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Abstract. Cholesteric elastomers possess a macroscopic “phase chirality” as the director n rotates in a
helical fashion along an optical axis z and can be described by a chiral order parameter α. This parameter
can be tuned by changing the helix pitch p and the elastic properties of the network at formation. The
cholesterics also possess a local nematic order, changing with temperature or during solvent swelling. In
this paper, by measuring the power of optical rotation dΨ/dz, we discover how these two parameters vary
as functions of temperature or solvent adsorbed by the network. The main result is a finding of pronounced
stereo-selectivity of cholesteric elastomers, demonstrating itself in the retention of the “correct” chirality
component of a racemic solvent. It has been possible to quantify the amount of such stereo-separation,
and the basic dynamics of the effect.

PACS. 33.55.Ad Optical activity, optical rotation; circular dichroism – 61.30.Vx Polymer liquid crystals
– 87.80.Pa Morphometry and stereology

1 Introduction

The nature appears to be inherently chiral. From the
atomic scale with asymmetric carbon, to much larger
length scales – like our hands or even spiral galaxies, all
have the same common feature of lacking the inversion
symmetry, while not characterised by any vector (dipolar)
property. In other words, many natural objects are non-
superimposable with their mirror image and define a pair
of opposite handedness, right and left. This is the notion
of chirality. Since its first discovery in 1848 by Pasteur [1]
and attempts on mathematical abstraction by Kelvin [2],
chirality and more particularly molecular chirality have
always been a source of interest in various fields, from
mathematics to medicine. Even though it is now much
better understood, this breaking of symmetry is still an
active and exciting field of research across disciplines. It
is important to realise that handedness is not an abso-
lute concept; its quantitative characteristics depend on the
property being observed [3,4], the origin of many questions
and disagreements between different groups of results.

A word on terminology is due here. There are sev-
eral ways of describing chiral substances, developed in
chemistry. The Rosanoff (1906) notation distinguishes be-
tween D[+] (for dextra) and L[–] (for laevo) on the basis
of relative arrangement four different bonds of the chiral
carbon. The Cahn-Ingold-Prelog (1956) notation is also
based on ranking of bonds according to specific sequence
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rules, improved such that it can be used for more complex
molecules; it specifies R[+] (for rectus, clockwise rotation)
and S[–] (for sinister, anticlockwise). Sometimes differ-
ent sources of organic chemistry data have mixed nota-
tions, e.g. the Aldrich catalogue quotes cholesterol deriva-
tives as R-(–), with specific optical rotation [α]D = −40◦.
This simply reflects the fact that different chirality in-
dices (scalar and tensorial) may be introduced to describe
different physical responses, while the proper notation is
not yet developed in spite of many recent advances. So,
the sense of steric chirality (asymmetry in the geometric
shape of the object) is not necessarily the same as that of
the third-order dielectric polarisability βijk (determined
by electronic structure) and that, in turn, may be different
at different frequencies. As a result, the chiral intermolecu-
lar interaction may not be of the same handedness as, e.g.,
the rotation of light polarisation. The macroscopic “phase
chirality” of cholesteric structure studied here is a result
of cooperative action of all such effects and we simply dis-
tinguish it by macroscopic optical rotation, right-handed
(clockwise, R) or left-handed (anticlockwise, L).

Chirality has a dramatic impact on most aspects of
life, as enantiomers often have differences or even opposite
properties (e.g. different odours, different biological func-
tionality, toxicity, etc). This is a real problem for pharma-
ceutical industry, or foods and cosmetics, since the syn-
thesis of a chemical compound mostly leads to a racemic
mixture (equal proportions of right- and left-handed enan-
tiomers) and the stereo-selection is always a very difficult
task. The reason for the difficulty lies in the fact that a
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pair of enantiomers differs in shape and electronic prop-
erties only in a very subtle way, which results in small
corrections only to high-order molecular polarisability. As
a result the molecular interactions that are sensitive to
the handedness are always very weak. New methods have
been developed recently to measure such forces, for exam-
ple, by detecting a difference in adhesion between an AFM
tip coated with chiral molecules and a left- or right-handed
substrate [5].

One of the main techniques in the field of chiral stereo-
separation is column chromatography, in which a racemic
mixture diffuses at slightly different rates through a silica
gel coated with a molecular layer of specific chirality. Re-
cently, a new concept of stereo-selection was introduced,
based on the macroscopic phase chirality in topologically
imprinted cholesteric networks [6,7]. If one were to quan-
tify the phase chirality, a corresponding order parameter
has to be introduced that would reflect this symmetry.
One traditional example is the cholesteric helix in liquid
crystalline systems, where the molecular units are locally
aligned, on average, in a uniaxial (nematic) fashion, but
with the director coherently and periodically rotating over
a larger length scale (helical twist), Figure 1. In analysing
the imprinted cholesteric elastomers, a system that may
retain phase chirality while not having any on the molec-
ular level [8], Mao and Warner (MW) have introduced
a parameter that measures the (inverse) strength of im-
printed helicity in the polymer network, α =

√
K2/D1q0,

where K2 is the Frank (twist) elastic constant [9], q0 is
the helix wavenumber at network formation and D1 is the
relative-rotation coupling constant [10]. If the network is
formed with a large α, it would not be able to sustain
its helical twisting when the chiral molecular moieties are
removed, while at α � 1 the more rigid elastic network
retains most of the imprinted helix.

