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Energy

Over-arching concept ... Often-misused concept ...

Physical “definition”: there exists a certain scalar
quantity that does not change in all the possible
transformations that Nature undergoes.

This is essentially an abstract mathematical constraint,
but we really can'’t tell what energy “is”...

Potential Energy {—> Kinetic Energy
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Dissipation of energy

In most areas of physics we only consider the situations
where the total energy of a given system was conserved.
The forces may have done some work, but it was possible

to convert it back into potential energy. a T

In many situations, however, some of the work will be “lost”.
Where would the energy go, if there is a universal Law of
conservation of energy?

We say it converts into “heat”. One often thinks that “heat”
is just the form of kinetic energy of many particles — but
since there are so many of them (102 in a spoon of water)
we have no hope of harvesting this energy back... so it is
considered “lost”.
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Dissipation of energy
This loss of energy into heat is called “energy dissipation”.

It is a result of wet friction (or “dissipative friction”), which
in most cases is a force proportional, and opposite in
direction to the velocity:

F

friction _7 4
PANEOT r%

Compare this with the dry friction (resistance),
which is F =—u N

The force of friction is directly proportional to the applied load. (Amontons 1st Law)

friction

The force of friction is independent of the area of contact. (Amontons 2nd Law)

The force of friction is independent of the sliding velocity. (Coulomb's Law)
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Rate of dissipation

Let us calculate the power loss in an oscillator (an example):

U/\/\/\p{;—@? Ffr mx=—kx— yv+ F(t)external

dx d*x dx \dx
P=F(t m +hkx+y— )=
(E ( dt? 7dt )dt

2 2 2
ppF . = djmv kx| fdx
dr| 2 2 dt

Which means: you have to spend some external power to
make a particle moving against friction! If you don’t (P=0)
—then the rate of energy loss is: d

dr

[Total Energy]= -F.. v
“loss of energy”
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Work and Heat

The First Law of thermodynamics states:

“Energy is conserved when heat is taken into account’

In more quantitative terms, we claim that any change of

internal energy of any system (which we now call U) is

converted into work and the rest is released as heat:
AU =AW +AQ

If you remember, the work (interpreted as the change

of P.E. to be specific) was determined as AW =-F-Ax

It is common to start the subject of thermodynamics
with the analysis of gases, so the force is what acts
on the piston of area A:

AW =—F - Ax
So: AU =AQ—PdV |
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Ideal gas: equation of state

Boyle (1662): at fixed temperature PV = constant

Charles (1787): at fixed mass of gas V =V, +constant- (T —T;)
Extrapolating this linear relation, scientists very early
have determined a “zero temperature” at which V=0, V4~ > !
which in today’s Celsius scale is at 7= —273C. ‘

A similar linear P-T relationship was also known To
(Amontons 1702) and so, this required PV =constant-T

Finally, Avogadro (1811—1860) determined the
constant, which had to be proportional to the
amount of gas. He introduced a mol: ‘PV = IIR'T‘

A mol is the mass in grams of a substance
which is equal to its molecular weight. Each mol
contains exactly the same number of particles,
N,=6-10%3|

Total amount of particles is: N =nN,
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Heat capacity

One of the basic properties of all forms of matter
in response to heat is that of heat capacity.

, : , AQ=C-AT
The heat capacity describes the change in

temperature of a substance when it is supplied do
with a given amount of heat. C="r
But most materials (especially gas) can also expand on heating.

So we must specify in what conditions the heat capacity is
measured, e.g. at constant volume or at constant pressure

] iF
dr )y dr )p

The difference between them is the work (-PdV) on expanding the body:
V=constant: dQ=dU =CdT

P=constant: dQ =dU + PdV =C,dT +nRdT = (C,, +nR)dT
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Temperature and Entropy
Entropy (Clausius 1850, Gibbs, Boltzmann) is @ measure of
the unavailability of a system’s energy to do work (see
1stlaw AU = AW +AQ ). In simple terms, the entropy S
is the “heat per unit temperature”:

AS:A% or dQ=T-dS
However, the modern (primary) definition of entropy is from

statistical principles. This is often called “Boltzmann entropy”
andis definedas ¢ - ky InQ

where Q is the number of states the system can explore
The Second Law of thermodynamics states that the entropy of
an isolated system can only increase with time (AS>0) and
approaches its maximal value in equilibrium.

