always shall here, in the Heisenberg picture. Working in a local space-time re-
gion, we are not given wave-functions, but rather states in the operator algebra sense,
which correspond, in general, to mixed-state density matrices. Local information is
not sufficient to distinguish whether, at the global level, a given state is pure or not.

In the conventional approach to quantum theory, where we work globally, we
are given an initial wave-function ψ and a choice (ϕn)Nn=1 of wave-functions for the
result of a collapse. It is then claimed that the a priori probability of the collapse to
ϕn is given by the squared amplitude |<ϕn|ψ>|2. The most fundamental unsolved
problems in this approach lie in giving a detailed specification of the sequence (ϕn)Nn=1

and of the times at which collapse occurs. Of course, the (ϕn)Nn=1 are usually taken
to be the eigenvectors of some “measured operator”. The difficulty lies in identifying
this operator without ambiguity, given a real physical measuring apparatus. It is also
far from easy to see how such an approach can be made compatible with relativity
theory, because of the implicit assumption of a globally simultaneous collapse. The
desirability of working locally comes partly from this problem and partly from the
manifest fact that observers and observations are intrinsically localized.

In this paper, at the simplest level, the aim is to develop the possibility of consid-
ering an initial state ρ to be given on some local region specified by a set of operators
B, and to give an appropriate definition for a function appB(σ | ρ) to measure the a
priori probability of collapse occurring to a new state σ. I have previously considered,
in Donald (1986, 1987a), the mathematics of this definition, but, here, I emphasize
its physical motivation. By itself, however, the function appB(σ | ρ) is merely a tool,
albeit one which might be useful to any interpreter of quantum mechanics wishing to
work with density matrices rather than wave functions. The really challenging ques-
tion is how that tool might be used in progress towards an interpretation of quantum
mechanics based on the idea of locally defined states. This paper, therefore, is mainly
concerned with building a framework for such an interpretation. Here too there is a
problem of detailed specification, but, I believe, that the framework proposed here is
more likely to permit the construction of such a specification than is the framework
of conventional quantum mechanics. Indeed, I began such a construction in Donald
(1990), based on the idea of the physical structure of “an observer” (or equivalently,
of “a consciousness”), as being constituted by an information processor operating
through a localized family of abstractly definable quantum switches. The definition
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of a quantum switch and a demonstration that such switches exist in the human brain
are given in Donald (1990). As an interpretation, even the combination of that paper
and this will still be incomplete. This paper gives an analysis of observation processes
which allows most of the problems of detailed specification to be passed back to the
characterization of the observer. However, only an outline description of an observer
is given here. I intend to continue this work in a further paper, already in progress,
which will look at observers more closely. Although the ideas in this paper and in
Donald (1990) were originally developed together, this paper may be read indepen-
dently of its predecessor and of its sequel. I hope, in fact, that the material in much
of this paper is sufficiently general that it might be possible to use it to develop more
than one route towards a complete interpretation of quantum theory.

It is clearly not possible to develop interpretations of quantum theory from uni-
versally accepted first principles; comparing at each stage with all the alternatives.
Instead, one must choose the first principles which one wishes to use as the funda-
mental ingredients of an interpretation. One should try to make those ingredients
explicit in the form of premises which cannot be totally superseded without the aban-
donment of the interpretation. Then one can begin to evaluate the consequences of
these premises. Disagreements about premises are inevitable, but they tend not to
be as fruitful as discussions of their consequences. In this paper, I wish to develop
techniques for the calculation of a priori probability, in the context of the premise
that quantum field theory is universally valid and the premise that observers are indi-
vidual, localized, animate repositories of information gained about the universe which
are describable in quantum mechanical terms.

The emphasis on individual observers is a direct reflection of the idea that in
relativity theory we assign separate proper times to separate observers. This leads
to a many-worlds type theory in which, at each moment, each observer assigns his
own separate quantum state to the “reality” with which he is interacting. In such a
theory, compatibility with relativity is not a problem essentially because “collapse”
is an alteration of the state currently assigned by a given observer to a given system
rather than a message sent to or from that system. For the same reason, the violation
of Bell’s inequality is also not a problem. One must, of course, answer questions about
the relationship between the observations of different observers, but, as we shall see,
this is no more difficult than giving a general account of observation. The problem
which is difficult, on the other hand, is the development and understanding of a
coherent formalism for such a theory. This paper forms part of a serious attack on that
problem. Without alternative proposals reconciling relativity and quantum theory,
merely to dismiss such a many-worlds theory as being philosophically unacceptable is,
in my opinion, the least fruitful of all the potential ways of disagreeing with this paper.
For myself, I see it as being quite natural to allow each observer his own independent
objective existence, his own independent observations, and his own independent a
priori probabilities.

The development of these vague premises into a detailed interpretation will come
in the form of “postulates” or “hypotheses”. These will convert the premises into
specific formalism; providing a model with consequences which may be ascertained
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and argued over. They will be open to modification and refinement as the theory
develops. In this paper, as in Donald (1990), I shall only be presenting a partial set
of postulates. While this is dangerous, since over-all consistency is one of the hard-
est goals for an interpretation to achieve, it should, nevertheless, be permitted, in
view of the difficulty of the problem and in order to encourage variant developments.
Widespread dissatisfaction has been expressed about every interpretation of quantum
theory proposed in the course of the last sixty years. I suspect that any successful
interpretation will have to introduce so many difficult ideas as to be, in its entirety,
well-nigh incomprehensible at first sight. It seems to me, therefore, that it is worth-
while trying to discuss separately possible postulates for potential interpretations.

Despite its incompleteness, it may well appear that this paper rapidly becomes
swamped by a welter of abstract technical detail when the postulates finally appear
in section 4 and thereafter. This is regrettable, although I believe that it is also
inevitable. Much of the abstraction arises because we shall be working not with
individual quantum states but with set of states. An analogous abstraction allowed
tremendous progress in probability theory when the introduction of measure theory
required attention to pass from individual events to sets of events. Of course, in the
present context, there is a philosophical question about the desirability of ascribing
ontological priority to sets of states: Is it desirable to describe an observer as existing
as a set of sequences of density matrices? This question is left for the reader to
ponder. However, even leaving aside the claim that locally defined neighbourhoods
of states are more natural entities within relativistic quantum field theories than
globally defined eigenstates of specified operators, it may be noted that traditional
measurement theory is at a dead end, and so any theory allowing greater flexibility
should be explored.

Synopsis In section 2, it is proposed that the local quantum state is the natural
fundamental entity in quantum theory, the idea of working with sets of such states is
motivated, seven different notions of quantum probability are introduced, and the im-
portance of correlations between different observables is stressed. Section 3 discusses
the mathematical background necessary for the analysis of local states and gives a
formal definition of correlation. Attention is drawn to an important but troublesome
property of local algebras without which the mathematics which we shall need, might
be considerably more straightforward. In order to indicate how a complete inter-
pretation of quantum theory might be based on the concepts central to this paper,
some fairly broad postulates about observers are put forward in section 4. Section 5
presents a general model for an observation in terms of a state decomposition with
negligible interference effects. This imposes an important property on the function
appB(σ | ρ). Section 6 extends the model of section 5 to the context of the postulates
of section 4. In section 7, properties for appB(σ | ρ) are proposed which are appropri-
ate for a definition of a priori probability and which include the property imposed in
section 5. Much of this work involves interpreting the notion of a quantum state. In
section 8, a selection of the properties is shown to be sufficient to provide a unique
definition which satisfies all the other properties. Section 9 discusses the mathematics
of multiple-observation probabilities, section 10 sketches mathematically elementary
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models of some of the structures introduced, and the final section considers the various
consistency issues which have arisen.

2. What are the fundamental concepts for interpretations of universally
valid quantum theories?

Sometimes, quantum mechanics can seem no more than a disparate collection
of calculational recipies. For example, we can calculate the frequency-dependent
susceptibility of a family of atoms in a cavity, we can calculate electron-positron
annihilation cross-sections, and we can relate the zero-temperature energy gap in
weak-coupling superconductivity to the transition temperature. The glory of quantum
mechanics, however, is the unity it brings to such disparate topics. It is not just that
the methods for calculations are often similar; involving perturbation theory and
phenomenological, approximate Hamiltonians. It is also the suspicion that there is a
true universal Hamiltonian in some wonderful super-theory of everything, and that
all our calculations are valid approximations for different situations in that universal
theory.

Of course, it is not known whether footballs, planets, and steam engines are solely
governed by quantum mechanical laws. The Copenhagen interpretation of quantum
theory demands the existence of a “classical regime” in which macroscopic objects
can be described using Newtonian mechanics. On the other hand, Everett (1957),
developed the many-worlds interpretation, which he referred to as “The Theory of
the Universal Wave Function”, precisely in order to be able to apply quantum theory
to the entire universe. In this paper the universal validity of quantum theory will also
be postulated. However, the framework of the development here will be different. In
constructing a universal quantum theory, Everett conceived a brilliant intuition about
the nature of observers which will be discussed below. He expounded his intuition in
the framework of elementary quantum mechanics. I shall use Everett’s intuition, but
I shall try to expound it in a framework compatible with quantum field theory.

In most interpretations of quantum mechanics, the concept of the individual
particle is fundamental. In interacting relativistic quantum field theories, however,
local particle number becomes indefinite, because of the possibility of particle (or
particle-antiparticle) creation. Only in scattering theories are particle states clearly
definable. In other words, either we deal with an idealized infinite-volume theory,
or we work locally and accept that the concept of “an individual particle” is as
“classical” in relativistic quantum theory as the concept of “a particle with precisely
defined position” in non-relativistic quantum theory. Indeed, in a way, the former
concept is even more “classical”, since, charge quantum numbers apart, it is not even
plausible that it is possible to specify, for example by appropriate renormalizations or
dressing transformations, operators unambiguously “measuring” the expected number
of particles within a given region. The mathematical construction of quantum field
theory models in two-dimensional space-time has provided models in which this sort
of problem could be made explicit (Glimm and Jaffe (1971, 1972, 1979)).
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It is a first principle in this paper that the quantum measurement problem should
be discussed and solved in terms of localized entities – entities that exist and are de-
fined within bounded regions of space-time. In particular, observers and experiments
are assumed to be localized in this sense. In order to define local entities, one must be
able to defined “local quantum states”. Fortunately, a mathematical theory of such
states already exists. This theory will be reviewed briefly below. Of course, the idea
of the “local quantum state” is natural, and does not need any deep mathematics
for an initial physical perspective. From such a perspective, we would say that the
quantum state in a space-time region Λ (by convention, a region is an open bounded
connected set) is simply the state that one assigns to the objects within Λ. In view of
quantum measurement problems, however, this statement does require considerable
eludication and modification. In particular, the word “one” presumably refers to an
observer and must require specification of that observer and his time frame. Also,
since we have assumed that Λ is extended in time (and this may well be necessary
in relativistic field theories (Streater and Wightman (1964) §3.1)), we should expect
that it is possible for a process analogous to “wave-packet collapse” to require the
assignment of more than one state to Λ. This paper provides tools for attacking these
difficulties.

Despite being bounded, the space-time regions that we shall be working with
are to be thought of as macroscopic; perhaps, for example, big enough to contain
an animate observer over an extended time period. This implies, in particular, the
consideration of multiple observations and the assignment to the region of a sequence
of several or many states. The theory for single observations is considerably simpler
than that for multiple observations. Much of the mathematics of the single observation
theory is presented in Donald (1986, 1987a). This paper provides a broader physical
framework for that mathematics and also tackles the multiple observation theory.

As already mentioned, a local state is to be thought of as a density matrix, which
is, in general, mixed; rather than as a pure state wave-function. There are several
grounds for wishing to base interpretations on density matrices rather than on wave-
functions. Of course, quantum theory often provides wave-functions as initial models
for a given physical system, but it is elementary to use these to construct density
matrices. For a first ground, at the mathematical level, it is worth mentioning for
the experts, that on a type III von Neumann algebra (the sort relevant for quantum
statistical mechanics and local quantum field theory), there is no such thing as a pure
normal state. Secondly, at the physical level, we shall be dealing with the best guess
that a given observer can make for the current state of a given macroscopic subsystem
of the universe. It is certainly more natural for him to assign thermodynamical
properties, for example, entropy and temperature, to such subsystems than to try to
assign, for example, an exact eigenstate of some, not necessarily well-defined, energy
operator. Finally, at the formal level, it is often claimed that one can simply replace
a density matrix by an element of its eigenexpansion. However, this is difficult to
justify because the relationship between the two is both ambiguous (e.g. 1

2 |ψ1><ψ1|+
1
2 |ψ2><ψ2| = 1

4 |ψ1 + ψ2><ψ1 + ψ2| + 1
4 |ψ1 − ψ2><ψ1 − ψ2| for orthogonal ψ1 and

ψ2) and unstable (e.g. ( 1
2 + ε)|ψ1><ψ1| + (1

2 − ε)|ψ2><ψ2| is arbitrarily close to
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( 1
4 + ε)|ψ1 +ψ2><ψ1 +ψ2|+ ( 1

4 − ε)|ψ1−ψ2><ψ1−ψ2| for sufficiently small ε > 0).
The assumption that this relationship is easily dealt with is one of the major problems
with, for example, Everett’s formalism. By always working at the density matrix
level, we can give a much more sophisticated analysis and a generalization of this
relationship; thus, allowing, for example, for imprecision. This is one of the central
tasks of this paper.

Our starting point, nevertheless, is that for a density matrix

ρ =

∞∑
i=1

ri|ψi><ψi| (2.1)

where (ψi)
∞
i=1 is an orthonormal basis of H and 0 ≤ ri ≤ 1 with

∑∞
i=1 ri = 1, ri

should be the a priori probability of going from ρ to |ψi><ψi| when such a collapse is
warranted. A decomposition of the form (2.1) will be recognized as a decomposition
“without interference effects”. Justifying such a decomposition for “the true physical
state” in appropriate circumstances has long been seen by many to be a solution to the
problems of measurement theory. However, while it seems to be widely accepted that,
in as far as interference effects can often be physically negligible, such decompositions
can often be plausible models for physical situations, it also seems that justification
from first principles has been lacking or unsatisfactory. The validity of such a de-
composition depends on an appeal to non-unitary, irreversible time propagation or
to some sort of “coarse-graining”. In this paper, coarse-graining comes from the re-
striction to localized regions, and the localization of observers is a first principle. The
realization that coarse-graining arises naturally from the incomplete, non-universal,
structure of an observer is precisely the brilliant intuition which I ascribed above to
Everett.

No less than seven different notions of quantum probability arise in this paper or
are in common usage. The first notion is that of the a priori probability of observation
of a subsystem occupying a given set of states by an observer with a given life history
up to a particular time. This notion is presented in section 4. The second notion is
the function appB(σ | ρ) measuring the a priori probability of the collapse of the state
ρ on B to the state σ. The third notion involves taking a density matrix as a mixture
of components weighted by probabilities, as exemplified by (2.1). appB(σ | ρ) will be
constructed as a generalization of this notion. The fourth notion is the idea of the
expected value of a projection P in a state ρ. Recall that if ρ =

∑∞
i=1 ri|ψi><ψi| is

a state and P =
∑∞
n=1 |ϕn><ϕn| is a projection, for suitable (orthonormal) wave-

functions ψi and ϕn, then this expected value is defined as

ρ(P ) =
∑
n,i

ri|<ψi|ϕn>|2. (2.2)

The left hand side of (2.2) uses an alternative notation for tr(ρP ), which is
basic to the mathematical analysis of states on von Neumann algebras and which
will be used throughout this paper (see 3.3). Notion four is also a generalization of
notion three, since ri is the expected value of the projection |ψi><ψi| in the state
given by (2.1). This notion is fundamental to textbook quantum theory; being at
the heart of such calculated quantities as scattering cross sections and decay rates
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where it often appears in the guise of the fifth notion which is that of probability
as amplitude squared. Indeed, whenever this arises as a “transition probability” in
textbook calculations, it can always be interpreted as a special case of notion four.

The sixth notion may be referred to as “relative frequency”, or, more generally, as
“statistical probability”. A particle lifetime, for example, equivalent to a probability
per unit time for decay, is not directly observable by a single measurement on one
particle. Instead, statistics have to be gathered from many measurements. The quoted
“observed” lifetime is found by an analysis of these statistics. Statistical probability
itself comes in many different varieties, depending not only on the analysis made of
a given set of measurements, but also on the particular methods of observation. The
empirical justification of conventional quantum theory lies in the observed agreement
between these statistical probabilities and theoretical calculations of probabilities of
the third, fourth, and fifth kinds. In section 6, it will be argued that this empirical
evidence yields just as strong a justification for a theory based on the first notion.

Ultimately, each of these six notions depend on, and are consistent with, the
seventh, and fundamental, notion of the “typical” observer. The typical observer ob-
serves a world in which, when suitably applied, the first six notions are almost always
consistent. The typical observer also lies at the heart of the justification of classical
probability theory, because it is only for the typical observer that relative frequen-
cies measured over long periods usually come very close to predicted probabilities.
The typical observer may occasionally win a lottery, but cannot win every lottery
he enters. The deepest idea in this paper is a definition of a priori probability for
the families of sets of states occupied by individual observers. Typical observers are
those for which this a priori probability is relatively high. In quantum theory, as in
classical theory, any method of calculating probabilities will be justified in as far as
it can be argued that typical observers will tend to observe relative frequencies which
agree, in the long run, with those calculations. The first five notions of quantum
probability described above provide tools with which, in appropriate circumstances,
such calculations can be made.

