
Michaelmas 2012 Thermal and Statistical Physics (Part II)

Examples Sheet 1

1. Show that, for a van der Waals gas, the specific heat at constant volume, CV , obeys(
∂CV

∂V

)
T

= 0.

2. The Gibbs free energy of an imperfect gas containing N molecules is given, in terms of its
natural variables T , p and N , by

G = NkBT ln

(
p

p0

)
−NA(T ) p,

where p0 is a constant and A is a function of T only. Derive expressions in terms of T , p, V ,
and N for:
(a) the equation of state of the gas;
(b) the entropy, S;
(c) the enthalpy, H;
(d) the internal energy, U ;
(e) the Helmholtz free energy, F .

Can all equilibrium thermodynamic information about the gas be obtained from a knowledge
of: (i) F (T, V,N); (ii) the equation of state and U(T, p,N)?

3. The entropy of a monatomic ideal gas is given by the Sackur-Tetrode equation which can be
written in the form:

S(U, V,N) = NkB ln

{
α
V

N

(
U

N

)3/2
}
,

where α is a constant to be derived later in the course.

Invert this expression to get U(S, V,N). From this, obtain the equation of state expressing p as
a function of V,N and T .

4. Use a Maxwell relation and the chain rule to show that for any substance the rate of change
of T with p in a reversible adiabatic compression is given by(

∂T

∂p

)
S

=

(
T

Cp

)(
∂V

∂T

)
p

.

Find an equivalent expression for the adiabatic rate of change of T with V , and check that both
results are valid for an ideal monatomic gas.

5. Write brief notes on thermodynamic equilibrium in closed and open systems.

6. Under what conditions is the Helmholtz free energy F a minimum for a system in equilibrium?
The work corresponding to an increase in the surface area of a liquid is dW = Γ dA, where Γ is
the surface tension, and A is the area of the surface.
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Consider a bubble of air in a large container of liquid in equilibrium. Write the total Helmholtz
free energy of the system as the sum of contributions from the air in the bubble, Fa, the surface
of the bubble, Fs, and the surrounding liquid, Fl. Show that the pressure of the air inside the
bubble is equal to pl + 2Γ/r, where pl is the pressure of the liquid.

7. What is the minimum work required to extract 1 mole of pure O2 from a large volume of air
at the same temperature and pressure, if air is regarded as being composed of 1 volume of O2

mixed with 4 volumes of N2. [Ans. 13.4 J K−1 × T , where T is the temperature in Kelvin.]

8. The heat capacities of the superconducting and normal phases of a metal at low temperatures
are given approximately by

Cs(T ) = V αT 3 superconducting phase

Cn(T ) = V βT 3 + V γT normal phase,

where V is the volume and α, β, and γ are constants. At low temperatures the superconducting
phase is stable while above a temperature Tc the normal phase is stable.

Experiments indicate that the latent heat for the transition is zero. Find an expression for Tc.
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9. The partition function of a system is

Z = exp
[
aT 3V

]
,

where a is a positive constant. Obtain expressions for the Helmholtz free energy, the equation
of state, the internal energy, the heat capacity at constant volume, and the chemical potential.

Write the pressure as a function of the internal energy per unit volume. Can you identify the
physical system that corresponds to such a partition function?

10. A crystalline solid contains N identical atoms on N lattice sites, and N interstitial sites to
which atoms may be transferred at the energy cost εc. If n atoms are on interstitial sites, show
that the configurational entropy is 2kB ln(N !/n! (N − n)!).

Assuming n/N is small, and that vacancies are very rare, show by minimising the total free
energy that the equilibrium proportion of atoms on interstitial sites n/N is⟨ n

N

⟩
=

1

1 + exp(εc/2kBT )
.

11. A zipper has N links; each link has a state in which it is closed with energy 0 and open with
energy ϵ. We require, however, that the zipper can only unzip from the left end, and that the
link number s can only open if all links to the left (1, 2, . . . , s− 1) are already open.
(a) Show that the partition function is

Z =
1− exp (−(N + 1)ϵ/kBT )

1− exp (−ϵ/kBT )
.

(b) Find the average number of open links in the low-temperature limit. The model is a very
simplified model of the unwinding of two-stranded DNA molecules.

12. Calculate the classical partition functions, and discuss the high- and low-temperature limits
of:
(a) a one-dimensional simple harmonic oscillator, for which

E(p, x) =
p2

2m
+

1

2
kx2 ;

(b) a particle moving in three dimensions in a uniform gravitational field, for which

E(p, z) =
p2

2m
+mgz .