There are several ways of monitoring the state of phase
chirality in a cholesteric material. A traditional method
based on selective reflection at a certain wavelength of
light is not chirality specific. In fact, recent studies has
shown that one can generate the bandgap for both right-
and left- circular polarisations of incoming light by only
a slight mechanical deformation of cholesteric elastomers
[11,12]. Instead we concentrate on the effect of optical ro-
tation. The classical optical activity (Faraday effect) of a
solution of chiral molecules can be enhanced by up to 104

times in a cholesteric phase induced by the same amount of
chiral dopant Φ [9,13]. As the helical pitch p = 2π/q is in-
versely proportional to the concentration of chiral dopant
Φ (see Sect. 2 below), the cholesteric phase would be very
sensitive to any small variation of this concentration in
the network, resulting in uniform twist-untwist changes.

In this paper, we will show how to utilise this macro-
scopic enhancement of normally weak chiral interactions
to generate stereo-selectivity of cholesteric elastomers with
respect to different components of a racemic solvent. In
contrast to the earlier work on imprinted networks [6,7],
here we study the naturally cholesteric elastomers, where
the chiral molecular moieties are a permanent part of
the network. Therefore, we cannot separate the effects of
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Fig. 1. Spatial distribution of the director n in an ideal
cholesteric helix along the optical axis z. Because of the local
quadrupolar symmetry of the nematic order, the periodicity
interval is only the half-pitch, π/q0.

molecular chiral interactions, and those due to the phase
chirality, so cleanly as in imprinted systems. However,
since the results are broadly similar to those reported in
[7], we believe the macroscopic coherence of order parame-
ter modulations in the helix plays a dominant role. In any
case, for practical purposes of developing an efficient sys-
tem for stereo-selective separation of racemic solvents, the
spontaneously cholesteric elastomers could be a preferred
option due to the ease of their preparation.

One central issue we shall be struggling with through-
out this work is obvious, but has not been systematically
examined in this context before. As one adds a solvent to a
liquid crystalline network, whether a racemic mixture or a
general achiral solvent, the magnitude of the local nematic
order parameter changes (usually, decreases). This results
in a rapid change in local optical birefringence (affecting
the optical rotation) and also the strength of phase chiral-
ity (reducing the specific interaction with chiral solvent).
As soon as the material becomes isotropic, i.e. loses its
coherent cholesteric structure altogether, it also loses the
stereo-selectivity (at least to the accuracy of our detection
methods). This, in a way, is a proof that the phase chirality
determines the stereo-selective swelling, and not the spe-
cific interaction with molecular moieties (which are still
there in the isotropic phase). In much of the Section 4 we
shall be challenged by the competition between this local
liquid crystalline order and the macroscopic phase chiral-
ity, aiming to develop a set of analytical tools to quantify
the results.

2 Theoretical background

Locally a cholesteric is an amorphous uniaxially ordered
medium, like a nematic liquid crystal, described by the
local order parameter Qij = Q(ninj − 1

3δij). However,
on larger scales the director n is a periodic modulated
function of coordinates, in the ideal state rotating along
a single axis z: nx = cos θ, ny = sin θ, nz = 0. With it
rotates the local dielectric ellipsoid, with principal refrac-
tive indices me along the director and mo perpendicu-
lar to n (the dielectric anisotropy ∆m = me − mo is di-
rectly proportional to the magnitude of order parameter
Q). In the classical cholesteric helix the azimuthal angle
is θ = q0z, with the corresponding pitch p0 = 2π/q0, see
Figure 1. The breaking of inversion symmetry results from
the presence of chiral molecular groups in the material. If
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the elastomer is crosslinked in this state, freezing in the
helical pitch p0, any further change in the concentration of
chiral groups in the network would give rise to the elastic
free energy of the form:

Fel =
∫

1
2

[
K2( d

dz θ − q)2 + D1 sin2(θ − q0z)
]
dz, (1)

per unit area in the x-y plane. Both terms represent the
penalty for deviating from the initial state with θ = q0z.
The rubber-elastic contribution simply records the con-
formation at network crosslinking as its ground state. The
Frank term has a minimum determined by the current pre-
ferred state of phase chirality: the average helix wavenum-
ber q = 2π/〈p〉 = 4πβΦ [9], where Φ is the total concentra-
tion of chiral molecular groups in the material (assumed
small to maintain the linear relationship q ∝ Φ) and the
coefficient β is the measure of microscopic twisting power
of these groups.