By choosing appropriate local quantum states for a given physical situation, it
is possible to model the “different situations” which distinguish between, for exam-
ple, regions where there are lasers, and laser theory applies, and regions where there
are superconductors, and superconductivity theory applies. Alternatively, appropri-
ate local quantum states might be chosen to be approximate scattering states and
could, say, represent “close to” five “reasonably well-separated” particles initially at
“around” five given places and with “roughly” five given momenta. Elementary quan-
tum mechanics tells us how to define “wave-packets” and more sophisticated theories
build on the same intuition. There is, however, a central dilemma here, exemplified
by the fact that a wave-packet is neither a position nor a momentum eigenstate (of
course, it could not be so, because none such exist within the space of normable
wave-functions). The dilemma is that, while a range of approximating wave-packets
is possible, with limits set only by the uncertainty principle, there is no definitive
theory for choosing within that range. The essence of the problem of state collapse is
that we cannot merely assume that some state within the range is given to us by an
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ultimately deterministic dynamics – we need to understand the processes by which
the states that we do see come to be seen.

In the standard interpretation of quantum mechanics, the resolution of this
dilemma is supposed, somehow, to lie in the correct description of the measurement
process and its equivalent, the state preparation process. Any measurement is sup-
posed, somehow, to be a measurement of some given, predetermined, operator with a
given discrete spectrum. The association between measuring apparatus and measured
operator, however, is seldom made explicit, and there seem to be no generally appli-
cable techniques for defining such an association. It is not clear, for example, that a
bubble chamber experiment is not just as much a measurement of bubble positions
as of elementary particle positions.

As a first step in reaction to this state of affairs, we shall defocus; allowing that
there is a wide variety of operators that one is, to some approximation, measuring.
We shall, therefore, consider a measuring apparatus or an observation as describable
not in terms of eigenvectors of a given operator, but merely in terms of a given
family of neighbourhoods of local quantum states. For example, in the traditional
approach, the results of an energy measurement will be the eigenvalues {Ei : i ∈ I}
of a prescribed Hamiltonian H. These correspond to density matrices {σi : i ∈ I}
such that σi((H −Ei)2) = 0. The methods introduced in this paper would allow the
results of an approximate energy measurement, or a measurement in which H is an
approximate Hamiltonian, to correspond to sets of density matrices – say,

{Si : i ∈ I} where Si = {σ : σ((H − Ei)2) < ε} for some ε > 0. (2.3)

While an appropriate formalism for any sort of approximate measurement could
be developed from this paper, the focus here will be on allowing for small variations
in the states assigned by conventional measurement theory. Indeed, we shall focus
on unobservably small variations, because these will still be enough to avoid the
assumption, for example, that a particle must occupy an exactly specified wave-packet.
It is possible to allow such variations because there is no need to try to associate
definitive structure with each measuring apparatus in a theory which gives the cardinal
role to the observer. The measurement made by the apparatus need be specified only
to the extent that the observer’s observations of the apparatus requires the apparatus
states to be defined. Ultimately, the “observed apparatus” in which we shall be most
interested and to which these remarks will still apply, is the observer’s own brain.

The distinction between different neighbourhoods of states is made by the ex-
pected values which these states assign to various operators. These operators could
include any of the possible operators which we might traditionally think that we were
measuring. Thus, in a bubble chamber experiment, the results are distinguished both
by the original elementary particle positions and by the bubble positions, because
the entire purpose of the apparatus is to correlate these variables. More generally,
the purpose of quantum mechanical experiments is to correlate variables linked to
microscopic objects with variables linked to macroscopic objects. Bohr saw such
macroscopic variables as constituting a “classical regime”. In my opinion, it is their
observed behaviour which is most important, rather than any direct relation to New-
tonian mechanics. A macroscopic variable is one which is always seen by observers to
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take definite values in such a way that different values are only seen to be taken on
states which differ extensively throughout macroscopic space-time regions. Explain-
ing the existence of such variables is a major task for an interpretation of quantum
theory; one which will need a considerable input from statistical mechanics as well as
a theory of observers.

Macroscopic variables are always extensively correlated with other macroscopic
variables. At a descriptive level, any one of a wide variety of correlated macroscopic
variables will suffice to distinguish the different possible results of an experiment.
The a priori probability of a given result will be determined, to a good approxima-
tion, by the initial expectation value of any of a wide variety of projection operators
correlated to these macroscopic variables. The compatibility between these various
approximations suggests the possibility of replacing textbook quantum mechanics by
an alternative theory without violating the compatibility between theory and obser-
vation. We shall give this a more formal treatment in sections 5 and 6. Macroscopic
situations can be of great complexity. For example, one can observe not only an
experimental result, but also the reaction of a colleague to that result. The fact that
different observers will, in general, agree between themselves about the result of an
experiment, is reflected, at the theoretical level, in correlations between appropriate
macroscopic variables. Thus a theory which deals adequately with correlations will
automatically be a theory in which the observations of different observers appear to
be compatible.

The range of correlated macroscopic variables makes it difficult to choose defini-
tive observables for each particular experiment. Ultimately, however, the purpose of
any experiment is to cause changes in the brain of the observer. For this reason, it
is possible to reduce all observations to neural observations. Indeed, this is the only
way that I can see of finding “simple”, “natural” descriptions, sufficient to specify
arbitrary observations. Moreover, I think it is then necessary to use abstract defini-
tions and to give an abstract definition of an observer as an information processor.
All entities satisfying such a definition are to be allowed equivalent status as possi-
ble manifestations of the observer, each with its own a priori probability. This led
in Donald (1990) to the introduction of a “quantum switch” as an information pro-
cessing primitive. Abstractly specified neighbourhoods of states were used in that
definition partly in order to allow for perturbations and yield a “structurally stable”
theory and partly in order to deal with the fact that there do seem to be many al-
ternative sets of equivalent quantum switches with which a human brain can be seen
as functioning as an information processor. In section 4, I introduce a preliminary
model, compatible with that work, of an observer as a neighbourhood of sequences of
quantum states with correlations expressed on a distinguished set of observables. In
the sequel to this paper, the ideas in section 4 and in Donald (1990) will be developed
to give a full abstract model of an observer. Leaving the details of all this to one side,
however, there remains plenty to do in this paper in finding a method for calculating
probabilities in such a context.
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3. Mathematical Background.

At an elementary level, a quantum mechanical system S is described by a Hilbert
space HS of wave functions defined in terms of variables appropriate to that system.
If the Hilbert space for the entire universe is taken to be H, then it is assumed that
there is another system S′ describing the rest of the universe such that H can be
written as a tensor product: H = HS⊗HS′ . Observables on the system S are defined
as operators on HS , that is as elements of B(HS) – the space of all bounded operators
on HS . For simplicity of language, I shall use the word “observable” to refer to any
bounded operator, not just to a Hermitian operator. Also, I shall not distinguish
between an operator A ∈ B(HS) and the operator A ⊗ 1S′ ∈ B(H), where 1S′ is the
identity operator on HS′ . The states of S are defined to be the density matrices of
HS .

A mathematically more sophisticated approach allows for more general sets of
operators to correspond to the observables of S. This approach says that to S cor-
responds a von Neumann algebra AS , and that physical states of S correspond to
normal von Neumann algebra states on AS . It will always be assumed here that
there is a global Hilbert space H describing the entire universe. Every subsystem von
Neumann algebra A will then be a subset of B(H).

Definition
3.1) Given B ⊂ B(H), we define B′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ B} and
B′′ = (B′)′.
3.2) A von Neumann algebra A is a subset of B(H) such that
i) λ1A1 + λ2A2, A1A2, and A∗1 ∈ A for all λ1, λ2 ∈ C, A1, A2 ∈ A,
ii) A′′ = A.
3.3) Mathematicians define a normal state ρ on a von Neumann algebra A to be a
σ-weakly continuous, positive, linear function on A such that ρ(1) = 1 where 1 is
the identity operator. There is an equivalent but less sophisticated definition. First,
a density matrix ω =

∑∞
i=1 pi|ψi><ψi| on H is identified with a function on B(H)

by writing ω(A) =
∑∞
i=1 pi<ψi|A|ψi> for A ∈ B(H). Then a normal state ρ on a

subsystem corresponding to an algebra A is defined to be a function on A which is
the restriction of some (not necessarily unique) density matrix ρ′ in the sense that
ρ(A) = ρ′(A) for all A ∈ A.

Von Neumann algebras are useful tools in quantum statistical mechanics (Bratteli
& Robinson (1979, 1981)), and they are essential for describing local properties in
quantum field theory. It is therefore necessary to be able to develop our ideas at the
von Neumann algebra level. While this will be done in the sequel, physicists who are
not familar with the notation will not lose any of the fundamental content of the paper
by reading throughout “density matrix” for “von Neumann algebra state” and “set
of all bounded operators on a Hilbert space defining a subsystem” for “von Neumann
algebra”. Attention, however, must be paid to the relationship between subsystems
and regions of space-time.

According to the theory of local algebras in quantum field theory, to each region
Λ of space-time there is associated a von Neumann algebra A(Λ) consisting of the set
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of all observables defining properties within that region. We shall refer to a state on
A(Λ) as being a state in the region Λ. The theory of local algebras has been most
completely developed in the context of Wightman fields, but there seems little doubt
that it can be extended to cover gauge field theories (Seiler (1982)). In my opinion,
analogous structures will also exist in the context of the quantization of gravity.
Various properties have been postulated for local algebras (Haag and Schroer (1962),
Haag and Kastler (1964), Driessler, Summers, and Wichmann (1986), Buchholz and
Wichmann (1986)). Two which will be relevant below are:
3.4) If Λ1 and Λ2 are spacelike separated then [A1, A2] = 0 for all A1 ∈ A(Λ1) and
A2 ∈ A(Λ2).
3.5) If Λ1 and Λ2 are spacelike separated by a strictly positive distance, and ρ1 and
ρ2 are arbitrary states on A(Λ1) and A(Λ2) then, there exists a state ρ on B(H) with
ρ|A(Λ1) = ρ1 and ρ|A(Λ2) = ρ2.

(3.5) is an expression of the physical independence of strictly spacelike separated
regions. It is related, but not equivalent, to (3.4) (Haag and Kastler (1964), Roos
(1970), Ekstein (1969, Appendix C), De Facio and Taylor (1973), Buchholz, D’Antoni,
and Fredenhagen (1987)).
A(Λ) is the set of all operators that could conceivably be measured within the

region Λ. For many purposes this set might appear to be much too large. However,
the A(Λ) are the only fundamental sets of observables supplied by quantum field
theory, and, in my view, they are the only fundamental sets of observables on which
to base interpretations of quantum theory. Fundamental sets of observables are called
for, in particular, in the task, mentioned in section 2, of finding abstract definitions
for observers.

At the elementary level, if we have two subsystems S1 and S2 then we have,
correspondingly, two Hilbert spacesH1 andH2, and two sets of observables B(H1) and
B(H2). The observables B(H1⊗H2) of the combined system onH1⊗H2 do not consist
just of the union of B(H1)⊗ 12 and 11 ⊗B(H2). There are also correlations between
S1 and S2. Similarly, for two space-time regions Λ1 and Λ2, A(Λ1∪Λ2) is, in general,
strictly larger than A(Λ1) ∪ A(Λ2). In what follows, we shall be considering sets of
observables like, for example, B = ∪Nn=1A(Λn)∪C for some set {Λn : n = 1 . . . , N} of
relevant space-time regions and some subset C of A(∪Nn=1Λn) expressing a physically
relevant selection of the correlations between the Λn. In general, B will not be a von
Neumann algebra because it will not be true for every pair B1, B2 ∈ B that we also
have B1B2 ∈ B. Physically, we shall be dealing with sets of subsystems, rather than
with a single all-embracing subsystem. This leads to mathematical complications, so
an explanation of why it would be inappropriate to use A(∪Nn=1Λn) is called for.
Definition
3.6) A double cone C(x, y) is a region in space-time, defined by two points x and y
such that x− y is timelike and future directed, which takes the form

C(x, y) = {z : x− z and z − y are timelike and future directed}.
3.7) The causal shadow Λsh of a region Λ is defined as

Λsh = {x : every future directed timelike path from x meets Λ}
∪ {y : every past directed timelike path from y meets Λ}.
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In terms of (3.7), it is very natural to assume that our local algebras should
possess the property that, for any region Λ,

A(Λ) = A(Λsh). (3.8)

This property, proposed by Haag and Schroer (1962), amounts to the assumption
of determinism for quantum field theory, in the sense that the Cauchy problem is well-
posed. If (3.8) holds and we know the state of the world in the region Λ, then we also
know the state of the world in the causal shadow of Λ.

Haag and Schroer exhibited a certain Wightman field theory (a generalised free
field) which did not have property (3.8). This failure, which should lead us to discard
such fields as being unphysical, has been examined further by Garber (1975). On the
other hand, property (3.8) has been proved for ordinary free fields and for P (ϕ)2 and
Y2 fields (see Glimm and Jaffe (1971, 1972)).

The following property is closely related, but takes a different angle on the casual
shadow:

Property 3.9 Suppose that x, y ∈ Λ with x− y timelike and future directed, and
suppose that Λ contains a neighbourhood of some timelike path from y to x. Then
A(C(x, y)) ⊂ A(Λ), where C(x, y) is given by (3.6).

It has been proved by Borchers (1961) and Araki (1963) that this property holds
for all Wightman fields. I shall assume that it holds for all quantum field theories.

Property 3.9 is troublesome: Suppose that local algebras do provide the funda-
mental variables for describing physical systems. Consider a small physical object on
the surface of the Earth. Suppose that we study that object for three seconds, and
that we learn its state precisely over that entire period. If we think of that state as
being a state on the local algebra of the space-time region swept out by the object,
then according to property 3.9, we would know the precise state of everything from
the Earth to the Moon at some time within that interval. This is essentially because
the amount of information and degree of precision being required is absurd. Events
on the Moon affect the precise correlations between two events on the Earth separated
by a time interval of the appropriate length. Indeed, property 3.9 says that so many
correlation variables can be generated that correlations of Earth events can reveal
Moon events. This would appear to destroy the potential of localization for providing
a mechanism for coarse-graining. The problem is to loosen the force of the require-
ment that a local state be known precisely over an extended period, while retaining
a theory compatible with relativistic quantum field theory and definable in abstract
terms. One way of doing this is to consider states of physical objects to be defined
on non-algebras. We shall throw away information about all except a specified subset
of the correlations between time-like separated events. Simplicity of language will be
maintained by introducing the following, to some extent non-standard, definition:

Definition 3.10 A normal state σ on a subset B ⊂ B(H) is the restriction of a
density matrix σ′ on H to B.

As noted above, this definition agrees with the standard definition of a normal
von Neumann algebra state when B is a von Neumann algebra. If B ⊂ A(Λ) for some
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bounded space-time region Λ, then the set of states defined by 3.10 is exactly the same
as the set of restrictions to B of pure normal states on H. This is a consequence of the
fact that the vacuum may be assumed to be a separating vector for the algebra A(Λ)
(Streater and Wightman (1964, theorem 4.3), Driessler, Summers, and Wichmann
(1986), Strătilă and Zsidó (1979, §5.24)).

When appropriate, mathematical readers should extend definition 3.10 and con-
sider also restrictions of non-normal states. Non-normal states are states with inferior
continuity properties which are related to normal states very much as irrational num-
bers are to rational numbers. They arise, for example, in mathematically natural
limiting processes. The existence of such states is largely irrelevant to the physics
of this paper because the formalism will allow us to impose whatever properties we
find physically necessary on the sets of local states we want to use. For physicists, it
is much more important to bear in mind that “state” here means “density matrix”
rather than “wave function”. At the technical level, however, when I need to restrict
myself to normal states, I shall do so explicitly. In particular, the supremum in 8.4
and all related suprema are intended to be over all states rather than just over nor-
mal states (cf. the remarks following 7.6 and Donald (1986, example 6.6) and (1987a,
lemma 4.3).

Remark 3.11 It is an immediate consequence of 3.10 that every state on a subset
B does have extensions to B(H). These extensions will usually not be unique. It will
often be convenient in the sequel to allow ambiguity in notation by not distinguishing
between a set C of states on B and the set C ′ of states such that σ′|B ∈ C. (For a
function f on B(H), we write f |B – the restriction of f to B – to denote the function
on B defined by (f |B)(B) = f(B) for B ∈ B.)

Remark 3.12 A zealous logician would now notice that definition 3.10 really refers
to the set of states on B(H) given by {σ′ : σ′|B = σ}, and would suggest that
everything below be rephrased entirely in terms of sets of states on B(H). This would
be possible and we shall need to return to this idea in section 7, but the sets referred
to by definition 3.10 are of such central significance that it is useful to adopt a special
notation for them. As these sets do define (single-valued) functions on B, the notation
is not inappropriate.

Definition 3.13 As we shall only be interested in the set B through the states
definable on it, it will always be possible to replace B by the largest set with the same
states. This will be denoted by c(B) and is the norm closure of the linear span of
{1}∪B∪{B∗ : B ∈ B}. c(B) is the largest set to which every state on B has a unique
extension in the sense that for every pair of states σ and ρ on B(H) if σ|B = ρ|B then
σ|c(B) = ρ|c(B).