— Heat cannot spontaneously flow from a material at lower
temperature to a material at higher temperature.
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Variable particle number

Consider a gas in a box — change particle number (N—N+dN)
while keeping the volume constant (dV=0). If this addition
was done reversible, that is, not creating heat (dQ=TdS=0),
then the increase in the energy of this gas:

AU = u AN 5
U
This defines the chemical potential #= [W)

V.S

In summary, for an arbitrary process capable of changing the
volume of gas (i.e. do mechanical work), converting some of
the energy into heat, and also exchanging particles — we
have the energy increment:

dU =TdS — pdV + udN




Other sources of energy

“Paramagnetic Salt” is a model system where each atom is
fixed on a lattice and carries a magnetic moment (spin=1/2),

independently of its neighbours.

&, =mB
gT — gJ, =0 4

Without an external field the up-down
spin energy levels are the same, but the
magnetic field splits the degeneracy: U =-M -B= (N,—=N,)mB

dU =TdS -M -dB

£ =—-mB

Please watch the dimensionality... People (and textbooks)
are often flippant about the difference between “energy”
and “energy density” - and in this case: the "magnetic
moment” and “magnetisation”...

Michaelmas 2012 Part Il Thermal & Statistical

Other sources of energy

“Simple Harmonic Oscillator” is a workhorse of physics (this
is because any potential energy is quadratic near equilibrium).

For the potential V(x)=: a x? the nt" energy -0
level of the excited oscillation has the '
vaiue: g, =ho(n+))

n=2 LN LN LN
where the natural frequency a):ql%l

Total energy of an assembly of such
oscillators is then

U = z ha)(nl +%) -/ x
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Other sources of energy

Van der Waals gas is an empirical model v(r)
system that takes into account the pair Short-range
interactions between particles of gas. repulsion

2

2
{p+ ]:’/ aJ(V—Nb):NkBT

Long-range

_ Nk,T N’a attraction
V-Nb V?

We shall use this model in several contexts in this course.

Here let’s just note that with a potential like this, the energy

can be stored as kinetic or potential form — and one can

convert kinetic «<» potential energy, for example, by Joule

expansion.

or
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Equation of state

The equation of state is a relationship between (p,V,T) — for

instance: ’
Nk, T N-<a
V=Nk, T or = B~ _
P ? P=yv "N V2

Such a relationship describes a surface in a 3D (p,V,T) space!

butnot pV" =const

—D->




Thermodynamic variables

Thermodynamic variables are observable properties of any
system. They fall into two categories, intensive and extensive:

System Intensive Extensive

Linear spring F force x displacement

Gas p pressure V volume

Particle exchange u chemical potential N number

Surface film v surface tension A area

Electrostatic V potential g charge

Magnetic B “magnetic field” M “magnetic moment”
...any... T temperature S entropy

Intensive and extensive variables form conjugate pairs,
whose product has the dimensionality of (and therefore

represents) energy, e.q. AU=AQ+AW =T-AS—P-AV

her forms of work:
Othe AW =-F-Ax AW =y-AA etc.

Thermodynamic potentials

We have just seen, for the mean internal energy of the
system: AU=T-AS—p-AV or dU=T-dS—p-dV

This means that (S,V) are the natural variables of U(S,V)
which means that to determine the value of U we must
measure S and V (or “keep them under control”).

But in some situations (e.g. in an open container) it may
be hard to control/measure the volume, instead the
pressure P would be a more natural variable?

Introduce enthalpy: H =U + pV

1 1
then dH =dU +d(pV)=TdS — pdV + pdV +Vdp =TdS +Vdp

We conclude that the function H=H(S,p), with the conjugate
pair (p,V) “switched” — that is, now V plays the role of a “force”
while P the “displacement”
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Thermodynamic potentials

What we have just seen: U(S,V) — H(S,p) is one
example of a general “Legendre transformation” switching
between the “force” and “displacement” within pairs of
thermodynamic variables.

In many situations it may be hard to control/measure the
entropy, instead the temperature T would be a more
natural variable?