Since in this paper we are mostly concerned with the
effects of swelling by solvents added to the crosslinked elas-
tomer network, two more physical effects have to be taken
into account. The swollen network resists to stretching of
its chains; if the overall volume is increased from V0 to
V = V0(1 + φ) due to an extra concentration of added
solvent φ, the effective dilatation strain γ ≈ (1 − φ)−1/3

contributes to the rubber elasticity. When a small concen-
tration φ of “impurity” is added to the mesogenic system,
the phase transition temperature shifts down in a linear
fashion, T ∗ ≈ Tc(1 − κ φ). As a result, the additional free
energy arises (per unit area):

Fs =
∫

1
2

[
3µ[(1 − φ)−2/3 − 1] + Ao[T − T ∗(φ)] Q2

]
dz

≈
∫

1
2

[
2µ φ + Ao[T − Tc(1 − κ φ)] Q2

]
dz . (2)

Here µ is the rubber modulus. The (φ-dependent) Q2-
term shows the leading contribution to the thermody-
namic Landau-de Gennes expansion in powers of the lo-
cal order parameter. One also has to consider the mixing
entropy and the coupling due to the Flory χ interaction
parameters and thus complete the analysis of swelling by
solvents. In fact, the problem is much more delicate. In
an anisotropic material one cannot assume the simple vol-
ume change – instead the principal directions (along z
and in the x-y plane) would stretch by slightly different
factors, dependent on the nematic order through chain
anisotropy [14]. Also, MW show [6] that the coupling con-
stant D1 is renormalised on swelling. However, the val-
ues of swelling and uniaxial strain in our experiments
are so small that the corrections are only minor, reach-
ing 2% at the most; accordingly we neglect this additional
anisotropy and many complexities and subtle physical ef-
fects associated with it.

When the solvent added to the cholesteric elastomer is
achiral (not optically active) the only effect on the pitch
is through the affine expansion of sample dimension along
z. In taking this view we assume that the average pitch
does not change with the reduction of order parameter

Q(φ). One may not regard it obvious, or even correct, be-
cause there is a large literature on cholesteric liquid crys-
tals showing the variation of pitch with, e.g., temperature.
Our assumption is supported, at least in our elastomers,
by the direct observation of nearly constant pitch, quoted
in Figure 6 below, see also the literature data [15].

When we work with a racemic mixture of right- and
left-handed enantiomers and generate an imbalance be-
tween the components, ∆φ = φL − φR (with the total
φ = φL + φR), the additional molecular chirality modifies
the cholesteric pitch as well:

〈p〉 ≡ 2π

〈q〉 = 2π
[
(1 − φ)1/3q0 − qs∆φ

]−1

, (3)

where qs is a coefficient measuring the interaction of spe-
cific chirality of the solvent with the network. Note that
the affine expansion term in (3) assumes that all three
dimensions of the network are swelling in the same pro-
portion, γ = (1−φ)−1/3. In our experiments, the samples
will conserve their area in the x-y plane and would only
change thickness along z, by γz = (1 + φ), thus modifying
equation (3).

Our purpose in this paper is to explore the stereo-
selectivity of a cholesteric elastomer, leading to the im-
balance ∆φ of enantiomers swelling the network, by inde-
pendently monitoring the weight and shape of the sample
(providing the data on total φ) and the changes in optical
rotation (giving direct access to ∆φ). In order to inter-
pret the results we need to revise the classical results of
de Vries [13] on the rotatory power of a cholesteric helix.

By solving the eigenproblem for electromagnetic waves
propagating along z one finds the superpositions of circu-
larly polarised plane waves of opposite signs. Their phase
difference gives the optical rotation Ψ in the medium, or
its rotatory power per unit length along z. The problem is,
in fact, much more delicate than it is frequently presented
in the literature, because of the need to correctly treat
the boundary conditions for the incident linearly polarised
light, see e.g. [16]. Another important issue, not treated
well in the original de Vries’ approach, is the limit of van-
ishing phase chirality, 〈q〉 → 0. This corresponds to the
so-called Mauguin limit, or the ‘waveguide regime’, when
〈p〉∆m � Λ0/m̄, with Λ0 is the wavelength of incident

light and m̄ =
√

ε̄ =
√

1
2 (ε‖ + ε⊥) the average refractive

index of the material. Not going into great detail of these
complicated problems with over 30 years of history, for our
practical purpose of analysing the rotation of plane polar-
isation in a cholesteric elastomer we shall use a simplified
result for the rotation rate (‘rotatory power’) dΨ/dz. For-
tunately, in our system, the parameters combine in such
a way that we never cross the bandgap. Accordingly, the
difference between the full de Vries solution,

dΨ

dz
=

2π

〈p〉
(

1 +
1

2λ′

[√
1 + λ′2 −

√
δ2 + 4λ′2 (4)