Throughout, this paper focuses on states rather than on operators. Traditionally,
measurement theory has focused on operators and the assignment to them of definite
values, but I think that this may have been a mistake; resulting in a narrow theory
which is viewed as irrelevant by most physicists. The versatility of quantum mechanics
is demonstrated in the provision of state descriptions for every physical situation.
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The measurement problem arises because such descriptions do not remain valid over
extended time periods.

The idea of correlation is central to this paper. This idea is given a mathematical
translation by the following lemma and definition, which demonstrate in particular
that correlation is state dependent.

Lemma 3.14 Let ρ be a normal state on a von Neumann algebra A. Let P,Q ∈ A
be projections and R = P ∧Q. Suppose that ρ(P ) > 0, ρ(Q) > 0. Then the following
are equivalent:
(i) ρ(P ) = ρ(Q) = ρ(PQ).

(ii) PρP/ρ(P ) = QρQ/ρ(Q).
(iii) ρ(P −R) + ρ(Q−R) = 0.

proof Let s(ρ) be the support projection of ρ, which, by definition, is the smallest
projection P such that ρ(P ) = 1. We shall use the fact that ρ(AA∗) = 0 ⇐⇒
s(ρ)A = 0 (Strătilă and Zsidó (1979, §5.15)).

(i)⇒ ρ(QP ) = ρ(PQ) = ρ(P ) = ρ(P )⇒ ρ((P −Q)2) = 0⇒ s(ρ)(P −Q) = 0

⇒ PρP = Ps(ρ)ρs(ρ)P = Qs(ρ)ρs(ρ)Q = QρQ⇒ (ii)

⇒ ρ(PQP ) = ρ(P )⇒ 0 = ρ((P − PQ)(P −QP ))⇒ s(ρ)(P − PQ) = 0

⇒ s(ρ)P = s(ρ)PQ = s(ρ)PQP = s(ρ)PQPQ = . . . = s(ρ)(PQ)n = s(ρ)R

(since R = s− limn→∞(PQ)n)

⇒ ρ(P −R) = 0. (iii) follows by exchanging P and Q.

Suppose (iii). Since P−R ≥ 0, we have s(ρ)P = s(ρ)R = s(ρ)Q = s(ρ)PQ⇒ (i).

Definition 3.15 We shall say that projections P and Q are exactly correlated by
the state ρ if the conditions of lemma 3.14 hold. More loosely, we shall say that P
and Q are correlated by ρ when the conditions hold to an approximation which is
adequate for a particular context.

For an example of the type of situation in which correlations arise in this paper,
suppose that we are given two von Neumann algebras A1 and A2. Suppose that an
observer knows the state on A1 and that he is observing the subsystem defined on
A2. Suppose that P1 ∈ A1 and P2 ∈ A2 are projections. In order to discover whether
P1 and P2 are exactly correlated in a given state it will be sufficient (by 3.14(i)) to
specify that state on P1, P2, and P1P2. It may not be sufficient simply to specify the
state on A1 ∪A2. To express these pair correlations, it is appropriate to use the set

c{A1A2 : A1 ∈ A1 and A2 ∈ A2} (3.16)

where c is the closure operation defined by (3.13). In general below (for example,
(4.2), (4.3)), we shall be considering unions of sets of the form (3.16). These unions
could possibly be taken instead over components corresponding to the von Neumann
algebra generated by A1 and A2, without running into problems with property 3.9.
However, I have chosen, as a general principle, always to look for minimal sets of
operators on which to define states. If A1 and A2 are mutually commuting algebras,
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then the von Neumann algebra generated by A1 and A2 is the weak closure of the set
given by (3.16).

4. Postulates about observers.

Postulate One Quantum theory is the correct theory for all forms of matter and
applies to macroscopic systems as well as to microscopic ones.

Postulate Two For any given observer, any physical system can be described, at
any time, by a neighbourhood of quantum states, which is the set of states compatible
with his observations of the system at that time. A function can be defined on such
a neighbourhood to measure the a priori probability, or likelihood, of any state or set
of states, within the neighbourhood given the observer’s prior knowledge.

The task in this paper is to find an appropriate definition for “a priori probability”
in this postulate. Note that technically a neighbourhood of a state σ is a set containing
an open set containing σ. The word is used here simply to indicate that there will
always be some variations of any given state which the observer will be unable to
perceive. The precise nature of these variations, however, may be quite subtle as will
be explained in example 9.8.

Postulate Three An observer O, existing between times t0 and T , is localized
in a succession {Λ(t) : t ∈ [t0, T ]} of space-time regions. O is characterized by the
neighbourhoods of quantum states which he assigns to the physical systems A(Λ(t))
for t ∈ [t0, T ]. There is a distinguished subset Γ(T ) of {A : A ∈ A(Λ(t)), t ∈ [t0, T ]}
with respect to which O defines correlations.

The simplest version of this postulate would involve a single space-time region;
taking Λ(t) to be independent of t. However, in view of the problem raised by property
3.9, it is necessary to restrict the temporal extension of the algebras on which we define
the observer’s states. Thus, for each t, Λ(t) will only be extended over time sufficiently
to allow the momentary properties of the observer, at time t, to be defined. The time
co-ordinate here is simply an observer-dependent parameter. It may be assumed to
be an approximate local proper time.

Postulate three assigns to an observer space-time regions which may be thought
of as containing his body or his brain, and insists that he is characterized by the
states which he assigns to those regions. A generalization of postulate three would
allow for several “body parts”. Another generalization would involve neighbourhoods
of geometrical structures. Indeed, this is probably necessary in order to make the
theory “structurally stable”. It is also necessary to consider variations in the sets
Γ(T ). These generalizations will largely be ignored in this paper since they introduce
additional levels of complexity without essentially modifying the central concepts.
For example, it is straightforward to allow for both small and large variations in the
geometrical structures and in the Γ(T ) within the general process of finding entities
of highest a priori probability. Large variations would be called for in the project
of considering as equivalent all entities acting as equivalent information processors of
the required nature.
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In Donald (1990), I have proposed that observers are composed of elementary
body parts which function as quantum switches, and I have given a characterization
of the states of a quantum switch on a family of local algebras of the form {A(Λ(t)) :
t ∈ [t0, T ]}. This proposal allows one specific implementation of postulate three. In
this implementation, with the notation of Donald (1990) hypothesis V, Γ(T ) will be
the set of time translates of the switch projections P and Q:

Γ(T ) = {τy(tk)(P ), τy(tk)(Q) : k = 1, . . . ,K}. (4.1)

Postulate Four There is a finite sequence of times t0 < t1 < . . . < tM = T and
a neighbourhood NT of M -component sequences of states such that for any sequence
(σm)Mm=1 ∈ NT , O views σM as a possible present state and the sequence (σm)M−1

m=1

as comprising a possible past. In this sequence, σm is the state which O sees himself
as having occupied in the time interval [tm−1, tm). Thus (σm)Mm=1 ∈ NT implies
(ρm)Mm=1 ∈ NT for all sequences (ρm)Mm=1 such that, for each m ≤M , ρm(A) = σm(A)
for all A ∈ A(Λ(t)), t ∈ [tm−1, tm). The states σm are all taken to be states, in the
sense of 3.10, on

BM = c{AC : A ∈ A(Λ(t)), t ∈ [t0, T ], C ∈ CM} (4.2)

where CM is the von Neumann algebra generated by Γ(T ) (compare (3.16)).

The finiteness of the sequence in this postulate is necessary if we are to main-
tain the idea that Hamiltonian evolution is fundamental with quantum measurement
providing merely occasional interruptions to reset that evolution. This finiteness also
allows us to evade the “quantum Zeno paradox” to which we shall return in section
9. The change in state from σm−1 to σm is a “collapse”. Collapse is required to
occur because the observer, by his nature, can only occupy certain types of state.
This means that NT has to be defined in such a way as to forbid superpositions, or
mixtures, of O observing different events (distinguishable by O himself), in order to
reflect the fact that O only ever sees himself as observing a single reality. A choice
of the neighbourhood NT corresponds to a choice of a single possible reality history
seen by O. In many worlds language, “different worlds” would correspond to different
neighbourhoods – each different sequence within a single neighbourhood corresponds
to a different possible structure through which O may observe one single “world”.

Postulates three and four introduce an arrow of time and propose that by time
tm, O is gaining information about the set Bm. The fact that, at time T , O considers
all of the members of NT as being sequences of states on BM is possible in view of
3.11 and will be required both so that “collapse” may be between states defined on a
common domain, and, more importantly, as a reflection of the fact that BM is the set
of operators of which O is then aware. The use of extensions of states from Bm to BM
is unrestricted, because, in calculating probabilities, we shall always take suprema
over all extensions.

Postulate Five There is an initial quantum state ω describing the universe prior
to the existence of any observer.

ω is far removed, by a long sequence of collapses, from the state of the universe
that we see. Underlying this work is a picture of observers as information processors
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of a particular type of structure. That structure defines the possible neighbourhoods
NT of postulate four. The aim here is to define an a priori probability for each such
neighbourhood given a particular initial state ω. It must be required that this can
be done in such a way that the only observers which exist with relatively high a
priori probability are those which are processing information giving them an accurate
picture of reality and that we ourselves are such observers. This implies that ω should
be such that the most likely sequence of information-carrying collapses would result
in states which model the flesh and blood brains of apparently evolved life.

Of course, there is an unconventional viewpoint involved in postulating that
collapse is observer-dependent. Thus, in the framework of postulate four, the collapses
implicit in the usual idea of the past must be seen as being made indirectly by each
separate observer as he learns about the apparent consequences of such a past. For
example, consider an observer discovering a fossil. The conventional view would be
that the fossil must essentially have been fixed from not long after the moment of
death. The suggestion here is that the observer in looking at a rock surface is now
collapsing out one single image from all the possible images that that surface might
reflect. Only a priori probabilities for those images were fixed just before the observer
studied the surface, and even they depended on the observer.

This is related to Everett’s answer to Einstein’s difficulty with the idea of a mouse
bringing about drastic changes in the universe simply by looking at it (Everett (1957)
p.116) – if it is the mouse and not the universe which changes then the universe
has a state which always remains uncollapsed. That state is ω. As far as I can see,
despite the change of viewpoint, the speculations of cosmologists are still appropriate
in identifying ω. In particular, on a space-time region around what we see as the solar
system over a recent period, ω will approximate a 2.7◦K thermal equilibrium state.

Postulate Six The a priori probability of O existing at time T in a specific present
state σM on BM with a specific past sequence (σm)M−1

m=1 of states on BM is a function
appBM

((σm)Mm=1 |ω) of BM , of (σm)Mm=1, and of ω|BM
.

Postulate Seven appBM
((σm)Mm=1 |ω) =

∏M
m=1 appBM

(σm |σm − 1) where we de-
fine σ0 = ω|BM

, and where appB(σ | ρ) is a function of states σ and ρ on B.

This postulate expresses the intuition that, for the observer O at time T , aware of
the set BM , the world starts in the state ω|BM

, and then undergoes a finite succession
of “collapses” through a sequence of states σ1, σ2, . . . , σM on BM . Postulate seven
requires that the collapse from σm−1 to σm depends only on those two states. It
introduces the function appB(σ | ρ) of just two states which is to be interpreted as
measuring the a priori probability of the collapse of the state ρ on B to the state σ.

Perhaps the most striking difference, at the conceptual level, between postulates
four to seven and the conventional framework in physics, is that O is described, at a
given moment, not just by the state which he has reached at that moment but by the
family of states which he has passed through. The conventional framework requires
that past information is used to specify a unique global state at the present, but this
is not appropriate in the present framework because we are working locally and with
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neighbourhoods of states. As we shall see, even within such neighbourhoods, there
may not be any states of maximal a priori probability, and, even when there are, they
need not be unique. This underscores the proposal of postulate three that it is the
entire set NT which characterizes O.

As an aside, I note that one of the fundamental long-term goals of my work,
expressed in part in Donald (1990) and in this paper, is to identify the (objective)
physical substrate of consciousness. Part of the idea behind postulate four is that,
even at a given moment, that physical substrate is not just the instantaneous state
of a brain but instead involves the history of that brain. For example, we do not
understand the meaning of a word like “blue” because it can make us remember clear
skies – that would merely be a functional definition of consciousness – but because
the meaning for us is, in part, our previous experience of those skies. More precisely,
the neural structures brought into play by hearing the word “blue” are closely linked
to structures formed on sunny days. The meaning of those structures lies in the past.
Consciousness reads, for itself, the present neural excitement through being all its
previous patterns of excitement.

The next postulate demonstrates how the probabilities of individual sequences
of states are to be combined in order to give a total a priori probability for NT . This
postulate will be given in a form which is more general than is strictly necessary. It
defines, in terms of NT and the subsidiary function appB(σ | ρ) , an a priori proba-
bility for O to observe a given physical system occupying a given set of states. At
the fundamental level, it would be sufficient to define the a priori probability of O
observing NT , indeed, ultimately, we only need an appropriate relationship between
the sixth and the seventh notions of probability given in section 2. The more general
definition introduced by postulate eight will provide a model making that relation-
ship plausible and will be useful in motivating the definition of appB(σ | ρ). While the
work of subsequent sections will confirm the broad consistency of the general version
of postulate eight with other methods of calculation in quantum mechanics, at the
deepest level, when applied to arbitrary sets of states, it is only a tool, like notions 3,
4, and 5 of section 2. There are many circumstances in which the definition provides
a useful tool, but there may be other circumstances in which it is not useful. In view
of these remarks, the theory of multiple observations given here will be restricted to
the succession of observations by the observer of his own structure. This succession
will extend over his entire life to date.

Two versions of postulate eight will be given. The preliminary version expresses
the fundamental physical idea of a succession of collapses to states of maximal a priori
probability given the state already reached. The second version allows for the fact
that, while we can always find states of close to maximal a priori probability, there
may be no states for which the maxima are actually attained. In this version, we look
for (infinite) sequences of elements of NT , (these elements are themselves, of course,
finite sequences), which come arbitrarily close to maximal a priori probability at each
successive moment of collapse.

Maximizing a priori probability will be a central technique used throughout this
paper. This might seem strange, since it is obvious that it is not only the most likely
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events which happen. The idea is that the physical structure of a given observer
observing a given event can be manifested by many different but equivalent forms –
in particular, by any one of the elements of a single set NT . The a priori probability of
that observer is then measured by a series of steps each maximizing a priori probability
over equivalent and, as far as the observer is concerned, indistinguishable structures.
No restriction is placed on the different events which the observer may come to find
himself observing, which will correspond to different NT , beyond the restrictions
imposed by his own nature. These are to be expressed through the definition of the
NT . (It is because its statement does not take full account of these restrictions that
postulate eight is “over-general”.)

Postulate Eight (preliminary version) Suppose that, at time T , O observes a
physical system defined on a set of observables BS .

Define BSM = c(BM ∪ {BC : B ∈ BS , C ∈ CM}). (4.3)

For m = 1, . . . ,M , define sets of initial sequences

Nm = {(σi)mi=1 : ∃(σi)Mi=m+1 with (σi)
M
i=1 ∈ NT },

where, in view of 3.11, these are considered to be sets of sequences of states on
BSM . Define, by induction on m, the following maximal a priori probabilities and
corresponding sets. Start with

app0(NT ,BSM , 1, ω) = sup{appBSM
(σ |ω) : σ ∈ N 1} and

Ñ 1
0 (BSM ) = {σ ∈ N 1 : appBSM

(σ |ω) = app0(NT ,BSM , 1, ω)}.

Then, for 1 < m+ 1 ≤M , set app0(NT ,BSM ,m+ 1, ω) = 0 and Ñm+1
0 (BSM ) = ∅ if

Ñm
0 (BSM ) = ∅ and if not set

app0(NT ,BSM ,m+ 1, ω) = sup{appBSM
((σi)

m+1
i=1 |ω) : (σi)

m+1
i=1 ∈ N

m+1

and (σi)
m
i=1 ∈ Ñm

0 (BSM )} and

Ñm+1
0 (BSM ) = {(σi)m+1

i=1 ∈ N
m+1 : (σi)

m
i=1 ∈ Ñm

0 (BSM )

and appBSM
((σi)

m+1
i=1 |ω) = app0(NT ,BSM ,m+ 1, ω)}.

(4.4)

(This says that Ñm+1
0 is the set of partial sequences with maximal a priori probability

given an initial sequence in Ñm
0 .)

Then, the a priori probability of O, at time T , observing the subsystem to occupy
a set of states C is defined by

app0(O, T,BS , C|ω) = 0 if ÑM
0 (BSM ) = ∅ and otherwise by

app0(O, T,BS , C|ω)

= sup{appBSM
((σm)M+1

m=1 |ω) : (σm)Mm=1 ∈ ÑM
0 (BSM ), and σM+1 ∈ C}. (4.5)
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Postulate Eight (final version) Suppose that, at time T , O observes a physical
system defined on a set of observables BS .

Define BSM and Nm as above.
Define, by induction on m, the following a priori probabilities. Start once again

with
app(NT ,BSM , 1, ω) = sup{appBSM

(σ |ω) : σ ∈ N 1}.

Then, for 1 < m+ 1 ≤M , set

app(NT ,BSM ,m+ 1, ω) = sup{lim sup
n→∞

appBSM
((σni )m+1

i=1 |ω)

: ((σni )m+1
i=1 )n≥1 is a sequence of elements of Nm+1

and, for 1 ≤ k ≤ m, appBSM
((σni )ki=1 |ω)→ app(NT ,BSM , k, ω)}.

(4.6)

(This says that the partial sequences (σni )ki=1 approach the successively maximal a
priori probabilities as n→∞.)