Introduce free energy: F=U-TS

1 1
then dF =dU —d(TS)=TdS — pdV —TdS — SdT = —-SdT — pdV

We conclude that the function F=F(T,V). In the similar way
we may introduce the Gibbs free energy: G=H -TS =F + pV

dG =dF +d(pV)=-TdS — pdV + pdV +Vdp = —SdIT+Vdf

Thermodynamic derivatives

Thermodynamic potentials are different forms of energy,
expressed in appropriate “natural variables”. We have just
seen four: U(S,V) — H(S,p) — G(T,p) — F(T,V).

dU =TdS —pdV ~ dH =TdS +Vdp

dG =-SdT +Vdp  dF =-SdT — pdV
This means that we can have partial derivatives, in each
case determining the corresponding thermodynamic force:

s 7=(5) ) W)L W)
e dS V =const dS p=const p dV S=const dV T=const

What will happen if we take a derivative with respect to a “wrong” variable?

(dHJ TdS +Vdp (de (dpj
eg |-~ |=———— so |— =V|——
dV dV dV S=const dV S=const

(d_U] :T(d—s) =C, so dS :EdT
dT V=const dT V=const T
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Maxwell relations

Thermodynamic potentials are different forms of energy,
expressed in appropriate “natural variables”. We have
seen four: U(S,V) — H(S,p) —» G(T,P) — F(T,V).

dU =TdS —pdV ~ dH =TdS +Vdp

dG =-SdT +Vdp  dF =-SdT — pdV
One can evaluate a second derivative in two ways:

? dr d
e.g. ( dU J=(—) =—(—pJ One of Maxwell relations
N 14

das dv dv ds
@7, @ L)
dP),  \dT ), dv ), \dr), dP); \ dS ),

1) Which two variables — 2) Which potential — 3) What sign?

Do you notice the pattern?

Analytic Methods
Chain rule: (ﬂj =(ﬂj (@) Maxwell rel:
dy ). du)\dy ). dXx dy
: : M=II(x,y):| — | =4 —
Reciprocity (@J :_(@J (@J dy ) \dx),
theorem: dy ). dz ) \dy),
Entropy of an ideal gas
S S=S(p, T dS—(a—Sj dT + a—S d
uppose S=S(p,T) ar ), ), p
dS=de—T—(a—Vj ap=c, 9T i,
_ T \oT ), T p
Now integrate:
§=C,InT — Nk, In p + const
3/2
S = Ns, +Nk3[lnT5’2 —ln%} = Nk, ln(const- VN j

10



Cp and Cv once again...
Let us use this as another example of calculation:

For any function, such as S(7,V): dS:(a—SJ dTJ{a_S) dv
aT ), v ),
Now evaluate

S, =T(d—Tl ”(d—Tl *T(Wlﬁﬁl

’ ar ),\dr ),

We stop as soon as the combination (P V,T) is reached

If ideal gas, then: (d_p} _NkB.(d_VJ _ Nk,
dr ), v '\dT), p

so C,=C, + Nk,
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Joule expansion
Isolated system, so AU=0. During the expansion V,—V,

Vs

U

inihal 4\\'\&1.
(d_TJ __(d_T) (d_Uj __ 1 TdS-pavi __ 1 T(d_PJ _
av ), \av)\av) " "¢, av |, ¢,| \ar), "

We stop as soon as the combination (P V,T) is reached

d, Nk, T
If ideal gas, then: T(—pJ =—25 _=p; so AT=0

dr ), Vv

Nk,T N’a

V—-b V?

Try to evaluate this for a non-ideal gas, e.g. p=




Summary so far........

The 2nd Law of thermodynamics:
“Entropy of a closed system increases to a maximum in
equilibrium’ dQ =TdS S=k,InQ

Thermodynamic variables come in conjugate pairs of

“force”™“variable”. A given set defines the corresponding
thermodynamic potential:

“Enthalpies” “Free energies”
U,H,..=TdS +{vdx} F,G,..=—-8dT +{vdx }

Mean energy U(S,V,N) is the only potential that depends on
all the extensive variables! Hence U(AS, AV, AN)=AU(S,V,N)

Tools of analytical thermodynamics:
Maxwell relations — Reciprocity — Chain rule — stop at (R.V,T)
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Internal equilibrium

Let us consider a closed system, fully isolated from outside.
The 2 Law demands that the change of entropy of this
system can only be positive, AS>0, and it should be maximum
in equilibrium.