−
√

1 + λ′2 +
√

δ2 + 4λ′2
])

,
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Fig. 2. The rate of optical rotation dΨ/dz, as function of the
helix wavenumber 〈q〉 = 2πm̄λ′/Λ0. The solid line shows the
interpolated result with correct limiting behaviour. The bro-
ken lines show the classical de Vries, equation (4), plots for
decreasing local birefringence (∆m = 0.15, ∆m = 0.05 and
∆m = 0.01). The bandgap is at λ′ = 1, with a width de-
creasing with ∆m. The dot marks the initial cholesteric pitch
p0 = 580 nm.

and its more familiar approximate expansion [9,13] is mi-
nor. In equation (4) the combination λ′ = Λ0/〈p〉m̄ is
the non-dimensional ratio of the light wavelength to the
pitch, and δ = (ε⊥ − ε‖)/(ε⊥ + ε‖) ≈ ∆m/m̄ is the pa-
rameter of relative dielectric anisotropy. In our material
the extraordinary and ordinary refractive indices are, re-
spectively, me = 1.75 and mo = 1.6 (making m̄ = 1.68
and the light wavelength in the medium Λ0/m̄ = 377 nm).
For λ′ =

√
1 ± δ a dispersion anomaly appears in (4) in

the form of Bragg-like reflection; this full solution does
not have a divergence for dΨ/dz but a finite value on
the edges of a bandgap of width δ [13]. In our case this
anomaly would center at 〈p〉 ≈ 377 nm. The analysis be-
low will show that the initial pitch of the cholesteric he-
lix is p0 ≈ 580 nm, which means that our range of mea-
surements is always on the longer wavelength side of the
bandgap.

Figure 2 shows the variation of the rotatory power
with the helix wavenumber (or equivalently, with λ′ for
fixed Λ0) for the parameters of our experimental system.
We plot the function that interpolates between the cor-
rect behaviour near the bandgap and the required linear
decrease at q → 0. For comparison, a sequence of de Vries
curves is also plotted, for a series of decreasing ∆m (and
the underlying nematic order parameter Q, directly pro-
portional to it).

Equation (4) and all its modifications contain two im-
portant parameters which are changing in our experi-
ments: the relative dielectric anisotropy ∆m and the effec-
tive pitch length 〈p〉, averaged over the sample thickness.
The first of these changes with temperature and swelling
with small-molecule ‘impurities’ and reflects the local (ne-
matic) liquid crystalline ordering. The changing average
pitch, or the helical wavenumber 〈q〉 = 2π/〈p〉, reflects
the phase chirality of a cholesteric and is determined by

chiral imbalance between the components of racemic mix-
ture swelling the cholesteric network. Rotatory power is
an unambiguous measure of phase chirality (as opposed
to, say, the selective reflection spectrum which can be too
broad in cholesteric networks and also present in both
right- and left-handed modes for the same material [12]).
We shall use equation (4) to extract the effective pitch
from the measurements of optical rotation. For this, let us
re-write it explicitly showing the two relevant parameters,
∆m and 〈p〉, for δ � 1:

dΨ

dz
≈ − πm̄2∆m2〈p〉3

2Λ2
0 (m̄2〈p〉2 − Λ2

0)
. (5)

To find 〈p〉 we need to resolve this cubic equation, which
gives the approximate result in the relevant region of pa-
rameters, represented by the solid line in Figure 2:

〈p〉 ≈ −π∆m2 +
√

π2∆m4 + 16m̄2Λ2
0(dΨ/dz)2

4m̄2(dΨ/dz)
(6)

This interpolated model will serve us for the rest of this
work, to help extracting the values of effective cholesteric
pitch, as a measure of phase chirality, from the measured
dΨ/dz and the deduced ∆m.

3 Methods

3.1 Sample preparation

The cholesteric liquid crystal elastomer was synthesised
following the general method introduced by Kim and
Finkelmann [17]. Siloxane backbone chains were reacted
under centrifugation at 7000rpm with 90mol% mesogenic
side groups (the mixture of nematic 4-pentylphenyl-4’-(4-
buteneoxy)benzoate, labelled PBB, and cholesterol pen-
tenoate, ChP, in proportion 4:1) and 10mol% of 1,4 di(11-
undeceneoxy)benzene, di-11UB, crosslinker groups for
45 minutes at 75 ◦C to form a partially crosslinked gel.
For a further 4 hours the reaction proceeded under cen-
trifugation at 60 ◦C, during which time the solvent was
allowed to evaporate, leading to an anisotropic deswelling
of the gel and completion of crosslinking. All of the volume
change in this setup occurs by reducing the thickness of
the gel, while keeping the lateral dimensions fixed (due to
centrifugation): this introduces a very strong effective bi-
axial extension in the x-y plane. At this second-stage tem-
perature of 60 ◦C the dried polymer is in the cholesteric
phase and its director is forced to remain in the plane of
stretching – this results in a uniform cholesteric texture
which is finally crosslinked at this second stage of prepara-
tion. The chemical composition of our networks is shown
in Figure 3.