13. Consider an ideal classical gas of volume V and temperature T , consisting of N indistin-
guishable particles in the extreme relativistic limit where the energy ϵ and momentum p of a
particle are related by ϵ = cp, where c is the speed of light.
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(a) Calculate the partition function of the system Z, the equation of state, the entropy S, in-
ternal energy U , and the heat capacity CV .
(b) Suppose that, in addition to its translational motion, each of the particles can exist in one
of two states of energy ∆ and −∆. Calculate Z, the equation of state, S, U , and CV .

14. Helium atoms of mass m may be adsorbed from the vapour phase at pressure p onto a solid
surface where they can move freely without interaction, behaving as a two-dimensional perfect
gas. If the adsorption energy is ∆, then by treating the vapour as a particle reservoir for the
helium atoms on the solid surface, and treating both sets of atoms as ideal classical gases, show
that the number density per unit area of helium atoms on the surface is

nads =

(
p

kBT

)(
2πh̄2

mkBT

)1/2

exp

(
∆

kBT

)
.
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15. A point defect in a solid may be occupied by 0, 1 (spin up or down) or 2 electrons, and the
solid provides a reservoir of electrons at chemical potential µ. The energy for occupation by a
single electron is ϵ, and that for 2 electrons is 2ϵ+U , where U is the Coulomb repulsion energy
between the electrons. Obtain an expression for the average electron occupancy of the defect.

16. Show that the equilibrium constant KN for the ionisation reaction He ⇀↽ He+ + e− is to a
good approximation

KN =
1

4V

(
2πh̄2

mekBT

)3/2

eeϕ/kBT

where ϕ is the first ionisation potential of He, which is 24.6 V.

Find the proportion of He that is ionised at 104 K (i) at atmospheric pressure, and (ii) at 10−2

Nm−2. What is the cause of the change in the equilibrium constant? This effect is important
for spectral lines from interstellar gases, one finds a surprisingly large intensity corresponding
to spectral lines of ionised atoms.

17. A system contains 2 particles, each of which can occupy either a level of energy 0, or one of
energy ϵ. Calculate the partition function of the system if the particles obey:
(a) Fermi-Dirac statistics;
(b) Bose-Einstein statistics;
(c) Classical statistics and are indistinguishable;
(d) Classical statistics and are distinguishable.

In the high-temperature limit the partition functions for cases (a), (b), and (c) tend to different
values. Why is this?

18. The temperature at the centre of the sun is T = 1.6 × 107 K, and plasma at the centre of
the sun consists of hydrogen at a density of ρH = 6 × 104 kg m−3 and helium at a density of
ρHe = 1× 105 kg m−3.
(a) Calculate the thermal wavelengths of the electrons, protons and He nuclei.
(b) Determine whether the electrons, protons and He nuclei are degenerate or non-degenerate
under these conditions.
(c) Estimate the pressure at the centre of the sun due to these particles and that due to the
radiation pressure.
(d) Is it the pressure due to the particles or the radiation which prevents gravitational collapse
of the sun?

19. At temperatures below 0.4 K, a dilute solution of 3He in liquid 4He behaves like a gas of
3He atoms moving freely in vacuo except that the effective mass of each 3He atom is enhanced
by a factor of about 2.4. The concentration of 3He is 5 atomic percent and the density of the
solution is 140 kg/m3. Sketch the temperature dependence of the heat capacity per 3He atom
at low temperatures. Calculate the Fermi temperature, TF , and the coefficient γ of the specific
heat at low temperatures, cV = γT .
[Answer: TF = εF /kB = 0.33 K, γ = 2.0× 10−22 J atom−1K−2.]
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20. Spin waves in many ferromagnets show a gap at low energy, due to coupling of the orbital
moments to the crystalline lattice. The resulting dispersion relation curves are typically as
shown below.

By first carrying out an approximate calculation sufficient to show the qualitative temperature
dependence of the internal energy U (or otherwise), sketch the expected temperature dependence
of the specific heat at low temperatures, assuming that the dispersion relation is isotropic.

21. A long air-filled coaxial transmission line, of length L and small diameter, is short circuited
at each end. Show that, at room temperature and at a cyclic frequency ν = 109Hz (ν = ω/2π),
the mean energy of black body radiation between the conductors in a small frequency range dω
will be approximately

kBT
L

πc
dω .

If the outer diameter is 1cm and the inner diameter 2mm, explain why it would be reasonable
at 1012Hz to replace this expression by one proportional to

kBT
V

(2πc)3
ω2dω

where V is the volume between the conductors.

22. Write brief notes describing the chemical potential and examples of its use in thermodynam-
ics and statistical mechanics. In your essay, include a sketch of µ as a function of the number
of particles per unit volume in both the classical and quantum regimes.
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23. The partition function of a system is

Z =
AN

N !
T 3N/2 V N exp

[
−B(T )N2

V

]
,

where A is a positive constant and B(T ) is a function of temperature. Obtain expressions for the
Helmholtz free energy, the equation of state, the internal energy, the heat capacity at constant
volume, and the chemical potential.