Then, the a priori probability of O, at time T , observing the subsystem to occupy
a set of states C is defined by

app(O, T,BS , C|ω) = sup{lim sup
n→∞

appBSM
((σnm)M+1

m=1 |ω) :

((σnm)Mm=1)n≥1 ⊂ NM , (σnM+1)n≥1 ⊂ C, and, for 1 ≤ k ≤M,

appBSM
((σni )ki=1 |ω)→ app(NT ,BSM , k, ω)}.

(4.7)

The mathematics of this postulate is explored in section 9. The inductive def-
inition expressed by (4.6) imposes a natural causal framework on O’s present de-
scription of his past as a developing sequence of collapses. In particular, note that
app(NT ,BSM ,m, ω) does not depend on the specific set of states C which O will
observe on BSM . There is no particular sequence of states which we can point to as
the sequence which O actually occupies or observes. However, for δ > 0, it is useful
to define

Ñm
δ (BSM ) = {(σi)mi=1 ∈ Nm : appBSM

((σi)
k
i=1 |ω) ≥ app(NT ,BSM , k, ω)− δ,

for k = 1 . . . ,m} and

ÑM+1
δ (BSM , C) = {(σm)M+1

m=1 : (σm)Mm=1 ∈ ÑM
δ (BSM ), σM+1 ∈ C, and

appBSM
((σm)M+1

m=1 |ω) ≥ app(O, T,BS , C|ω)− δ}.
(4.8)

For sufficiently small δ, elements of Ñm
δ (BSM ) will successively have close to maximal

a priori probability (lemma 9.10). However, these sets do depend on δ, on m, on M ,
and on S. The validity of the approach taken to quantum mechanics in this paper
depends on the claim that, for δ sufficiently small and for suitable systems S, elements
of Ñm

δ (BSM ) will be sequences of states close to those which would be assigned, for
the appropriate time intervals, to O or to S in conventional quantum theory. This
claim is fundamental and we shall return to it in section 6. It implies, for example,
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that the various dependencies of Ñm
δ (BSM ) are not problematical. It will only be

justified in as far as it is demonstrated that it leads to a consistent and plausible
theory.

Considerable philosophical heresy is inherent in postulate eight. It defines a
theory of the world as it is observed which, although postulating the existence of a
“real world” outside the observer, also claims that how that world is likely to be seen
depends essentially on the structure of the individual observer. The “real” “fixed”
“external” world enters through the state ω, defined by postulate five, through the
Hamiltonian time propagation implicit in our continual reliance on the Heisenberg
picture, and through the use of an observer-independent a priori probability. The
observer dependence enters through the sets NT and BM . A full definition of these
sets will also make objective the class of physical structures through which an observer
may be embodied.

Even when all these definitions are given, we shall not have a full elucidation
of the meaning of the defined term “a priori probability”. Philosophers have writ-
ten voluminously about the meaning of conventional (measure-theoretic) probability
theory and without reaching a consensus (see Cohen (1989, chapter II) for a review).
The probability introduced by postulate eight is not even conventional because, for
example, it does not define a measure on the space of sets of states. In particular,
the a priori probability of a union of sets of states is not, in general, the sum of the
separate a priori probabilities (see property G of section 7 and lemma 8.9). Indeed, as
anticipated in postulate two, if the set C consists of a single state, (4.7) will be mean-
ingful and may well not vanish. It is for this reason that it is necessary to introduce
a postulate showing how to combine probabilities of individual sequences of states,
rather than expecting to be able to define general a priori probabilities by sums of
terms of the form appBM

((σm)Mm=1 |ω). Thus, philosophical questions both old and
new are raised by this paper. Perhaps some of the old questions are made more inter-
esting by providing an alternative framework in which they can be discussed. In this
paper, these questions will not be addressed directly. The goal is a method of cal-
culating objective probabilities for individual observations. The meaning of “a priori
probability” will be left at the intuitive (and circular) level of “a number measuring
(relative) likelihood”. The next two sections provide examples of circumstances in
which this intuition is satisfactory.

The numbers defined by (4.7) are trivially Lorentz invariant, by property D of
section 7, if the underlying quantum field theory also is. This is an important step is
establishing the compatibility of the proposed theory with special relativity. Indeed,
given that collapse is observer dependent, it only remains to note that the relation of
the observer to space-time geometry is supposed, through postulates three and four,
to be explicit, so that the causal framework in which collapse appears to occur can
be made specific. One way in which relativity might lead to difficulties in conceivable
variants of the theory proposed here stems from the fact that the number given by
(4.7) will depend on the ordering of the underlying collapses. This might be a problem,
particularly with the generalization of postulate three to allow for several body parts,
if some of those collapses refer to mutually simultaneous changes in structure (for

23



example, “switchings” in the sense of Donald (1990)). For a single observer, we can
deal with this dependence, either by extending the supremum in (4.7) over all re-
orderings of such mutually simultaneous changes, or by assuming a fixed ordering as
part of the observer’s fundamental structure. However, this ordering problem does
seem to me to rule out any attempt to extend the theory to include all observations
made by all observers within a single structure analogous to NT .

Analogous remarks might be made about the conventional interpretation of quan-
tum mechanics. The Lorentz invariance of probability amplitudes is an automatic
consequence of a unitary representation of Lorentz transformations but observer-
independent global collapse gives rise to an intractable ordering problem. In the
conventional interpretation, global collapse also requires global specification of the
eigenfunctions of each measured operator – or equivalently global specification of the
operator itself. This once again emphasizes how difficult the specification problem is
for the conventional interpretation.

5. The a priori probability function and measurement theory.

(4.7) introduces a function measuring the a priori probability of observation of
a given set of states by an observer with a given life history up to a particular time.
Through postulate seven, that function is defined in terms of the subsidiary function
appB(σ | ρ). In this section, we link the values of this latter function to conventional
measurement theory, first, by requiring that appB(σ | ρ) should generalize the notion
that the weight of a component in a density matrix is the a priori probability of that
component, and, second, by examining the link between that notion and measurement
theory. The requirement of the first stage is expressed by the following property, which
we shall be able to impose on appB(σ | ρ):

5.1) Suppose that ρ = paρa + (1 − pa)ρd for 0 ≤ pa ≤ 1 and ρ, ρa, and ρd states on
some set B. Suppose that there exists a projection Qa ∈ B such that ρa(Qa) ≥ 1− ε
and ρd(Qa) ≤ ε for some ε ∈ [0, 1

2 ]. Then

pa ≤ appB(ρa | ρ) ≤ pa − 3ε log ε.

This implies that appB(ρa | ρ) is close to pa when ε is sufficiently small and ρa
and ρd are, in an obvious sense, close to disjoint.

For the second stage, we introduce:

5.2) A General Model of an Observation. Suppose that an observer O observes
the outcome of a measurement on a macroscopic system defined by a set of observables
BS . Let C be the set of states on BS compatible with the observations of O just
before he learns the outcome of the measurement and let Ca be the set of states
on BS compatible with his observations when he has discovered that the outcome
is a. Suppose that according to conventional quantum mechanics, outcome a has
probability pa and corresponds to a state σa on BS . Then

A) there is a projection Qa in BS such that σa(Qa) = 1, and, for some small ε ≥ 0,
all the most likely states in C will belong to {ρ : pa− ε ≤ ρ(Qa) ≤ pa + ε} and all the
most likely states in Ca will belong to {ρ : ρ(Qa) ≥ 1− ε}.
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B) Among the most likely states in C, there are states ρ taking the form

ρ = paρa + (1− pa)ρd (5.3)

where ρa ∈ Ca, ρ(Qa) ≥ 1− ε, and ρd is some state on BS with ρd(Qa) ≤ ε.

Some of the terms in this model are undefined. The words “macroscopic system”
allow for the imposition of suitable conditions on the set BS . The scenario to be
invoked is of a human experimenter studying BS directly with his unaided senses.
“Small” will not be defined, but, as will be explained, it is plausible that, in the present
context, it can be taken to refer only to unmeasurably small effects. “Most likely” will
be interpreted intuitively in this section. The appeal to “most likely states” is part
of a consistency argument for the a priori probability being introduced. Postulate
eight permits us to restrict attention to such states. As we are working with a many
worlds theory, in which there is no unique state which is the “true” observed state of
the world at a given moment, it is necessary to allow for highly unlikely or bizarre
states in which, for example, entropy decreases on a macroscopic scale during the
experiment. There will be such states in Ca and there will be other highly unlikely
states in which the correlations invoked below do not hold.

In as far as it is a state decomposition with negligible interference effects, (5.3)
is like (2.1), and so is very much part of the normal focus of measurement theory.
For example, Daneri, Loinger, and Prosperi (1962), Hepp (1972), Whitten-Wolfe and
Emch (1976), Machida and Namiki (1980), Araki (1980, 1986), and Zurek (1981,
1982), provide a variety of models and arguments all giving plausible evidence that
inference effects can be neglected in practice because of the macroscopic nature of
measuring devices. These reference mainly rely, or can be read as relying, on coarse-
graining and, in particular, on the fact that we cannot have perfect and complete
knowledge of the states of macroscopic systems. The aim in this paper is to take a step
beyond these arguments and to introduce a formalism within which the limited nature
of the knowledge of an observer can be expressed. This will be a formalism appropriate
for a universe in which, as far as any observer is concerned, inference effects are indeed
negligible, in the appropriate circumstances, but over which, nevertheless, a global,
unitary, time propagation still holds sway.

The central task in this section and the next is to make explicit plausible minimal
assumptions under which (5.3) will be valid in the framework of section 4. As we
shall see, a theory based on the function app is a theory in which information only
becomes definite in circumstances where interference effects can be neglected. The
coarse-graining implicit in (5.3) comes from restricting BS to be only part of the
total local algebra affected by the measurement. This section gives an elementary
explanation of how such coarse-graining works as a preliminary to the next section
in which the scenario will be less conventional and much harder to handle explicitly.
In particular, in this section we shall consider states on BS but not the extensions to
BSM required by postulate eight.

If we put ε = 0 then 5.2A would say that the most likely states in Ca are
eigenvectors of Qa. As it is claimed that ε is negligible, it might be suggested that
there is not much difference between the present model and conventional quantum
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mechanics – we are considering eigenvectors of a less than completely defined operator.
However, the framework is quite different. Any macroscopically observable situation
allows for the definition, in many different possible ways, of projections Qa. Being
able to deal in the same way with any of the enormous variety of different projections
is a mark of consistency for the present theory, rather than an ambiguity problem, as
it is for conventional quantum theory. The reason for this is that in the conventional
theory, the fundamental entity is supposed to be exactly one of these projections, but
we have not been told which one, while in the present theory, the fundamental entities
are to be defined by the structure of an observer, and the measurement model merely
allows that observer to make a variety of mutually consistent predictions. Ultimately,
also, there is a tremendous difference at the theoretical level between an ε which
vanishes and an ε which is unobservably small. Only in the latter case, do we really
avoid having to specify definitive observables for each measuring apparatus.

The closeness to conventional quantum mechanics otherwise is, of course, no
bad thing, because of the success of that theory. It is a reflection of that success
that the model of this section can be claimed to be “general” even although it does
not use the full generality of postulate eight, according to which Ca might be any
set of states. Nevertheless, the existence of that further generality is important;
refuting any suggestion that (5.2) is more than a “general model”. In particular, the
further generality provides consistency between postulates eight and four and allows
for situations like (2.3) to which the present model will apply only indirectly.

We begin the justification of the model, with our assumptions about BS . We
assume that it is restricted in temporal and spatial extension, in the sense that BS ⊂
A(ΛS) for some restricted space-time region ΛS . ΛS could, for example, be a region
containing a photograph, which would constitute the result of the experiment for the
observer, at around the moment when he first begins to glance at that photograph.
We shall further assume that the result of the experiment could be observed in a
different restricted region ΛS

′ which is space-like separated from ΛS . In the example,
ΛS
′ might be a region simultaneous with ΛS containing light which had reflected from

the photograph just prior to ΛS , or it might be a region containing the photographic
negative.

The existence of projections Qa such that Qa projects onto the wave functions
modelling the outcome a is an essential part of the content of traditional measurement
theory. For example, in a bubble chamber experiment, Qa could be a projection onto
an orthonormal basis of wave-functions modelling the scattering particle heading in
a given direction, or it could be a projection onto wave-functions of local regions of
gas (bubbles) in the chamber along the given path, or it could involve wave-functions
of the photographic plate, or of the light moving away from a developed photograph.
Qa could even involve suitably chosen wave-functions in the brain of the observer.
These projections are not unambiguously defined, but that is merely a reflection of
the fact that the “given result” cannot be precisely defined; except, indeed, as a class
of correlated projections. The variation in expected value between these projections
in likely states is one of the unmeasurably small effects referred to earlier.
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It will be possible to choose Qa to be in BS by the assumption that BS is large
enough to define a physical system. In this case, the statement that Qa projects onto
the wave functions modelling the outcome a implies that the most likely states in Ca
belong to {ρ : ρ(Qa) ≥ 1−ε} for some small ε, because a state in Ca will not belong to
that set only if, in that state, Qa is not correlated with the projections with which O
interacts most directly when making his observations. Such states are highly unlikely.
There are two quite different aspects to the claim that, for ρ a state of high a priori
probability in C, we must have ρ(Qa) close to pa. On the one hand, we are requiring
that O have sufficient information about the experimental set-up, whether or not he
can translate that information into numbers, to pre-determine the probabilities of the
various possible outcomes. On the other hand, we are assuming that conventional
calculations correctly provide expectations of appropriate projections in appropriate
states. This is a consistent assumption as the relevant calculations only use quantum
dynamics prior to collapse.

It is possible to find two of these result-determining projections Qa ∈ BS and
Qa
′ ∈ BS ′ where BS ′ is the commutator of BS (see (3.1)). This follows from the

assumption about the existence of two space-like separated regions ΛS and ΛS
′ with

BS ⊂ A(ΛS) in each of which the result of the experiment could be determined. We
can choose Qa

′ ∈ A(ΛS
′) and, from (3.4), A(ΛS

′) ⊂ A(ΛS)′ ⊂ BS ′. Among the most
likely states in C there will be some which can be extended from BS to A(ΛS∪ΛS

′) in
such a way that they are good models on the whole of that set of the physical situation
as O sees it. This is because the same physical causes which O observes giving rise to
the state on BS act with just the same probability on the whole region ΛS ∪ ΛS

′. In
such a state ρ, the commuting projections Qa and Qa

′ will be correlated, in the sense
of 3.15 because we have three projections Qa, Qa

′, and QaQa
′ each of which serves

to pick out the observed result with the same pre-determined probability, so that (to
order ε) ρ(Qa) = ρ(Qa

′) = ρ(QaQa
′) = pa. Then, for B ∈ BS ,

ρ(B) = ρ(Qa
′B) + ρ((1−Qa′)B)

= ρ(Qa
′BQa

′) + ρ((1−Qa′)B(1−Qa′)) (since Qa
′ ∈ BS ′)

= ρ(Qa
′)ρ(Qa

′BQa
′)/ρ(Qa

′) + ρ(1−Qa′)ρ((1−Qa′)B(1−Qa′))/ρ(1−Qa′)
= paρa(B) + (1− pa)ρd(B)

where ρa and ρd are defined by

ρa(B) = ρ(Qa
′BQa

′)/ρ(Qa
′) and ρd(B) = ρ((1−Qa′)B(1−Qa′))/ρ(1−Qa′).

But ρ(Qa) = ρ(Qa
′) = ρ(QaQa

′) = pa implies that ρa(Qa) = 1 and that ρd(Qa) = 0
(all to order ε). ρa is constructed from wave-functions modelling outcome a of the
experiment so that ρa ∈ Ca.

There is a shortcut to the justification of (5.3). This involves the idea of entropy
as a measure of the number of available states. For example, the entropy S of a
glass of water can be written as k logN where k is Boltzmann’s constant, and the ex-
perimentally determined value for S gives N as roughly 103×1025

. Identifying S with
k tr(−σ log σ) for some density matrix σ, N is a lower bound on the number of orthog-

onal pure states into which σ decomposes (i.e. writing tr(−σ log σ) = −
∑M
i=1 pi log pi

in the usual way, we have tr(−σ log σ) ≤ logM). σ can be decomposed into two
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disjoint states in at least 2N−1− 1 ways, since this is the number of ways that the set
{1, . . . , N} can be split into two disjoint non-empty subsets.

Because the measured entropies of macroscopic systems are so large, when in-
terpreted in the way described, it is not implausible to assert that relation (5.3)
automatically holds for any real physical measurement. For conventional quantum
statistical mechanics, the set BS would be taken to be a fixed-time local algebra for
the system in question. The argument is that any state of a macroscopic system
at normal temperature can be decomposed with an astonishing fineness. According
to statistical mechanical theory, the decomposition is into energy eigenstates of the
system. Those energy eigenstates however are enormously degenerate, so that even
the pure states of the finest decomposition are far from unique. To assert (5.3) is
then to claim that one can rebuild some decomposition on the left-hand side into the
decomposition required on the right. Thus (5.3) will be a simple consequence of the
fact that the state splits in so many different ways and the fact that the required
splitting is compatible with everything which has been observed about the system.
What makes this argument most plausible is the fact that ρ in equation 5.3 is only
defined up to the precision of human observation. This level of precision is one on
which the laws of classical thermodynamics appear to be obeyed absolutely regard-
less of finite volume or time effects. Classical thermodynamics tells us that inference
effects are negligible, even if it does not explain why.