Differential scanning calorimetry measurements
(Perkin-Elmer Pyris 7 DSC) were used to characterise the
resulting elastomer. The glass transition was unambigu-
ously determined at Tg ≈ −10 ◦C and the clearing point,
the isotropic-cholesteric transition, occurs at Tc ≈ 90 ◦C.
No additional thermal transitions were found between
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Fig. 3. Chemical composition of the cholesteric network.
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Fig. 4. Experimental set-up for measuring the optical rotation
Ψ . (F): neutral density filter; (M): beam splitter, (P): Glan-
Thomson polariser; (S): glass cover slip with sample; (A): ro-
tating analyzer with light chopper; (P1,P2): photodiodes linked
to the lock-in amplifier.

these two critical temperatures. All experiments were
performed at room temperature, sufficiently far from
both transitions (except when we studied the variation of
optical rotation with order parameter, for comparison).

3.2 Experimental set-up

The optical rotation Ψ can be determined experimentally
by using a dynamical method [18] based on measuring the
phase difference between the split parts of a linearly po-
larised laser beam (He-Ne laser, λlaser = 633 nm, 30 mW,
from Melles-Griot), one passing through the sample and
the rotating analyzer (fixed frequency ∼ 16 Hz), the other
through the optical chopper (providing the reference sig-
nal to lock on), Figure 4. The phase difference ∆Θ be-
tween the two beams is measured by an integer number of
periods with a lock-in amplifier (Stanford Research) and
corresponds directly to the optical rotation Ψ from which
the effective cholesteric pitch 〈p〉 is then calculated. In this
approach we effectively measure the rotation of the prin-
cipal axis of elliptically polarised light emerging from the
sample. The elastomer is deposited onto a glass coverslip
(area conservation will be observed) and a solvent droplet
of known volume (10µl) is placed on it, with the beam spot
in the middle. The achiral and racemic solvents are respec-
tively toluene:hexane mixture (ratio 1:6, from Acros) and
2-Bromopentane (from Acros).

The optical configuration described above has been
also used to measure the birefringence ∆m of a very sim-
ilar nematic elastomer during solvent evaporation. From
this we obtained an independent data on ∆m to use in
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Fig. 5. Variation of total angle Ψ of rotation of incident linear
polarisation after swelling of cholesteric elastomer with achiral
(squares) and racemic solvent (circles). The arrow represents
the time deposition of the solvent droplet onto the sample.

the analysis based on equation (6), assuming that the lo-
cal properties of cholesteric are approximately the same as
of the corresponding nematic. In the measurements of op-
tical rotation we do not care about the ellipticity of light
out of the sample, only about the angle of the principal
axis. In the ∆m measurements of a uniformly birefringent
medium we do. The optimal configuration is to send lin-
early polarised light at an angle of π/4 to the director
and then place a λ/4 plate after the sample with one of
its axis adjusted to be parallel to the incident polarisation
(to recover the linear polarisation) [19]. The relative phase
difference ∆Θ between the perpendicular and parallel po-
larisations is directly related to ∆m by ∆Θ = 2πd∆m/Λ0,
with d the independently measured sample thickness.

On the one hand, measuring the sample thickness is
very important for the correct determination of the abso-
lute phase shift. On the other hand, the qualitative effect
of chiral selectivity, described in this paper, will be quite
evident and unambiguous in the raw experimental data
for the total rotation or the total phase. The dry sample
thickness has been accurately measured by a micrometer,
d0 = 250 µm. On swelling/drying the thickness changes.
We follow it indirectly, from the measurement (by weight)
of the solvent concentration φ, giving the total volume
change, and the fact that the area of the sample attached
to the substrate is conserved. This gives the current thick-
ness area d = d0(1 + φ). For temperature measurements,
the glass coverslip is directly placed onto a hot stage con-
nected to a controller (Stanton Redcroft) with a range of
temperature varying from 20 ◦C to 200 ◦C.