What physical system corresponds to such a partition function?

24. An inter-molecular potential takes the form

ϕ(r) = ∞ r < a

−ϵ a < r < 2a

0 r > 2a.

Within the virial expansion the radial distribution function is expanded in powers of the density.
(a) Sketch the form of the density-independent part of the radial distribution function versus r
for kBT ≫ ϵ and kBT ≪ ϵ.
(b) Evaluate the 2nd virial coefficient, B2(T ), and the Boyle temperature of the gas.
(c) Identify a set of reduced units, v∗0 and T ∗, for which B2(T

∗)/v∗0 is independent of a and ϵ.
Sketch B2(T

∗)/v∗0 versus T ∗.

25. The order parameter for a fluid of rod shaped molecules is their degree of alignment, Q,
with Q = 0 corresponding to a disordered fluid, and Q ̸= 0 corresponding to a nematic liquid
crystal. The free energy can be written as

F (Q,T ) = a(T − Tc)Q
2 − bQ3 + cQ4,

where a, b, c and Tc are positive constants. This system shows a first order phase transition, at
a temperature T ∗, between two states with Q = 0 and Q = Q∗.
(a) Calculate Q∗ and T ∗, using the conditions that the free energies of the two states are equal
at the transition and that the free energies are stationary in equilibrium.
(b) Calculate the latent heat of the transition.

26. (i) Suppose the free energy of a system can be written as

F = α(T − Tc)P
2 + bP 4 + cP 6,

where c > 0. Show that the system can undergo a first order phase transition at temperature
T = Tc + b2/4ac if b < 0.

(ii) The free energy of a ferroelectric crystal can be written as

F = α(T − Tc)P
2 + bP 4 + cP 6 +DεP 2 + Eε2,
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where P is the polarisation of the crystal and ε is the elastic strain. Show that the crystal will
undergo a first order phase transition when D2/4E > b.

27. Show that the fluctuations in particle number, N , at constant temperature, T , and volume,
V , are given by

⟨∆N2⟩ = kBT

(
∂N

∂µ

)
T,V

.

28. For a system ofN free electrons the statistical weight, Ω(U), is proportional to exp[(NU/ϵ0)
1/2],

where ϵ0 is about 10−19 J. Calculate the heat capacity, C, of the system at room temperature.
Show that the probability distribution of the energy of the system is approximately Gaussian
and find the root mean square fractional energy fluctuation,

√
⟨∆U2⟩/⟨U2⟩, for a system with

N = 1023 at room temperature.
[Answer: C = 2.8× 10−25 J K−1 per electron;

√
⟨∆U2⟩/⟨U2⟩ = 4.5× 10−11.]

29. Find the mean square fluctuation of magnetisation, ⟨∆M2⟩, as a function of temperature on
both sides of the critical point Tc of the ferromagnetic phase transition, which can be described
by the Landau free energy expansion

F = a(T − Tc)M
2 + bM4 .

30. Derive the Stokes-Einstein relationship for the diffusion constant of particles of radius R in
a fluid of viscosity η

D =
kBT

6πηR
.

In 1928 Pospisil observed the Brownian motion of soot particles of radius 0.4×10−7 m immersed
in a water-glycerine solution of viscosity 2.78×10−3 kg m−1 s−1, at a temperature of 292 K. The
observed value of ⟨x2⟩ was 3.3×10−12 m2 in a 10-second interval. Use these data to determine
a value of the Boltzmann constant, kB, and compare it with the modern value.

31. The famous ratchet and pawl machine, originally suggested by Smoluchowski in 1912 to
be able to extract useful work from a thermal reservoir (against the Laws of Thermodynamics)
is shown below. The pawl preventing the backward rotation of the wheel allows the energy
transferred to the flaps from the thermal motion of surrounding gas to be rectified, i.e. only
channelled in one direction.

If the energy required to lift the pawl and make one step of forward motion is ε and the work
against the external torque L (e.g. from the lifted mass in the sketch) is Lθ, with θ the angle of
single-step turn, show that the system is reversible if

ε+ Lθ

T1
=

ε

T2

where T1 and T2 are the temperatures of the gas and the vanes, and of the ratchet wheel,
respectively. As a result, prove that the Carnot condition for a reversible cycle holds, Q1/Q2 =
T1/T2, where Q1 is the energy taken from the vanes and Q2 the energy delivered to the wheel.
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[see Feynman Lectures on Physics, chapter 46-2, for detail]

32. Consider free Brownian particles diffusing along the axis x ≥ 0, so that there is a reflecting
wall at x = 0. Also there is a “sink” at x = L where the particles can escape from the system,
so that the probability at that point is P (L, t) = 0 at any time.

If the diffusion constant is D, estimate how long on average would it take for all the particles
to escape from the system?
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