The well-known work of Daneri, Loinger, and Prosperi (1962), which uses time-
averaging, can be interpreted as attempting an explanation by suggesting that a
decomposition like (5.3) happens with high ergodic-theory probability. In this paper,
localization, a physically much better-founded method of coarse-graining, is used, and
instead of appealing to ergodic theory, we can invoke a direct relationship between
entropy, or more precisely negative free energy, and the a priori probability function
to be defined (see the discussion following property H of section 7). This will make
thermodynamically plausible states more likely than other states, and, in particular,
other things being equal, states of higher entropy will tend to have higher a priori
probability. The first argument for (5.3) is more satisfactory because of its directness.
The argument based on entropy is weaker, but it does at least suggest that the
smallness of Boltzmann’s constant in practical units may be quite as important in
explaining the fact that the macroscopic world appears to behave in a classical fashion
as the smallness of Planck’s constant. It also provides an upper bound on the number
of macroscopically distinguishable results for any given experiment and a quantitative
measure of macroscopicness.

6. A priori probability and observations.

In section 2, seven different notions of quantum probability were mentioned. In
this section, we consider the link between the a priori probability defined by postulate
eight and the statistical probability which an observer assigns to the outcome of his
next experiment following a long sequence of prior trials. Empirical justification for
a theory based on the postulates of section 4 will be provided, by arguing that all the
empirical evidence normally used to justify conventional quantum mechanics can be
transferred to the framework of these postulates.
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The empirical evidence for conventional quantum theory lies in the observed
agreement between measured statistical probabilities and theoretically defined prob-
abilities. In order to transfer this evidence, it is only necessary to demonstrate that
the new theory defines similar probabilities in similar circumstances. Once this has
been done, the choice between the theories can only be made on such grounds as
completeness, internal consistency, and aesthetic appeal.

The circumstances in which conventional quantum theory defines measurable
probabilities can essentially all be subsumed under the general measurement model
proposed in section 5. This, of course, is apparently to ignore the distinction be-
tween discrete and continuous observables. However, this is acceptable, since we
are modelling only circumstances in which information has become observable at a
macroscopic level. At such a level, not only does thermal noise inevitably wash out
the finest gradations of an observable property, but also, those gradations which are
observable, are observable precisely because there is a difference in the macroscopic
properties to which they are correlated. The measurement model can be extended to
the context of section 4 by the following postulate:

Postulate Nine Suppose that O observes the outcome of an experiment on a
macroscopic system defined by a set of observables BS . Suppose that model 5.2
applies, and adopt the notation of that model. Recall definition (4.8). Then, for
every sufficiently small positive δ,

A) every sequence (σm)Mm=1 ∈ ÑM
δ (BSM ) will satisfy pa − ε ≤ σM (Qa) ≤ pa + ε, and

every sequence (σm)M+1
m=1 ∈ Ñ

M+1
δ (BSM , Ca) will satisfy σM+1(Qa) ≥ 1− ε.

B) There is a sequence (σδm)Mm=1 ∈ ÑM
δ (BSM ) which is such that σδM takes the form

σδM = paρ
δ
a + (1− pa)ρδd (6.1)

where ρδa|BS
∈ Ca, ρδa(Qa) ≥ 1− ε, and ρδd is some state on BSM with ρδd(Qa) ≤ ε.

Once again, we have the phrase “macroscopic system”, in this postulate, referring
to the need to impose the same conditions on BS here as were needed for model 5.2.
ε will again be left unspecified. A gives an explicit interpretation of the phrase “most
likely states” used in 5.2A. As will be shown in proposition 9.11, it is a consequence of
postulate nine and the definition of app to be introduced below that the conditional
a priori probability of O observing a is close to pa in the sense that

app(O, T,BS , Ca|ω)/ app(O, T,BS ,Σ|ω) ∼ pa (6.2)

where Σ is the set of all states on BS . (This means that the denominator is the a
priori probability of the vacuous experiment in which O observes any result on BS .)
It follows that, if b is a second possible result of the experiment, with conventionally
calculated probability pb, then the ratio of the a priori probability of O observing a to
the a priori probability of O observing b will be close to the conventionally calculated
ratio pa/pb in the sense that

app(O, T,BS , Ca|ω)/ app(O, T,BS , Cb|ω) ∼ pa/pb. (6.3)
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It is also demonstrated in proposition 9.11 that, if we set σδM+1 = ρδa, then, for δ

sufficiently small, appBSM
((σδm)M+1

m=1 |ω) is close to app(O, T,BS , Ca|ω) and that

appBSM
(ρδa |σδM ) ∼ appBSM

(ρδa|BS
|σδM |BS

) ∼ pa, (6.4)

so that, in this particular circumstance, appBSM
(ρδa|BS

|σδM |BS
) is indeed an appro-

priate “collapse” probability.
(6.2) and (6.3) are empirically justified because they make the same predictions as

conventional quantum mechanics. They can therefore be used to annex the empirical
evidence which is normally taken to support conventional quantum mechanics. What
is more, they seem to me to be sufficient to annex all of that empirical support.
My disagreement with conventional quantum mechanics is based on that theory’s
inexpiable incompleteness rather than on its predictions.

Unlike postulate eight, postulate nine is not a definition. Indeed, at the deep-
est level, it is merely a model – in other words, something which is a useful general
picture rather than a precise and complete description of any particular experiment.
Such a complete description would require a much more detailed analysis of the ob-
server and of observation. Postulate nine makes a hypothesis about the nature of
the states most likely to be experienced by O in the given circumstances. In judg-
ing the validity of this hypothesis, there are various aspects to be considered. The
fundamental claim, already mentioned in section 4, is that we can find a mathemat-
ical definition for a priori probability which is appropriate in the sense of yielding
likelihoods for quantum states which are consonant with intuition. In other words,
a definition which is such that the most likely states modelling a given situation are
states which conventional quantum theorists would allow to be assigned to that sit-
uation. This will then imply, for example, that, for δ sufficiently small, σδM can be
taken to be a standard quantum state modelling an observer, or his brain, on BM
and an experimental apparatus on BS , just before the observer becomes aware of
the result of the experiment. In particular, this is compatible with the analysis in
Donald (1990), where the brain was considered from the viewpoint of conventional
neurophysiology and conventional statistical physics. It will also imply that σδM does
provide the correlations which we would expect between BM and BS , and that this
holds for any of the variety of possible sets BS , compatible with model 5.2. The
claim implies part A of postulate nine by underpining the argument given in section
5 for 5.2A. Another implication, which could fail for pathological choices of BS – in
particular, were we to take BS = B(H), is that (σδm)Mm=1 has a priori probability

close to sup{appBM
((σm)Mm=1 |ω) : (σm)Mm=1 ∈ ÑM

δ (BM )}. This implication reflects
the expectation that all the constraints on (σδm)Mm=1 are imposed through BM . The
considerable attention devoted below to motivating the definition of app is with the
purpose of making this fundamental claim plausible.

According to (6.1), certain states of highest a priori probability have a property
of being mixed. (6.1) would be justified, if the splitting of ρ in (5.3) could be extended
from BS to BSM . By (5.3) and the fundamental claim just made, we can assume that
σδM |BS

takes the form paρ̂a+(1−pa)ρ̂d for suitable ρ̂a and ρ̂d. We can also assume that
we know the state σδM |BM

. Even with these assumptions, however, a considerable step
is required to reach (6.1). This step depends on a degree of physical independence
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between the observer and the observed system. That there is a real problem here
may not seem obvious, but it must be remembered that, in general, particularly at
the macroscopic level, individual quantum states only provide “realistic” descriptions
over short time intervals. All our intuition is based on such intervals because the
world always appears as if state collapse was occurring with high frequency. Imag-
ine, for example, smoke rising from a fire and then ask how many collapses, in the
generalized sense used throughout this paper, are required to produce a particular
observed pattern. When, as now, we are required to consider quantum states over
extended time intervals without permitting collapse, we need to be extremely careful
about existence. It need not be true that there exists any pair of states ρδa and ρδd
such that

ρδa|BS
= ρ̂a, ρδd|BS

= ρ̂d, and ρδa|BM
= ρδd|BM

= σδM |BM
. (6.5)

This is because BM and BS do not commute and are not independent in the sense of
(3.5), so that, given a state ρ1 on BM and a state ρ2 on BS , there need not exist any
state ρ on BSM such that ρ|BM

= ρ1 and ρ|BS
= ρ2.

Nevertheless, if ρ1 equals σδM |BM
; which, by assumption, is a typical state for

the body of the observer to have reached just before he becomes aware of the result
of the experiment, and if ρ2 is any state modelling a given result of the experiment,
then there does exist such an extension ρ. This extension is constructed simply by
imagining circumstances, however unlikely, in which the state modelled by ρ2 on BS
is produced deterministically without the knowledge of the observer. In a bubble
chamber experiment, for example, it is possible to imagine a duplicitous graduate
student slipping an old bubble chamber photograph, or even an artifically constructed
one, into the pile marked “output”. The first step in this argument is the assumption
that there is an extension ρ̃δ of σδM |BM

to a system BMG such that ρ̃δ|BMG
models not

only O but also the student. Even this assumption is not necessarily true, because of
the temporal extension of BM (see (4.2)), but from both mathematical and physical
points of view I certainly find it extremely plausible. The second step is to note that,
by construction, ρ2 is the extension of ρ̃δ to BS .

It is consistent with section 5 to assume that ρ̂d can be constructed as a mixture
of states modelling possible results of the observation other than a, so this thought
experiment yields states ρδa and ρδd which do satisfy (6.5). The mixture ρδ = paρ

δ
a +

(1 − pa)ρδd on BSM is compatible with all the information available to O just before
he observes the outcome of his experiment and is a physically plausible state in the
sense that in each separate spatial region it has typical thermodynamic properties. Of
course, the fantasy required to discover this state is absurd and there is no suggestion
that the graduate student is anything other than part of a mathematical construction.
We have no interest in the extensions of ρδ away from BSM to the operators with which
the state of the graduate student would be described, were he to exist. Given that
states satisfying (6.5) do exist, (6.1) reduces to the hypothesis that they are the most
likely such states. This hypothesis can now be taken to be part of our fundamental
claim, backed up by (5.3) and the mixing-enhancing property of app which will be
given as property H in the next section.
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There is a problem with postulate nine which ought at least to be mentioned.
This is that insufficient allowance has perhaps been made for approximation. (6.1) is
claimed to hold for a component of a sequence of elements which approach arbitrarily
close to a supremum of a priori probabilities. The mathematical structure is such,
particularly as app will turn out not to be continuous, that, for example, small changes
in BM or BS could conceivably cause large changes in Ñm

δ (BSM ). I believe, however,
that this is a mere mathematical pathology and that structural stability can be given
to the theory by allowing variations in the precise definition of the system S and in
the geometric structures implicit in the definition of BM .

7. Properties of a priori probability.

In this section, properties appropriate to an a priori probability which can play
the role required, will be listed and justified. In the following section, it will be shown
that certain of these properties are sufficient to give a unique definition which does
indeed possess all the properties listed. In my opinion, the totality of properties
satisfied by this definition does make it both suitable and hard to modify. Of course,
this section has been written with hindsight in that it does proceed towards a pre-
established definition: given by property B and (8.1 – 8.4). Thus its true purpose is
to introduce and justify that definition.

Property A appB((σm)Mm=1 | ρ) is a function of a set B ⊂ B(H) and of (σm)Mm=1

and ρ – restrictions of states to B.

This property is consistent in statement with postulate six, but to be fully con-
sistent in notation we should earlier have written appBM

((σm)Mm=1 |ω|BM
) rather than

appBM
((σm)Mm=1 |ω).

Although fundamental to the definition of app, property A is probably the most
difficult property to motivate. In essence, it is a postulate about how the global state
ω influences a localized observer. Mathematically, it may be noted that, since measur-
ing a priori probability involves the comparison of states, it is desirable to define those
states on a single set. There are two obvious alternatives. One of these, requiring
that app depends on a given, fixed, globally-defined extension of each σm, contradicts
the idea of locality. This alternative takes us straight back to the Copenhagen inter-
pretation and to all its problems. The other althernative permits the set on which σm
is defined to increase with m. As will be shown in section 9, under this alternative,
ω would not necessarily influence σm at all. More generally, the a priori probability
of (σm)Mm=1 could equal one without σM being equal to ω wherever defined.

Property B appB((σm)Mm=1 | ρ) =
∏M
m=1 appB(σm |σm−1) where we define σ0 = ρ.

This property is postulate seven. It allows us to confine attention in the rest of
this section and in the next to the function appB(σ | ρ) of just two states.

Property C
(i) 0 ≤ appB(σ | ρ) ≤ 1 for all σ and ρ.

(ii) appB(σ | ρ) = 1 if and only if σ = ρ.
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(i) is necessary if app is to be a probability in any sense. However, in general,
app will not be a probability in the more technical sense of defining a measure. (ii)
requires that a priori probability is always lost by a non-trivial collapse.

Property D Let U ∈ B(H) be unitary, and define τ : B(H) → B(H) by τ(B) =
UBU∗. Then appB(σ | ρ) = appτ−1(B)(σ ◦ τ | ρ ◦ τ).

This is an obviously necessary isomorphism invariance.

Property E Suppose that ρ = paρa + (1− pa)ρd for 0 ≤ pa ≤ 1 and suppose that
there exists a projection Qa ∈ B such that ρa(Qa) ≥ 1−ε, ρd(Qa) ≤ ε for some ε ≥ 0.
Then, for ε sufficiently small, appB(ρa | ρ) ∼ pa.

This is the essence of (5.1)
Properties C, D, and E are not sufficient, by themselves, to yield a unique defini-

tion for appB(σ | ρ). In order to proceed further, it is necessary to discover a general
interpretation for the function being sought. I have little doubt but that the only
way to achieve this is to work backwards; first finding a suitable definition and then
inventing an interpretation for it. If the interpretation can subsequently be shown to
lead uniquely to the definition that is important justification. I have already (Donald
(1986)) published one version of this process. In the remainder of this section, I aim
to revise and deepen the interpretative analysis sketched in that paper. This will be
done, in part, by arguing for a modified, although equivalent, set of defining prop-
erties; in part, by motivating a broad set of mutually compatible properties, rather
than seeking a minimal set of axioms; and, in part, by the relevance of the rest of this
paper. Readers who are prepared to take mathematical proofs on trust will be able
to read this paper independently of Donald(1986). The process of giving meaning to
appB(σ | ρ) will largely be the process of interpreting the notion of a quantum state.

Generalizing (6.4) suggests that appB(σ | ρ) should be interpreted as the a priori
probability that an observer, observing a subsystem defined by a set of observables
B, sees the state σ on B as the outcome of an experiment when ρ was the state on B
just prior to that outcome being ascertained. I have not proposed this generalization
as a postulate. This is because I am unable to specify circumstances more general
than those given in postulate nine under which (6.4) can be justified. Nevertheless,
the general interpretation is compatible with all the ideas of sections 4, 5, and 6.

An alternative way of looking at this generalization of (6.4) emphasizes that,
from the point of view expressed in this paper, “collapse” is not a physical process
external to, and independent of, the observer. Instead, “collapse” is required to occur
because the observer can only occupy certain types of state (section 4). In other
words, collapse is, one might say, a mistake which the observer makes about the state
of the world because he is physically incapable of seeing its true state. He cannot
experience a cat as being both alive and dead, so he experiences it as being either
one or the other. appB(σ | ρ) is to be interpreted as a measure of his falsity of vision
in the following sense:

7.1) appB(σ | ρ) is the probability, per unit trial of the information in B, of being able
to mistake the state of the world on B for σ, despite the fact that it is actually ρ.
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In Donald (1986), I used this interpretation to motivate four axioms which pro-
vide the complete definition of appB(σ | ρ). The first of these axioms derived app on
an arbitrary set B from app on B(H). This axiom appears below as (7.5) in con-
sequence of property G. The two axioms in Donald (1986) which defined appB(H)

for finite dimensional H are replaced here by properties C, D, E, and I, which are
both more general and more primitive. Finally, there has to be a technical property
allowing the extension to infinite dimensional spaces. In this paper this is property
K, which is once again more general than axiom IV of Donald (1986).

With the background of sections 4 and 6, it is possible to be conceptually more
sophisticated in this paper. Recall from remark 3.12 that a state σ on B may be
interpreted as the set of states on B(H) given by {σ′ : σ′|B = σ}. The set B is the
maximal set of operators which the observer can use to distinguish between states.
This idea of indistinguishability may be generalized. The neighbourhood NT intro-
duced in postulate four may be viewed as a set of sequences of states which O cannot
distinguish among. In these terms, let R and S be arbitrary sets of states on B(H).
Consider an observer who collapses from some state in R to some state in S but who
cannot distinguish between the states in R or between the states in S. The a priori
probability of this collapse will be a function app(S |R) which may be interpreted as
follows:

7.2) For R and S sets of states on B(H), app(S |R) is the probability per unit trial by
an observer who cannot distinguish between different states in R or between different
states in S, of being able to mistake the world for some state in S despite the fact
that it is actually some state in R.

In these terms, (7.1) should be restated as:

7.3) appB(σ | ρ) is the probability, per unit trial of the information in B, of being able
to mistake the state of the world for a state compatible on B with σ, despite the fact
that it is actually some state compatible on B with ρ.

Property F If R ⊂ R′ and S ⊂ S′ then app(S |R) ≤ app(S′ |R′).