4 Results and discussion

4.1 Optical rotation

Figure 5 shows the evolution with time of the optical rota-
tion from cholesteric elastomer after solvent swelling and
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subsequent drying. Initially the value of Ψ is constant and
is determined by the initial pitch p0 of the dry cholesteric
state and the local nematic order defined by ∆m0. At
t = 0 a drop of solvent is placed in the beam path, as
labelled by arrow in the plot. The optical rotation rapidly
drops to zero because the amount of solvent taken into
the network exceeds the concentration φ∗ at which the
material becomes isotropic, Q(T, φ) = 0. Accordingly, the
rotatory power vanishes – see equation (5) with ∆m = 0.
The spectacular difference between the two types of sol-
vent is observed on subsequent slow evaporation. As the
concentration of the achiral solvent in the swollen net-
work decreases, the liquid crystalline order recovers (cf.
Fig. 7 below for detail) and the observed optical rotation
gradually approaches the same level it had in the initial
dry cholesteric elastomer. As the total concentration φ of
the racemic solvent decreases, the rotatory power returns,
but its magnitude is significantly higher than in the dry
cholesteric. After a maximum at ∼ 20 hr, even after a
very long time, the network does not return to its original
helical state, but saturates asymptotically at Ψ ≈ −12◦.
This rise of optical rotation above its initial value, and
the whole non-monotonic time (and indirectly – concen-
tration) dependence, are the signature of chiral separation
of solvent components. The network retains the compo-
nent that matches its own phase chirality, while letting
the other component evaporate – as a result the effective
helical power increases. This is labelled by ∆q in the plot,
to make connection with equation (3) and Figure 9 below.

The behavior presented in Figure 5 is remarkable
and represents the central result of this work. Our chal-
lenge is now to quantitatively analyse the effect of stereo-
selectivity of cholesteric elastomers. We need to extract
from the optical data, dΨ/dz, the information on how the
pitch 〈p〉 varies as function of the solvent φ retained by
the network. For this, we need to know the relationship
between the effective pitch 〈p〉 and the local order Q (or
∆m) and as the network approaches the transition into
an isotropic state, first by heating above Tc and secondly,
by swelling above φ∗. This will lead to a way to determine
the current cholesteric pitch any small variation of solvent
in the network and to relate it to chiral imbalance ∆φ of
guest molecules in the network. Finally, we can monitor
the overall amount of solvent in the network by simply
measuring the weight of samples as function of time. This
will provide the independent data on φ(t) = φL + φR.
In addition, this is important to provide the information
about the current thickness of the swollen network, d(t),
which is necessary to convert the raw rotation angle Ψ
into the rotatory power dΨ/dz; since our samples have
their x-y area conserved, the thickness change is simply
d(t) = d0(1 + φ).

4.2 Local order parameter

It is unfortunately nearly impossible to independently
measure the local birefringence ∆m, or equivalently, the
local nematic order parameter Q, of a cholesteric liquid
crystal. The difficulty is the same as to measure Q in a
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Inset: dependence of the pitch p with temperature, proving
that the nematic order parameter has no strong effect on the
average cholesteric pitch, at least in our elastomers.

polydomain texture. Perhaps the only experimental tech-
nique that could offer access to such local information is
NMR, relating the angularly averaged line splitting to lo-
cal bias of probe molecule orientation, affected by the ne-
matic mean field. In our case, all we could do is to mea-
sure ∆m in a chemically similar nematic liquid crystal
system and assume that its value and variation would be
the same in a cholesteric. It is not a totally unreasonable
assumption: the degree of nematic order is very reliably
Q ∼ 0.5 ± 0.1 for most nematic liquid crystal materials
(apart from main-chain polymers, which is not our case).
The refractive indices depend more strongly on the molec-
ular structure, varying between, say, 1.45 and 1.85 in dif-
ferent nematic materials.

We chose a composition of nematic elastomer as close
to that in Figure 3 as we could: with PBB and the same
amount of di-11UB crosslinker, with hopefully a simi-
lar molecular anisotropy and number of polarisable π-
electrons. As a confirmation of our choice, the clearing
temperature of this material, Tc ≈ 90 ◦C, was similar to
that of the cholesteric. Making an aligned monodomain
nematic elastomer with this chemical composition, we
then measure its birefringence as function of temperature.
Since the anisotropy of the dielectric tensor is directly re-
lated to the nematic order parameter, ∆m = const. × Q
[9], we obtain the latter by calibrating the proportionality
constant at room temperature against a separate X-ray
measurement of Q.

Figure 6 gives the results and the corresponding anal-
ysis. We plot, against temperature, the square of the ne-
matic order parameter, Q2, determined as described above
(filled squares, right y-axis). This shows the expected be-
haviour, reported and discussed many times in the recent
literature [10]. The data for Q(T ) can be very well fitted
by an empirical critical dependence Q = 0.8(1−T/Tc)0.28

(an interesting and provocative observation on its own,
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also discussed in the literature). This data set is com-
pared with the result plotted on the left y-axis (open cir-
cles), for the optical rotation of our cholesteric elastomer
as it was heated towards its isotropic phase (note, the ini-
tial rotation of ∼ 10◦ is the same as that in Fig. 5). The
matching is quite spectacular, including even the pretran-
sitional region where both Ψ and ∆m effectively change
sign, proving that Ψ ∝ Q2, which is the result predicted
by equation (5) with ∆m ∝ Q.