This simply says that an observer who can draw finer distinctions is less likely
to make mistakes.

Property G

app(S1 ∪ S2 |R1 ∪R2) = max{app(S1 |R1), app(S1 |R2), app(S2 |R1), app(S2 |R2)}.

Property F implies that the left hand side is at least as large as the right hand
side. Equality should obtain because no more information is given to the observer
collapsing from R1 ∪ R2 to S1 ∪ S2 than that the collapse starts either in R1 or
R2 and finishes either in S1 or S2. Notice that this is only an argument; 7.2 is an
interpretation rather than a definition and property G is an axiom rather than a
theorem. A simple extension of property G implies, for any pair R, S, that

app(S |R) = sup{appB(H)(σ | ρ) : σ ∈ S, ρ ∈ R}. (7.4)
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In terms of (3.10)–(3.12), (7.4) implies that we should define

appB(σ | ρ) = sup{appB(H)(σ
′ | ρ′) : σ′|B = σ, ρ′|B = ρ}. (7.5)

This allows appB to be derived from appB(H). As another consequence, also a special
case of property F, we have the following “monotonicity” result:

7.6) Let B1 ⊂ B2 and σ2, ρ2 be extensions to B2 of states σ1, ρ1 on B1.

Then appB1
(σ1 | ρ1) ≥ appB2

(σ2 | ρ2).

It must be emphasized that no physical relevance is to be attached to states σ′,
ρ′ on B(H) at which the supremum in (7.5) is attained. Such states are only guesses
based on limited information and (7.3) is only a way of giving meaning to a function
depending on such limited information. In particular, (7.3) is not to be thought of as
referring to some physical σ-independent global state ρ′ about which the observer is
making mistakes, because even when such a state exists, the observer has no access to
it except through its restriction to B. This applies specifically to the state ω given by
postulate five. The observer only interacts with ω|BM

and the set of extensions of that
(partial) state is used in (7.5) only as a mathematical equivalent to ω|BM

. For different
σ, we may well need to use different extensions of ρ in calculating the supremum in
(7.5). This mathematics is compatible with a many-worlds theory in which separate
possible worlds at a given instant are totally uncommunicating modes of experiencing
the universe. In the present theory, different worlds may occupy overlapping quantum
states. Everett required that different worlds use orthogonal wave-functions, implying
a picture of physically different worlds in different physical dimensions. This would
correspond to chopping up a single state given globally by ω. I prefer to think of
limited information about a single universe made sense of in many ways.

The simplest case to which 7.2, or indeed 7.1, can be applied arises when B = Z
– a finite dimensional Abelian algebra. In this case, it is possible to interpret the
notion of a state on Z in terms of conventional probability theory or information
theory. This yields a complete definition (equation (7.7)) for appZ(σ | ρ). We review
this analysis with the object of extending its elements to the non-Abelian situation:

Z is generated by a finite sequence (Pm)Mm=1 of orthogonal projections with∑M
m=1 Pm = 1. A state ρ on Z corresponds to a probability distribution (ρ(Pm))Mm=1

on {1, 2, . . . ,M} – (0 ≤ ρ(Pm) ≤ 1 and
∑M
m=1 ρ(Pm) = 1). A trial of the state ρ can

be taken to be an observation of a random variable X with values in {1, 2, . . . ,M}
which is distributed according to Prob{X = m} = ρ(Pm). If we perform N trials on
ρ, then, when N is large, we shall be justified in mistaking ρ for σ if the frequency
distribution of outcomes of those trials corresponds to the distribution defined by
σ (i.e. if X = m in Nσ(Pm) of the trials). The outcome of a trial on ρ is dis-
tributed according to the multinomial distribution, so the probability of the given
frequency distribution arising can be explicitly calculated. Setting sm = σ(Pm),
rm = ρ(Pm), and making the assumption that each smN is an integer, it equals

N !
∏M
m=1 r

smN
m /(smN)!. By Stirling’s formula, the logarithm of this probability

is asymptotic to N{
∑M
m=1(−σ(Pm) log σ(Pm)/ρ(Pm))} (Sanov (1957), Bratteli and
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Robinson (1981, pp 425-427)). This indicates that it would be appropriate for app to
satisfy

appZ(σ | ρ) = exp{
M∑
m=1

(−σ(Pm) log σ(Pm)/ρ(Pm))}. (7.7)

This analysis is particularly straightforward because it has been possible to treat
states on Z as single entities rather than as sets. As will be discussed below, it
turns out that this is possible for states on any injective von Neumann algebra. On
non-algebras, however, states must, in general, be taken to be sets:

Example 7.8 Let (ψi)
4
i=1 be an orthonormal basis for C4 and

P = |ψ1><ψ1|+ |ψ2><ψ2|, Q = |ψ1><ψ1|+ |ψ3><ψ3|.
Let B = c{P,Q}. A complete mathematical analysis of appB(σ | ρ) can be given
(see Donald (1987a, §5). Conceptually, we are still working in terms of conventional
probability theory because P and Q commute and because, as a matter of fact, we
need only consider extensions of states on B to the Abelian algebra generated by
{|ψi><ψi| : i = 1, . . . , 4}. The set of states on that algebra compatible with a given
state ρ on B is equivalent to the set of probability distributions on {1, 2, 3, 4} given
by

{(ri)4
i=1 : 0 ≤ ri ≤ 1,

4∑
i=1

ri = 1, r1 + r2 = ρ(P ), r1 + r3 = ρ(Q)}.

In these terms, (7.3) does not pose a well-defined classical problem with a unique solu-
tion but an inference problem with incomplete information. Specifically, the problem
is to estimate a maximal value, as N →∞, for

(Prob(| 1

N
(

N∑
n=1

XP
n )− σ(P )| < 1

2N
, | 1

N
(

N∑
n=1

XQ
n )− σ(Q)| < 1

2N
))1/N

where (XP
n )Nn=1 (resp. (XQ

n )Nn=1) are independent identically distributed random vari-
ables on {1, 2, 3, 4} such that XP

n (ω) = 1 if and only if ω ∈ {1, 2} (resp. XQ
n (ω) = 1 iff

ω ∈ {1, 3}) and all that is known about the distribution is that it is in the set above
– which is equivalent to saying that E(XP

n ) = ρ(P ) and E(XQ
n ) = ρ(Q).

Whether it is reasonable to assume properties F and G (or their Abelian ana-
logues) for the solution to such an inference problem may depend on the context in
which the problem arises, but, in the present context, it is my opinion that they are
appropriate.

The analysis of appB on sets other than Abelian algebras will focus on concavity
properties of a priori probability. By definition 3.10, a convex combination σ =
x1σ1 + x2σ2 of two states σ1 and σ2 on any set B is also a state. Here x1 and x2

satisfy 0 ≤ x1, x2 ≤ 1 and x1 + x2 = 1. Generalizing the standard interpretation,
already invoked in section 2, of a density matrix as a mixture of components weighted
by probabilities, it is appropriate to assume that an observer given the information
in B will have observed σ if he has observed σ1 a fraction x1 of the time and σ2 a
fraction x2 of the time.
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Suppose then that N1 and N2 are integers with x1 = N1/(N1 + N2) and x2 =
N2/(N1 +N2). According to 7.3, appB(σ1 | ρ)N1 appB(σ2 | ρ)N2 is the probability that
an observer given the information in B will be able to mistake the state of the world
for a state compatible with σ1 in an initial sequence of N1 trials and for σ2 in a
subsequent sequence of N2 trials despite the fact that the state is actually some state
compatible with ρ. Following the total sequence of N1 + N2 trials, however, he will
be prepared to believe that the state of the world is compatible with x1σ1 + x2σ2.
This justifies the assumption of the following property:

Property H Let σ1, σ2, and ρ be states on a set B. Let x1, x2 ∈ [0, 1] with
x1 + x2 = 1. Let σ = x1σ1 + x2σ2. Then

appB(σ | ρ) ≥ appB(σ1 | ρ)x1 appB(σ2 | ρ)x2 .

Property H is a mixing-enhancing or entropy increasing property because it im-
plies that the a priori probability of the mixture x1σ1 + x2σ2 is at least as great as
the minimum a priori probability of the component states σ1 and σ2. In fact, the link
between app and entropy is much more direct and an alternative interpretation of app
in thermodynamic terms is possible (see (Donald (1987b)). For this interpretation, we
again consider a pair (S,R) of sets of states on B(H), or, indeed, on any other algebra
on which thermodynamic systems can be defined. We now interpret each state in R
as a possible equilibrium state at an arbitrary temperature T – any state will be such
for some system. Then −kT log app(S |R) is the minimum free energy which would
be sufficient to move one of these systems from its equilibrium state ρ ∈ R to a state
σ ∈ S.

Thus far, the idea of a “trial” has been left at an entirely intuitive level. In
conventional probability theory, this idea can be given an operational definition, but
this is not appropriate in the more general context. A trial of a quantum state is to be
thought of not as a physical experiment on that state, but rather as an imagined way in
which that state may be experienced. It is postulate nine that gives the link between
app and experiments. The problem is that, in quantum theory, an experiment, or
indeed any kind of acquisition of knowledge, involves the process of “collapse” and
the resulting change of state. The experiencing of a state as being the state which one
is occupying is different from investigating that state. The image of a trial as a mode
of experiencing is introduced as a fundamental image of a quantum state. Ultimately,
it is for the reader to consider whether that image is compatible with all the other
interpretative structures used in this paper.

On Z, a single trial gave a choice from the set {1, 2, . . . ,M} and a series of trials
built up a picture of the state. Now we shall work by analogy on a finite-dimensional
Hilbert space H and we shall take B = B(H). Suppose then that we are given an
orthogonal basis (ψm)Mm=1 for H and let S = {|ψm><ψm| : m = 1, . . . ,M} be the
corresponding set of pure states on B(H). Then imagine that one of the ways of
experiencing a state ρ on B(H) is by an “S-trial” which is to give a choice from
S. This notion will be shown to be useful by deriving various mutually consistent
properties for app from plausible assumptions about what such trials would mean if
the notion were useful. Once again, we are not proving theorems here about formally
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defined concepts, but trying to construct a consistent circle of ideas. It is because
this is all that we are doing that the restriction to finite dimensions is permissible at
this stage. This allows us to put various technicalities to one side for the moment. By
7.3, the a priori probability of choosing σm in an S-trial should be appB(H)(σm | ρ).
A series of S-trials should allow us, if their results have an appropriate distribution,
to mistake the state of the world for some state in the linear span of S. These are the
only states that can be precisely identified by such a series of trials. This is reflected in
the fact (lemma 8.9) that

∑M
m=1 appB(H)(σm | ρ) ≤ 1 with equality only if ρ is in the

span of S. 1 −
∑M
m=1 appB(H)(σm | ρ) may be interpreted as the a priori probability

of an S-trial providing the experience that ρ is not in that span.
For example, suppose that the state σ on B(H) is in the span of S, having the

form σ =
∑M
m=1 smσm where 0 ≤ sm ≤ 1 and

∑M
m=1 sm = 1. If, in accordance

with our interpretation of (2.1), we interpret σ as being a mixture of the states σm
with probabilities sm then we would mistake ρ for σ in a series of N S-trials, with
N large, if the result σm occurred smN times. Thus (appB(H)(σ | ρ))N should be
asymptotic to the probability that N trials of a random variable X with values in
{1, . . . ,M} ∪ {∞} and distribution Prob{X = m} = appB(H)(σm | ρ), Prob{X =

∞} = 1−
∑M
m=1 appB(H)(σm | ρ) has the result X = m in smN of the trials. By the

same calculation that gave (7.7), this yields

appB(H)(σ | ρ) =
M∏
m=1

(appB(H)(σm | ρ)/sm)sm . (7.9)

Property I Let σ1, σ2, and ρ be states on a finite-dimensional algebra A. Let
x1, x2 ∈ [0, 1] with x1 + x2 = 1. Let σ = x1σ1 + x2σ2.

Then appA(σ1 | ρ)x1 appA(σ2 | ρ)x2/ appA(σ | ρ) is independent of ρ.

For simplicity, we shall only consider the cases of A = B(H), for H a finite-
dimensional Hilbert space, and of A an Abelian algebra. Readers familiar with the
structure theory for finite-dimensional algebras (Takesaki (1979, §1.11)) should have
no difficulty in generalizing to the wider context. For A = B(H), suppose that, for

i = 1, 2, σi =
∑M
m=1 s

i
mσ

i
m for some sets Si = {σim : m = 1, . . . ,M} of disjoint pure

states. A test for σ may then be made by performing N1 S
1-trials followed by N2

S2-trials where N1 and N2 are large and N1/(N1 + N2) = x1. appB(H)(σ | ρ)N1+N2

is to be interpreted as the a priori probability of ρ being mistaken for σ in this test.
One set of test results justifying this mistake arises when all the S1-trials have results
compatible with σ1 and all the S2-trials have results compatible with σ2. This set
should have a priori probability appB(H)(σ1 | ρ)N1 appB(H)(σ2 | ρ)N2 . The ratio

appB(H)(σ1 | ρ)N1 appB(H)(σ2 | ρ)N2/ appB(H)(σ | ρ)N1+N2

= (appB(H)(σ1 | ρ)x1 appB(H)(σ2 | ρ)x2/ appB(H)(σ | ρ))N

is to be interpreted as the relative probability of a test, compatible with σ, having
a result in this particular set. This relative probability should be independent of ρ
because it depends only on the set of possible σ-compatible tests.
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For example, if σ1 = σ2 then any σ-compatible sequence of trials will be both σ1

and σ2 compatible, so that

appB(H)(σ1 | ρ)N1 appB(H)(σ2 | ρ)N2/ appB(H)(σ | ρ)N1+N2 = 1.

On the other hand, if σ1 and σ2 are disjoint in the sense of having orthogonal support
projections, then it is possible to choose S1 = S2. Then any σ-compatible test is
some rearrangement of N1 trials compatible with σ1 and N2 trials compatible with
σ2. We should then have

appB(H)(σ1 | ρ)N1 appB(H)(σ2 | ρ)N2/ appB(H)(σ | ρ)N1+N2 ∼ N1!N2!/(N1 +N2)!
(7.10)

as the right hand side is the reciprocal of the number of such rearrangements.
For A = Z – an Abelian algebra, property I, like (7.7), is a provable statement

concerning the asymptotic distribution of outcomes of repeated trials of a multinomial
distribution and the justification just given can be seen to be sound. Indeed, with
an obvious extension of the notation introduced in the discussion of (7.7), the core of
the justification is the simple fact that, when all the relevant numbers are integers,
for N = N1 +N2 trials on the random variable X, the probability

Prob(For each m, X = m in N1s
1
m of the first N1 trials and in N2s

2
m of the last

N2 trials, given that X = m in (N1 +N2)(x1s
1
m + x2s

2
m) of all the trials)

is independent of the underlying distribution of X. It is, perhaps, remarkable that
this independence can be generalized to the non-Abelian situation, when one considers
that on B(H) a state σ may split in many different ways, corresponding to S1 =
{|ψ1

m><ψ
1
m| : m = 1, . . . ,M} and S2 = {|ψ2

m><ψ
2
m| : m = 1, . . . ,M} for many

different mutually incompatible bases (ψ1
m)Mm=1 and (ψ2

m)Mm=1. Indeed, S-trials can
be defined consistently for arbitrary sets of disjoint states.

Property I generalizes further, applying for σ1, σ2, and ρ normal states on any
injective von Neumann algebra A. An analogous justification can be given in this
context. In particular, property I extends to normal states on B(H) for H infinite-
dimensional. However, such a generalization may fail if A is not an algebra; indeed,
using Donald (1987a), it can be seen to fail for suitable states when B is as given
in example 7.8. For a non-algebra, the argument for ρ independence fails because,
in terms of 7.3 and 7.5, the states on B(H) compatible with ρ which make σ1 or σ2

most likely may necessarily be different from the states which make σ most likely.
This means that the ratio appB(σ1 | ρ)N1 appB(σ2 | ρ)N2/ appB(σ | ρ)N1+N2 cannot be
interpreted as a relative probability because the trials for the numerator cannot be
interpreted as trials on the same unique state extension as the trials for the denom-
inator. On the other hand, for any injective von Neumann algebra A, there exists a
map (a conditional expectation) ε : B(H)→ A with the property that, for any pair of
states on A, appA(σ | ρ) = appB(H)(σ◦ε | ρ◦ε). This implies that whatever state σ we
are collapsing to, we can deal with the unique extension ρ◦ε of ρ. This mathematics is
compatible with, and may be taken to explain, the common experience that physical
subsystems defined on algebras can be treated as complete and independent entities.

The point about property I, to be shown in the next section, is that it is sufficient,
in combination with properties C, D, and E, to yield a complete definition of app on
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any finite-dimensional algebra. This definition is compatible with everything else
which has been claimed for app and, in particular, with (7.5), (7.7), (7.9), and (7.10).

(7.5) will give app on an arbitrary set B ⊂ B(H) once we have app on B(H).
Thus to complete our definition, we only need some method for extending from B(H)
with H finite-dimensional to the infinite-dimensional case. This is largely a technical
problem.

The properties already assumed are sufficient to define appB(H)(σ | ρ) for a large
set of pairs σ and ρ even if H is infinite-dimensional.

For example, if σ =
∑J
j=1 sj |ϕj><ϕj | and ρ =

∑I
i=1 ri|ψi><ψi| where (ϕj)

J
j=1

and (ψi)
I
i=1 are both contained in a single finite-dimensional subset H1 of H, then,

by (7.5), appB(H)(σ | ρ) = appB(H1)(σ|B(H1) | ρ|B(H1)), as the extensions to B(H) of
σ|B(H1) and ρ|B(H1) are unique. In fact, the set of pairs (σ, ρ) for which appB(H)(σ | ρ)
is already defined is dense in the w*-topology. Thus it is possible to extend our
definition by imposing a continuity property on app.

Property J Let ((σα, ρα))α∈I be a net of pairs of states on some set B ⊂ B(H)
with σα(B)→ σ(B) and ρα(B)→ ρ(B) for all B ∈ B. Then

appB(σ | ρ) ≥ lim sup
α∈I

appB(σα | ρα).

Note that a net is a generalization of a sequence (see Reed and Simon (1972,
§IV.2)).

Property J is referred to as “w* upper semicontinuity”. For a justification, sup-
pose α to parametrize a small perturbation of a physical situation. A circumstance
in which appB(σα | ρα) > appB(σ | ρ) for all α ∈ I, in other words in which property
J is violated, would mean that one could be arbitrarily close to (σ, ρ) with a given
a priori probability but that the limit point itself would be strictly less likely. We
then make the assumption that the physical distinguishability of two states is de-
termined entirely by the values those states take on bounded operators. As will be
discussed in connection with example 9.8, this assumption may not always be ap-
propriate, but no substitute seems sufficiently general to give a natural alternative
to property J. Anyway, under this assumption, however good our technology, there
is always a point (σα, ρα) so close to (σ, ρ) that it would be physically impossible
to distinguish the two points. This means that, allowing for arbitrarily small per-
turbations, lim supα∈I appB(σα | ρα) would be a maximal measure of likelihood for a
situation which would inevitably be described as (σ, ρ). That measure, however, is
precisely what appB(σ | ρ) is supposed to describe. If such a situation is never to arise,
then property J must hold.

The contrary situation in which we have a net such that appB(σ | ρ) >
lim supα∈I appB(σα | ρα) does arise under the proposed definition. In such a situation,
the pair (σ, ρ) is strictly more likely than some arbitrarily close neighours. This
just means that small perturbations from (σ, ρ) on to ((σα, ρα))α∈I are unlikely. An
example is as follows:

40



Example 7.11 Let |ϕ><ϕ| and |ψ><ψ| be pure states on B(H).

Then appB(H)(|ϕ><ϕ| | |ψ><ψ|) = 1

= 0

if ϕ = ψ

if ϕ 6= ψ.

This might, at first, seem surprising or even undesirable, but it can be proved
just by property C and by applying (7.6) and (7.7) to the algebra generated by the
projection onto ψ. What it says is that if one has information about all the observables
in B(H) then, although it is possible to mistake a state which is a mixture for one of its
components, it is not possible to make any mistake about a pure state. This indicates
the importance of the set B and shows that, under the present theory, coarse-graining
is necessary for non-trivial measurement. Once again, we must turn to (2.2) for the
role of the squared amplitude |<ψ|ϕ>|2.

W* upper semicontinuity, unlike continuity, is not sufficient by itself to give a
unique extension of a definition from a w* dense subset to the set of all pairs of states.
The problem is, for example, the possibility of isolated pairs at which app jumps up.
Nevertheless, there is a unique minimal w* upper semicontinuous extension. For
precisely this extension, the supremum in (7.5) can be approximated with arbitrary
accuracy by near-by states satisfying constraints like, for example, normality or finite
expected energy, which we might wish to impose on physical grounds.

Thus, let D be a dense vector subspace of H and define sets of states on B(H)

by S(D) = {σ : σ =
∑J
j=1 sj |ϕj><ϕj | for J finite and ϕj ∈ D} and on B by

SB(D) = {σ : σ = σ′|B for some σ′ ∈ S(D)}.

Property K For any pair (σ, ρ) of states on B and any dense vector subspace
D ⊂ H, there exist nets (σα)α∈I , (ρα)α∈I ⊂ SB(D) such that σα(B) → σ(B) and
ρα(B)→ ρ(B) for all B ∈ B and such that appB(σα | ρα)→ appB(σ | ρ).

8. The definition of the a priori probability function.

The unique function satisfying the properties proposed in the previous section
can be defined as follows:

appB(σ | ρ) = exp{entB(σ | ρ)} (8.1)

where entB(σ | ρ) satisfies

8.2) entB(H)(σ | ρ) =
∑
i,j

(−sj log sj + sj log ri + sj − ri)|<ϕj |ψi>|2

= tr(−σ log σ + σ log ρ)

for σ =
∑
j sj |ϕj><ϕj | and ρ =

∑
i ri|ψi><ψi| normal states on B(H) expanded in

orthonormal eigenvectors.

8.3) entB(H)(σ | ρ) = inf{F (σ, ρ) : F is w* upper semicontinuous, concave, and given

by 8.2 for σ and ρ normal}.

8.4) entB(σ | ρ) = sup{entB(H)(σ
′ | ρ′) : σ′|B = σ and ρ′|B = ρ}.
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entB(σ | ρ) is referred to as the relative entropy of σ with respect to ρ on the set B.
This function was introduced in Donald (1986) as a generalization of a widely-studied
function defined for B an algebra by Araki (1976), who, in turn, was generalizing
ideas of Umegaki (1962) and Lindblad (1974) about quantum information theory.
Two alternative derivations of (8.2) have been given by Petz (preprint) and Hiai and
Petz (1991). These authors show that ent on finite-dimensional algebras satisfies
two striking mathematical properties either of which could, perhaps, be used as the
basis of an interpretation in place of property I. Equation 7.7 is the exponential of
the (negative) “cross-entropy”, which has been extensively used for the solution of
inference problems in classical probability. A review of this work and an axiomatic
derivation are given by Shore and Johnson (1980, 1981).

The mathematical properties of entB(σ | ρ) have been studied at length in Donald
(1986, 1987a). These papers rely heavily on the work initiated by Araki. Direct proofs,
or reference to proofs, can be found there for many of the claims made in the previous
section. In proving the remaining claims, in this entirely technical section, familiarity
will be assumed with those papers.

proof of Property E
By Donald (1987a, lemma 2.11), entB(ρa | ρ) ≥ log pa.
But by (7.6) and (7.7) applied to the algebra generated by Qa,

entB(ρa | ρ)

≤ −ρa(Qa) log ρa(Qa)/ρ(Qa)− ρa(1−Qa) log ρa(1−Qa)/ρ(1−Qa) (8.5)

∼ log pa.

Deriving from (8.5) the upper bound presented in 5.1 is a lengthy but prosaic exercise
in mathematical analysis. This will be omitted here as that bound was only presented
in order to give an explicit meaning to the symbol ∼ in property E.

Proposition 8.6 Properties C, D, E, and I define a unique function (given by
(8.1)) on a finite-dimensional algebra A.

proof Attention will be restricted to the case of A = B(H) for H finite-dimensional.
Other cases may be handled similarly using the structure theory for finite-dimensional
algebras (Takesaki (1979, §I.11)).

Let D(H) be the set of pairs of states on B(H) on which any function satisfying
properties C, D, E, and I agrees with the function given by (8.1). That function does
indeed satisfy these properties on all pairs. All that is required is to show that D(H)
is the set of all pairs of states.

Let A(σ | ρ) denote an arbitrary function satisfying C, D, E, and I, and let

E(σ | ρ) = log A(σ | ρ). By taking logarithms and using property C, property I implies
that

x1 E(σ1 | ρ) + x2 E(σ2 | ρ) = E(σ | ρ) + x1 E(σ1 |σ) + x2 E(σ2 |σ) (8.7)

for all σ1, σ2, and ρ, where σ = x1σ1 + x2σ2.
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lemma 8.8 Let (ψn)Nn=1 be an orthonormal basis for H and σ =
N∑
i=1

si|ψi><ψi|,

ρ =
N∑
i=1

ri|ψi><ψi|. Then (σ, ρ) ∈ D(H).

proof By property E, E(|ψi><ψi| | ρ) = log ri. A unique value is then given to

E(σ | ρ) by induction on (8.7).
The proof of Proposition 8.6 now follows Donald (1987a, §3).

lemma 8.9 Let A be a finite-dimensional algebra. Let (Pm)Mm=1 ∈ A be a sequence
of orthogonal projections and S = {σm : m = 1, . . . ,M} be a set of states such that

σm(Pm) = 1. Then, for any state ρ on A,
M∑
m=1

appA(σm | ρ) ≤ 1 with equality if and

only if ρ is in the linear span of S.

proof Note that Donald (1986) and Araki (1977, theorem 3.6) give (7.9) in its loga-
rithmic form:

entA(σ | ρ) =
M∑
m=1

(sm entA(σm | ρ)− sm log sm) for σ =
M∑
m=1

smσm. (8.10)

Write am = appA(σm | ρ) and α =
M∑
m=1

am. Without loss of generality suppose that

α > 0. Then, setting bm = am/α, (8.10) gives

entA(
M∑
m=1

bmσm | ρ) =
M∑
m=1

(bm log am − bm log bm) = logα.

By property C, logα ≤ 0 (which is
M∑
m=1

appA(σm | ρ) ≤ 1) and equality is attained

only if ρ =
M∑
m=1

bmσm.

On the other hand, if ρ =
M∑
m=1

smσm for arbitrary (sm)Mm=1 then

0 = entA(
M∑
m=1

smσm | ρ) =

M∑
m=1

(sm log am − sm log sm) ≤
M∑
m=1

(am − sm),

so that
M∑
m=1

am ≥ 1. This contradicts what has just been proved unless
M∑
m=1

am = 1,

so that equality does hold whenever ρ is in the linear span of S.

proof of Property K Let (ψn)∞n=1 be an orthonormal basis for D. This is con-
structable by Gram-Schmidt orthogonalization. Let PN be the projection onto the
space spanned by (ψn)Nn=1. Note that PN

s→ 1.
Use axiom four of Donald (1986) to find states σ′ and ρ′ on B(H) satisfying σ′|B =

σ and ρ′|B = ρ and a net ((σ′β , ρ
′
β))β∈J of pairs of normal states on B(H) such that

((σ′β , ρ
′
β))β∈J

w∗→(σ′, ρ′) and limβ∈J appB(H)(σ
′
β | ρ′β) = appB(H)(σ

′ | ρ′) = appB(σ | ρ).
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Choose Nβ such that N ≥ Nβ ⇒ σ′β(PN ) > 0 and ρ′β(PN ) > 0, and, for N ≥ Nβ
define σ′′(N,β) = PNσ

′
βPN/σ

′
β(PN ), ρ′′(N,β) = PNρ

′
βPN/ρ

′
β(PN ). Note that σ′′(N,β) and

ρ′′(N,β) ∈ S(D).

By Donald (1987a, lemma 2.5), as N →∞, (σ′′(N,β), ρ
′′
(N,β))

w∗→(σ′β , ρ
′
β) and

appB(H)(σ
′′
(N,β) | ρ

′′
(N,β))→ appB(H)(σ

′
β | ρ′β).

Now given ε > 0 and a w*-open neighbourhood U of (σ′, ρ′) we can choose β
such that (σ′β , ρ

′
β) ∈ U and | appB(H)(σ

′
β | ρ′β)− appB(H)(σ

′ | ρ′)| < ε/2. Then we can
choose N ≥ Nβ and (σ′′(N,β), ρ

′′
(N,β)) ∈ U with

| appB(H)(σ
′′
(N,β) | ρ

′′
(N,β))− appB(H)(σ

′
β | ρ′β)| < ε/2.

This is sufficient to yield the required property.

9. A priori probability for a succession of collapses.

In this section, mathematics arising from properties A and B of section 7 and
from postulate eight, is analysed. The most important result in this section is propo-
sition 9.11 which confirms the claimed consequences of postulate nine. From (8.1),∏M
m=1 appB(σm |σm−1) = exp{

∑M
m=1 entB(σm |σm−1)} so we shall also be consider-

ing sums of relative entropies.
As far as property A is concerned, we need to compare

∏M
m=1 appB(σm |σm−1)

with fixed B to
∏M
m=1 appBm

(σm |σm−1) with an increasing sequence of sets Bm. A
function of the latter form does not give an appropriate definition for a priori proba-
bility, because of the role of σ0 in giving the only input from the global initial state of
postulate five (section four). In the extreme case, putting B1 = {1} removes all input

from ω. More generally, note that
∏M
m=1 appBm

(σm |σm−1) = 1 if σm|Bm = σm−1|Bm ,

which implies only that σm|B1
= σ0|B1

for m = 1, . . . ,M .
∏M
m=1 appB(σm |σm−1) = 1

only if σm|B = σ0|B for m = 1, . . . ,M .

It is immediate from the results for entB(σ | ρ) that
∑M
m=1 entB(σm |σm−1) has

properties of monotonicity, concavity, w* upper-semicontinuity, non-positivity, non-
triviality, the Uhlmann-Lindblad inequality, and Araki’s property corresponding to
those described in Donald (1986) for entB(σ | ρ). The following proposition corre-
sponds to Theorem 4.4 of Donald (1987a) and has a similar proof. We introduce the
notation Σ∗(A)×M (resp. Σ∗(A)×M ) for the set of M -tuples of states (resp. normal
states) on an algebra A.

Proposition 9.1 Let ω be a faithful normal state on an injective von Neumann
algebra A. Let K ⊂ Σ∗(A)×M be a w*-closed convex set with non-empty interior.

Then there is a unique element (σ̃(K,ω)m)Mm=1 ∈ K which attains
sup{appB((σm)Mm=1 |ω) : (σm)Mm=1 ∈ K}. (σ̃(K,ω))Mm=1 ∈ Σ∗(A)×M .

This result is very satisfactory mathematically, and may be useful elsewhere, but,
in the context of this paper, it is irrelevant in several different ways. In postulate eight,
an inductive sequence of suprema is considered rather than a single supremum over
the entire set of sequences. Such an inductive sequence is physically more appropriate
and helps to avoid the problem to be raised by example 9.3. Under the conditions of
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proposition 9.1, Theorem 4.4 of Donald (1987a) can also be applied to show that such
an inductive definition will lead to a unique best sequence of states in K ⊂ Σ∗(A)×M .
This too is irrelevant here, as because of property 3.9, BSM cannot be assumed to be
an algebra. Section 5 of Donald (1987a) demonstrates that on non-algebras uniqueness
of suprema-attaining states cannot be claimed. Finally, no variant of proposition 9.1
is directly relevant because, as will be explained in example 9.8, the set NT of section
4 cannot be assumed to be w*-closed.

It is essential to the interpretation of appB((σm)Mm=1 |ω) that it should establish
a non-trivial correlation between ω and σM . That it does is shown by the following
extension of the non-triviality property:

Proposition 9.2
M∑
m=1

entB(σm |σm−1) ≤ inf{−|σM (A)− σ0(A)|2/(2M ||A||2) : A ∈ B}.

proof By concavity and property f of Donald (1986), for all A ∈ B,

M∑
m=1

entB(σm |σm−1) = M(
M∑
m=1

1/M entB(σm |σm−1))

≤M entB(1/M σM + 1/M
M−1∑
m=1

σm | 1/M σ0 + 1/M
M−1∑
m=1

σm)

≤ −M |1/M σM (A)− 1/M σ0(A)|2/(2||A||2).

The M dependence in this result is important. The next example shows that
by interpolating specified sequences of arbitrarily many “collapses” between fixed σ0

and σM we can make appB((σm)Mm=1 |ω) arbitrarily small. This is analogous for the
present theory to the “quantum Zeno paradox” of the conventional interpretation (see
Exner (1985, §2.4)). However, in the present theory the paradox is avoided, partly
because M , the number of collapses, is forced to be finite by the natural device of
linking it to a sequence of real changes in the brain of the observer, and partly because
the inductive definition (4.6) is such as to disallow a sequence of collapses precisely
adjusted towards some future goal. In the conventional interpretation, with no unam-
biguous definition of measurement, there can be no telling how many measurements
take place.

example 9.3 Let ϕ,ψ ∈ H be orthogonal and normalized vectors.
Let σm = 1

2 (1+ m
M )|ϕ><ϕ|+ 1

2 (1− m
M )|ψ><ψ|, so that σ0 = 1

2 |ϕ><ϕ|+
1
2 |ψ><ψ|

and σM = |ϕ><ϕ|.
Then appB(H)((σm)Mm=1 |σ0)→ 1 as M →∞.

proof By (8.2),

M∑
m=1

entB(H)(σm |σm−1)
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= − 1
2

M∑
m=1

{(1 +
m

M
) log(

1 +m/M

1 +m/M − 1/M
) + (1− m

M
) log(

1−m/M
1−m/M + 1/M

)}.

Set x = m
M and consider the sum as the integral of a step function on the interval

[0, 1]. log y ≤ y − 1 for y ≥ 0, so, for 0 ≤ x ≤ 1 and M ≥ 2,

0 ≤M{(1 + x) log(
1 + x

1 + x− 1/M
) + (1− x) log(

1− x
1− x+ 1/M

)}

≤ 1 + x

1 + x− 1/M
− 1− x

1− x+ 1/M
=

2

M(1 + x− 1/M)(1− x+ 1/M)
≤ 4.

The dominated convergence theorem gives the result.

example 9.4 Let (ψn)n≥1 be an orthonormal basis for H and let

σ2 =
∞∑
n=1

6/n2π2|ψn><ψn|, σ1 =
∞∑
n=1

90/n4π4|ψn><ψn|, σ0 =
∞∑
n=1

1/2n|ψn><ψn|.