This exact matching of optical rotation Ψ(T ) and the
local birefringence ∆m(T ) also proves that the other pa-
rameters in the equation (5), in particular the cholesteric
pitch 〈p〉, do not significantly change with the nematic or-
der. The inset in Figure 6 shows the effective pitch calcu-
lated from the data for Ψ and ∆m by our method outlined
in Section 2. It clearly does not vary very much, in spite
of the underlying nematic order continuously dropping to
zero. Such a conclusion is not unexpected in cholesteric
elastomers where the helix is crosslinked into the rubbery
network, and has been reported before [15].

Now, what will happen if the cholesteric network is
swollen with a non-chiral small molecule solvent, at con-
stant temperature? First of all, as for the temperature,
we need to know what is the dependence of the underly-
ing local order parameter Q on the solvent concentration
φ. It was assumed that, for low φ, the effect of added im-
purities is to linearly depress the transition temperature
Tc = T ∗(φ), see equation (2). It is easy to find the crit-
ical solvent concentration at which the material becomes
isotropic, φ∗ ≈ 8% in our case, giving the parameter κ ≈
2.3. Accordingly, we might have expected that the order
parameter follows the law Q(φ) = 0.8(1−T/Tc[1−κφ])0.28,
with the variation exactly as that shown in Figure 6. In-
stead, we directly measured ∆m as function of time as
the droplet of solvent deposited on the nematic sample
(see the configuration Figure 4) swells the network and
then gradually evaporates. Figure 7 presents the result, in
terms of ∆m rather than Q, with the time t = 0 chosen
at the moment when the sample first returns to its bire-
fringent state (at φ∗ ≈ 8%, measured independently). As
the solvent evaporates further (φ → 0), the birefringence
increases and eventually returns to its initial value demon-
strating the complete restoration of the nematic order.

The actual experimental result shown in Figure 7 is
very interesting and rather unexpected, and will certainly
lead to a separate investigation. We observe periodic oscil-
lation of ∆m as φ → 0 in a nematic elastomer deswelling,
while constrained on a substrate. We hypothesise that
these oscillations are caused by the concentration gradient
as one side of the sample is attached to a glass substrate
(and its area conserved); as the solvent evaporates from
the free surface, it also causes a gradient of Q, and with it
– the mechanical strains in the network, which attempts
to uniaxially expand along n with the strain magnitude
∝ Q. Clearly, the set of coupled differential equations for
the time evolution of local φ, Q and elastic strain has an
oscillating instability. Note that the cholesteric network,
in our main experiments on swelling and optical rotation is
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Fig. 7. Variation of the birefringence ∆m on solvent evapora-
tion from the nematic elastomer, between the isotropic phase
(at φ∗, t = 0) to the nematic phase (φ → 0). The dotted line
represents a smoothed model curve for ∆m(t).

also attached to a glass substrate, so presumably a similar
effect should occur there.

Although tempted, here we do not discuss this phe-
nomenon further, not to distract the reader from the main
theme of this paper. For our analysis of effective helical
pitch/wavenumber as a measure of phase chirality, we need
to substitute the raw data for dΨ/dz obtained from Fig-
ure 5 and the data for ∆m from Figure 7 into equation (6).
If one compares the time scales, it becomes clear that the
curious oscillating regime of ∆m(t) occurs at a very early
stage of deswelling, in a region where Ψ ≈ 0 in Figure 5.
Accordingly, for the main (and most interesting) bulk of
data we could use a smoothed interpolation for ∆m(t)
which is shown as a dotted line in Figure 7. We obtained
such a model in a somewhat arbitrary fashion, trying to
match as closely as possible the data and the linear model
for Q(T, φ); however, the main point of this argument is
that in the region of main interest the deviation of the
model from the raw data is not relevant.

4.3 Quantifying the stereo-selectivity

We obtain the same results for changes in local order pa-
rameter swelling by a racemic solvent and calculate, from
the equation (6), how the average helical pitch 〈p̃〉 varies
with time. The last task remaining, to successfully map
thus obtained 〈p(t)〉 on the important concentration de-
pendence, is to independently measure the change in total
concentration φ = φ(t) as the network gradually loses the
solvent. Figure 8 shows the result of such weight measure-
ment of our cholesteric sample initially swollen in a large
amount of each corresponding solvent. Such an experiment
is, necessarily, much less accurate than the rest of our data
– nevertheless the results appear unambiguously pointing
at a different saturation level at t → ∞.
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model in Fig. 7).

In fact, the detailed analysis of the decay of total
concentration of solvent in a swollen cholesteric network
shows another basic and interesting result, the discussion
of which is beyond the scope of this paper. We attempted
to fit the data for φ(t) (below φ∗, in the mesophase)
and the only good fit was achieved by a “stretched ex-
ponential” function, the same for both solvents (with a
relaxation time slightly different, which is only natural for
chemically different solvents):

achiral : φ(t) = C e−(t/τa)
2/3

(7)

racemic : φ(t) = C e−(t/τr)
2/3

+ ∆φ ,

with τa ≈ 2.6 and τr ≈ 1.5 h, but with characteristically
the same prefactor C ≈ 14 (in % units, as in Fig. 8).
Such a time dependence of average concentration during
surface evaporation is very different from classical predic-
tions [20], offering the law φ = (8φ0/π2) exp[−π2Dt/8d2].
Such a deviation could be due to coupled nonlinear ef-
fects of elastic strain, order Q and inhomogeneous solvent
concentration across the sample layer.

Having mapped the data for total concentration φ(t)
[and the associated sample thickness decrease, d0(1 + φ)]
on the results for optical rotation, Ψ(t) and local birefrin-
gence ∆m(t), we can obtain the concentration dependence
of phase chirality in our system. Figure 9 presents the re-
sults of our analysis, based on the equation (6), for the
variation of 〈p̃〉 = 2π/〈q〉 as function of concentration.1
The data correspond directly to the results of Figure 5.

1 The results in the region of phase transition, close to φ∗, are
too ambiguous because of several independent critical functions
(especially ∆m) and not shown in the plot
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It appears that, unlike for the temperature effect illus-
trated in Figure 6, a continuous unwinding of the natural
helix occurs on swelling in achiral solvent. This is not an
affine effect of increasing sample thickness: the d(t) vari-
ation has been accounted for in evaluating the rotation
rate dΨ/dz. The likely reason for such an effect is the di-
lution of molecular chirality and its reducing effect on the
macroscopic scale.

The main effect we are interested in is the stereo-
selective response to the racemic solvent. The marked in-
crease in the effective phase chirality and the failure of
the solvent to evaporate completely (also demonstrated
in Fig. 8) are clear indications of the network selecting
and retaining the solvent component with the chirality
sense matching that of the helix. We could reasonably as-
sume that all the retained solvent is left-handed (L), so
the ∆φ(t → ∞) = φL ≈ 1%. Note, however, that the
strength of chiral solvent retention only become noticeable
when the overall solvent content φ reduces below ∼ 3%. At
this level, the local order parameter Q (expressed as ∆m
in Figs. 7 and 8) increases to its nearly saturation value
characteristic of the dry network. When the local nematic
order is weak, at higher φ, we see no stereo-selectivity.
This indicates the role of phase chirality in the observed
phenomenon, as well as the method of extracting the L-
solvent trapped in the network: one simply needs to heat
the material to its isotropic state, or mechanically stretch
above the critical strain so that the helix is unwound [10].

Comparing the final values of ∆q and ∆φ, we can
deduce another phenomenological parameter used in the
MW theory, the coefficient qs in the equation (3). After
the affine expansion effect is eliminated, as in Figure 9,
the remaining linear relation gives qs ≈ 0.1 nm−1.
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5 Conclusions

In summary, we found a strong and reproducible effect of
stereo-selectivity in cholesteric elastomers. The study has
unambiguously pointed to the macroscopic phase chiral-
ity (the cholesteric helix) as the dominant force behind the
phenomenon. From a combination of analytical tools pro-
vided by the theory of optical rotation in cholesterics and
the local analogy between the cholesteric and the nematic
elastomer systems, we were able to quantitatively follow
the variation of helical pitch with solvent concentration.
Comparing the effects of an ordinary achiral solvent and
the racemic mixture of two opposite chiral small-molecule
components, we demonstrate how the cholesteric elas-
tomer selectively retains the component with the matching
sense of chirality.

Most of our experimental work was based on del-
icate optical measurements and required monodomain
cholesteric (and nematic) elastomers. Preparation and the
resulting quality of these could present many practical
difficulties. However, for the purpose of stereo-selectivity,
one does not need monodomain networks! Once we have
demonstrated and studied the effect in model samples,
one can now proceed to develop a new technology of chi-
ral separation using cholesteric polymer networks of dif-
ferent chemical composition (to control overall solubility
in target racemic solvents and to choose the desired hand-
edness of the helix). These networks do not have to be
aligned in any way; perhaps the best practical way is to
prepare highly porous sponges with high internal surface
area, which could then be used to extract chiral compo-
nents from racemic mixtures (and release them on, e.g.,
subsequent heating). However, our results indicate that
careful monitoring of timing and overall solvent content
has to be maintained in order for such a “chiral sponge”
to remain in its most effective regime (at high local Q).
Numerous applications of this effect in biomedical indus-
try and stereo-selective sensing come to mind.

Several fundamental and interesting problems were
left behind. The most startling is the oscillating effect
of solvent loss under mechanical constraints, but even
the basic effects of diffusion in the medium with coupled
non-linear degrees of freedom are challenging for both
theory and experiment.

We acknowledge many useful discussions with M. Warner and
P. Cicuta, and the financial support from EPSRC.
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