Then appB(H)((σm)2
m=1 |σ0) > 0 while appB(H)(σ2 |σ0) = 0.

This should drive home the point that, under the proposed definition of a priori
probability, it can be more probable to go from σ0 to σ2 via suitable σ1 rather than
directly.

Turn now to the mathematical analysis of postulate eight. The notation will be
variously simplified, for example, by writing app(k) (resp. app0(k))
for app(NT ,BSM , k, ω) (resp. app0(NT ,BSM , k, ω)) and by not mentioning BSM . It
will always be assumed that NM 6= ∅.

example 9.5 Let N 3 = {(σni )3
i=1 : n ≥ 1} ∪ {(ρi)3

i=1} where the states ω, ρi, and
σni are chosen to satisfy app(σn1 |ω) = 1

2 − 1/2n, app(ρ1 |ω) = 1
2 , app(σn2 |σn1 ) = 1

2 ,
app(ρ2 | ρ1) = 1

4 , app(σn3 |σn2 ) = 1
8 , and app(ρ3 | ρ2) = 1

2 .
Then app(1) = app0(1) = 1

2 , app(2) = 1
4 > 1

8 = app0(2), and app(3) = 1
32 <

1
16 = app0(3).

This example no doubt uses an entirely unphysical choice for N 3. Although the
preliminary version of postulate eight does yield a non-trivial definition, that definition
is unsatisfactory. At stage 2, the sequence (ρi)

2
i=1 is comparatively unlikely. Because

of this the likelihood of (ρi)
3
i=1 at the next stage should be irrelevant.

lemma 9.6 For δ > 0 and 1 ≤ m ≤ M , Ñm
δ is not empty and there exists a

sequence ((σni )Mi=1)n≥1 ⊂ NM such that app((σni )ki=1 |ω)→ app(k) for k = 1, . . . ,M .

proof There certainly exists a sequence ((σ1,n
i )Mi=1)n≥1 ⊂ NM such that

app(σ1,n
1 |ω)→ app(1).

Suppose then, that for some m < M there exists a sequence ((σm,ni )Mi=1)n≥1 ⊂
NM such that app((σm,ni )ki=1 |ω)→ app(k) for k = 1, . . . ,m.

It follows that app(m+ 1) is well-defined and that, for δ > 0, Ñm
δ 6= ∅.

For N ≥ 1, choose a sequence ((ρN,ni )Mi=1)n≥1 ⊂ NM such that for k = 1, . . . ,m,

app((ρN,ni )ki=1 |ω)→ app(k) and such that

lim supn→∞ app((ρN,ni )m+1
i=1 |ω) ≥ app(m + 1) − 1/(2N). Then there exists N0 such
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that | app((ρN,N0

i )ki=1 |ω) − app(k)| ≤ 1/N for k = 1, . . . ,m + 1. Set (σm+1,N
i )Mi=1 =

(ρN,N0

i )Mi=1. Then ((σm+1,n
i )Mi=1)n≥1 ⊂ NM and app((σm+1,n

i )ki=1 |ω) → app(k) for
k = 1, . . . ,m+ 1.

The lemma follows by induction.

lemma 9.7 If NM is w*-closed then app0(m) = app(m) for 1 ≤ m ≤M .

proof Let ((σni )Mi=1)n≥1 ⊂ NM be a sequence, as given in lemma 9.6, such that
app((σni )ki=1 |ω) → app(k) for k = 1, . . . ,M . Let ((σαi )Mi=1)α∈I be a w*-convergent
subnet with (σαi )Mi=1 → (σ̃i)

M
i=1. (σ̃i)

M
i=1 ∈ NM and so (σ̃i)

m
i=1 ∈ Nm for 1 ≤ m < M .

By w* upper-semicontinuity, app((σ̃i)
k
i=1 |ω) ≥ app(k) for k = 1, . . . ,M .

Clearly, app(σ̃1 |ω) = app(1) = app0(1). Suppose, for some m < M , that
app((σ̃i)

k
i=1 |ω) = app(k) = app0(k) for k = 1, . . . ,m.

The definitions of app and app0 then give

app(m+ 1) ≥ app0(m+ 1) ≥ app((σ̃i)
m+1
i=1 |ω),

and, as app((σ̃i)
m+1
i=1 |ω) ≥ app(m+ 1), an inductive proof is complete.

This lemma is valuable in relating the two versions of postulate eight, and it may
be useful in computations. However, I do not expect it to be directly relevant to the
set NT of postulate four:

example 9.8 Mathematically, it is simplest to define closeness of states σ and ρ on
a set B by the closeness of the values σ(B) and ρ(B) for B ∈ B. However, physically, it
is necessary also to consider unbounded operators. This arises implicitly, for example,
in the differentiability requirement of Hypothesis V(2) of Donald (1990). The present
example shows that app can yield a satisfactory theory dealing with such operators,
and suggests that, despite lemma 9.7, it can be important not to take closures of sets
of states.

Let (ψn)n≥1 be an orthonormal basis for H and let ρ =
∑∞
n=1 2−n|ψn><ψn|.

Let H =
∑∞
n=1 n|ψn><ψn| and consider H as an energy operator. A typical set of

states, which we might wish to consider collapse to, is K = {σ : 3 ≤ σ(H) < ∞}.
sup{appB(H)(σ | ρ) : σ ∈ K} = 27/32 and this supremum is uniquely attained at

σ̃ = 1
2

∑∞
n=1(2/3)n|ψn><ψn|. However, the closure of K in the w*-topology (resp.

the norm topology) is the set of all states (resp. all normal states) on B(H). On these
closures, the supremum would be 1 and would be uniquely attained at ρ.

lemma 9.9 Suppose that N (1)M ⊂ N (2)M and that, for some m ≤M ,
app(N (1),m) 6= app(N (2),m). Then there exists m′ ≤ m such that app(N (1), k) ≤
app(N (2), k) for k = 1, . . . ,m′ − 1 and app(N (1),m′) < app(N (2),m′).

proof Suppose not. Then there would exist m′ ≤ m such that app(N (1), k) =
app(N (2), k) for k = 1, . . . ,m′ − 1 and app(N (1),m′) > app(N (2),m′).

Let ((σni )Mi=1)n≥1 ⊂ N (1)M be a sequence given by lemma 9.6 such that
app((σni )ki=1 |ω)→ app(N (1), k) for k = 1, . . . ,M .

Then app((σni )ki=1 |ω) → app(N (2), k) for k = 1, . . . ,m′ − 1. The definition of
app(N (2),m′) requires that
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app(N (2),m′) ≥ lim supn→∞ app((σni )m
′

i=1 |ω) = app(N (1),m′). This contradiction
proves the result.

This lemma emphasizes the absolute priority given by the definitions to the max-
imization of a priori probability at an early stage over its maximization at a later
stage. Similar results can be proved for decreasing sets B and, as exemplified by 9.5,
if app(m) 6= app0(m).

lemma 9.10 For δ > 0, let (σδi )
m
i=1 ∈ Ñm

δ .
Then, as δ → 0, app((σδi )

k
i=1 |ω)→ app(k) for k = 1, . . . ,m.

proof By definition lim supδ→0 app((σδi )
k
i=1 |ω) ≥ app(k) for k = 1, . . . ,m. If the

result does not hold then there exists m′ ≤ m such that app((σδi )
k
i=1 |ω) → app(k)

for k = 1, . . . ,m′ − 1, while lim supδ→0 app((σδi )
m′

i=1 |ω) > app(m′). This contradicts
the definition of app(m′).

Proposition 9.11 (6.2) and (6.4) hold under the conditions of postulate nine.

proof Use the method of lemma 9.6 to find a sequence ((σnm)M+1
m=1 )n≥1 with

((σnm)Mm=1)n≥1 ⊂ NM and (σnM+1)n≥1 ⊂ Σ such that

appBSM
((σni )ki=1 |ω)→ app(NT ,BSM , k, ω) for k = 1, . . . ,M , and

appBSM
((σnm)M+1

m=1 |ω)→ app(O, T,BS ,Σ |ω). Then the sequence ((ρnm)M+1
m=1 )n≥1

defined by ρnM+1 = σnM for n ≥ 1 and ρnm = σnm for n ≥ 1 and m = 1, . . . ,M has the
property that

app(O, T,BS ,Σ |ω) ≥ lim sup
n→∞

appBSM
((ρnm)M+1

m=1 |ω) = lim sup
n→∞

appBSM
((ρnm)Mm=1 |ω)

= app(NT ,BSM ,M, ω) ≥ lim sup
n→∞

appBSM
((σnm)M+1

m=1 |ω) = app(O, T,BS ,Σ |ω).

This shows that app(O, T,BS ,Σ |ω) = app(NT ,BSM ,M, ω). (9.12)

Let (σm)M+1
m=1 ∈ Ñ

M+1
δ (BSM , Ca). Note that (σm)Mm=1 ∈ ÑM

δ (BSM ). By (7.6),
(7.7), and A of postulate nine, for δ sufficiently small,

appBSM
(σM+1 |σM ) ≤ exp{−σM+1(Qa) log(σM+1(Qa)/σM (Qa))

−σM+1(1−Qa) log(σM+1(1−Qa)/σM (1−Qa))} ∼ pa.
Applying the method of lemma 9.6 again, this yields

app(O, T,BS , Ca|ω) ≤ (∼)pa app(NT ,BSM ,M, ω) = pa app(O, T,BS ,Σ |ω).

Let (σδm)Mm=1 ∈ ÑM
δ (BSM ) be given by B of postulate nine and set σδM+1 = ρδa.

By (5.1) and (6.1), appBSM
(ρδa |σδM ) ∼ pa and appBSM

(ρδa|BS
|σδM |BS

) ∼ pa, so that
(6.4) holds.

By lemma 9.10, as δ → 0, appBSM
((σδi )

k
i=1 |ω) → app(NT ,BSM , k, ω) for k =

1, . . . ,M and by (4.7) and (9.12),

app(O, T,BS , Ca|ω) ≥ lim sup
δ→0

appBSM
((σδm)M+1

m=1 |ω)

∼ pa app(NT ,BSM ,M, ω) = pa app(O, T,BS ,Σ |ω).
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10. Elementary Models.

In this section, three mathematically elementary models of the set BM of postu-
late four are discussed in order to explain the development of some of the abstract
structures of earlier sections. The results used will be quite simple properties of the
function defined by (8.2), so proofs have been omitted. We begin with the assumption
that an observer comes into contact with a succession of independent physical subsys-
tems. These are modelled as independent Hilbert spaces (Hm)Mm=1 forming a tensor
product subspace ⊗Mm=1Hm of the total universal Hilbert space H. The set of op-
erators that define states individually on these subsystems is B0

M = c(∪Mm=1B(Hm)),
where, as usual, B(Hm) is identified as a subalgebra of B(H) and c is defined in 3.13.

The independence assumption made here is a simplification of the more realistic
situation considered earlier in which the B(Hm) correspond to distinct, but not neces-
sarily commuting, local algebras. It is not unreasonable however to claim on physical
grounds that local algebras at distinct times are “nearly” independent, because of
the variety of physically independent states that may be imposed on such regions. A
version of this argument was used in section 6 in imagining the duplicitous graduate
student.

B0
M contains no operators measuring correlations between the M subsystems.

Thus appB0
M

is an inappropriate function for determining physical a priori probabil-
ities. For example, take M = 2 and consider the problem of finding the state σ̃2 on
B(H2) maximizing appB0

2
((σi)

2
i=1 |ω) for given ω and σ1|B(H1). This problem has the

solution that σ̃2|B(H2) = ω|B(H2). This is useless for present purposes as it takes no
account of the information gained by the observer from his observations on B(H1).

The most obvious way to include correlations is to replace B0
M by the von Neu-

mann algebra B1
M = B(⊗Mm=1Hm) = ⊗Mm=1B(Hm). For particular choices of ω, B1

M

would be satisfactory. For example, once again choose M = 2. Let (ψi)
∞
i=1 be an

orthonormal basis of H1 and (ϕj)
∞
j=1 be an orthonormal basis of H2. Suppose that ω

is diagonal in the product basis (ψi ⊗ ϕj)∞i=1
∞
j=1, so that

ω =
∞∑

i,j=1

rij |ψiϕj><ψiϕj |. (10.1)

Then consider the problem of finding the state σ̃2 on B(H2) maximizing
appB1

2
((σi)

2
i=1 |ω) given that σ1|B(H1) = |ψ1><ψ1|. This problem has unique solution

σ̃2|B(H2) =
∑∞
j=1 r1j |ϕj><ϕj |/

∑∞
j=1 r1j as long as

∑∞
j=1 r1j > 0.

As a model, this is fairly satisfactory. Indeed, the whole of Everett’s analysis of
quantum mechanics is based on this sort of idea. The problem lies in the justification
of (10.1) and in its generalization. The function app has been developed to generalize
the idea of the rij in (10.1) being probabilities. This generalization, however, has
the property demonstrated by example 7.11. Thus if ω happens to be a pure state
on B1

M then the problem considered has no solution except in the trivial case that
σ1|B(H1) = ω|B(H1). To resolve this difficulty, one either has to change the function
app, and I know of no plausible alternatives; or argue that an assumption analogous
to (10.1) is physically natural, which, in view of the problem raised by 3.9, I cannot
see how to do; or look for some appropriate set B2

M between B0
M and B1

M .
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Suppose then that ZM is an Abelian algebra generated by suitable projections
from ∪Mm=1B(Hm), and let B2

M = c{BC : B ∈ ∪Mm=1B(Hm), C ∈ ZM}. ZM is
a version of the algebra CM of postulate four, so that this model envisages that
the projections defined in (4.1) are mutually commuting. A further simplification,
reducing the mathematics of this paper to classical probability theory, would result
if it could be claimed that

appB2
M

((σm)Mm=1 |ω) = appZM
((σm)Mm=1 |ω). (10.2)

The theory presented has indeed been developed under the assumptions that CM
behaves as if it were Abelian, and that (10.2) is a good analogy for the states of
highest a priori probability of postulate eight with B2

M replaced by BM and ZM by
CM . While the final result is a mathematical theory independent of the correctness
of these assumptions, they remain plausible because the world appears to behave so
classically.

In the sequel to this paper, I intend to consider variations in geometrical struc-
ture for an observer. It follows from (7.6) that maximizing a priori probability over
such variations should make most likely those structures which satisfy (or effectively
satisfy) both of the assumptions just mentioned. The commutativity of CM is made
likely because the algebra generated by the projections defined in (4.1) will be small-
est precisely when those projections commute. Because, by (7.6), we always have
appBM

((σm)Mm=1 |ω) ≤ appCM ((σm)Mm=1 |ω), the second assumption can be inter-
preted as the claim that the states in the neighbourhood NT of postulate four are
determined by their values on CM and can be varied freely off CM until maximum a
priori probability is achieved.

A determining algebra of this sort would be a set of “definitive observables” in
the sense discussed in section 2. The idea then arises that one should throw away
all of BM except for CM . This, however, would be inappropriate, both because of
the approximate nature of the seond assumption and because, as can be seen from
hypothesis V of Donald (1990), the abstract theory which allows CM to be defined
depends on the behaviour of the states in NT on the whole of BM .

11. Consistency.

Three different consistency issues arise in this paper. These are; overall consis-
tency of the underlying interpretation of quantum theory; consistency between the
observations of distinct observers; and consistency between the various types of prob-
ability mentioned. Little can be said about the first issue until the full details of the
interpretation have been presented. It is intended in a sequel to this paper to propose
a complete characterization for the physical structure of observers. This will involve,
in particular, developing a formalism to permit the claim that a given observer has
only a finite number of possible distinct futures within a given bounded complexity.

Consistency between the observations of distinct observers depends, in the first
place, on each individual observer seeing other observers as observers rather than as
superpositions or mixtures. This, in other words, is part of the general problem of
what it is that an individual observer can observe. In Donald (1990), it was proposed
that the brain acts as an observer by processing definite information and that its
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quantum state, when so acting, is a state characterized by certain neural proteins
having definite status. When these proteins do have definite status, the brain is
processing information in a way which, in theory, can be interpreted by an external
neurophysiologically-expert observer. The neighbourhoods NT of postulate four are
to be taken as consisting of sequences of brain states of this type. When this is
done, the only sets of states C in (4.7) of high a priori probability will be states
compatible with the prior information processing by the brain. In particular, when
a human observer interacts with a colleague who occupies a macroscopically mixed
quantum state, the brain of the original observer moves into a mixed quantum state.
That mixture then must be disentangled by the set of possible neighbourhoods NT
at the new time T . The consistency between the observations of observer A and the
observations that observer A observes observer B to be making then stems from the
correlations within the states of each NT . There is a correlation between the number
I write down in my notebook as we look at the bottom line of our computer printout
and the number I see you writing down, because otherwise, assuming neither of us is
making mistakes, there must be additional “collapses” costing (logarithmically) large
amounts of a priori probability in the quantum state of my brain between when I
write down my number and when I look over your shoulder. This large logarithmic
cost is argued for by the justification of (6.3). The underlying fact is that single
states in quantum theory provide good descriptions of most observed causal processes
– like light reflecting off the printout and carrying the same message to two different
observers. Only intermittent collapse is required.

The central focus of this paper has been on probability. A mathematical tool has
been provided and its relationship to other types of probability has been discussed.
Whether that tool has any use independent of the framework of Donald (1990) is up
to the reader.
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