Let’s divide the system into two parts: . vun ), ,
they can exchange U, Vand N =
05, =ds, +ds, = Uit PdVi=dN, | dU, + p.dV, = N,

tot T T

1 2
_dU,+pdV, = dN,  =dU, = p,dV; +ft,dN,

T, T,
S L T TR U P - B NS
I, T, I, T, L T,

Between any two parts
inside closed system: I,=T,; p=py; H=H

12
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Equilibrium in open systems

A much more relevant problem is about a system interacting
with a reservoir (the rest of the Universe). The 2" Law is still
in action, only it applies to the whole:

as before, the two parts of the (closed)

Universe can exchange U, Vand N

_ du, + p,dV, — u,dN i AU + ppdVy — fpdN

dStOl .
h Ty since:
—dU1+p1dVI_:u1dN1+_dU1_deV1+,URdN1 AX, =-AX,
T, T,
—dU —pedV + i, dN
=dS + pRT My :TL(TR(ZS —dU —deV +:uRdN)
R R

So far, no assumptions were made, but surely the “reservoir” is very big...
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Availability

Now assuming the reservoir is so big that it “doesn’t notice”
any changes that our system inflicts on it:
dTy =dpy = dity =0

So: pRdV =d(p,V); etc.

We can now define a new object for our
system, called the availability A, as: dA=-T,dS,,

s, = TL(TRdS —dU — ppdV + t1,dN )

R

Meaning that: dA =-T,dS +dU + ppdV — pt,dN
dA=(T~T,)dS—(p— p)dV + (i~ )N

~

+ Availability is the function of system variables (U,s,V.N)
» Since R-variables are constant: A=U-T,S+ pV — ;N
* In equilibrium, availability is at its minimum: dA<0

13
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Availability
dA=-T.dS,, ., =dU —T,dS + p,dV — jL,dN

A particularly important aspect of the 2" Law in the form of
the availability reaching its minimum when the system is at
equilibrium with the (big) reservoir is that — for any variable X
that characterises our system — the probability is:

P(X) o< exp(— A(%T)
Now consider our system at constant 7,V and N. Then:
dA=dU ~T,dS + ppdV — N |,
=dU -TdS =d(U -TS)
=dF(T,V,N) ... the Helmholtz free energy, which
has T,V and N as its proper variables.

Check yourself: dA |T’p,N;dA |SYP,N;0r da |,
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Phase equilibrium

If we are looking at an open system, then it has to be under the
(p,T) control, and so has to be described by G(Tp,N), e.g., in
contrast to a fixed-volume vessel, which requires (V,7) -and F.

. P G
When the twol phases coexist, ) By ' /{Gw
the full potential is G =G, +G, P T | S
In equilibrium: |dA= dG|T!p =0| Th ) ) T

dG,:—S}d¢+V, T ydN, :—dezs/df—v - 1.dN,

Now, dT=dp=0 and dN,=—dN,, so |, =K,

This is a part of our earlier equilibrium condition set for the
two parts of a system. Every time when there is a particle
exchange, we find g matching between the subsystems.

14
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Phase equilibrium

Look at the familiar example of VAW isotherms and the

resulting gas-liquid transition. On the (p,V) plane we have:
1107

And at a temperature )

below the critical point s

F there is a region of s o

coexistence. How can ~ )

we find the pressure e

at which this occurs, 2105

fora given T? P 2 , . |

/UI(A) - IUV(E) 010° 1107 3‘1)({3;“ ;);(;z;cle4/11[§8 510% 6107

i, (E) :ﬂl(A)JrK(a_ﬂ dp The Gibbs-Duhem equation:
- dp ), du =—sdT +vdp

:”I(A)“LL vep _ The equal area rule gives the

vapour pressure p(T)

Summary so far........

Availability — the energy function that reflects the balance
between the system and the reservoir:

dA=dU —-T,dS + p,dV — u,dN
:(T_TR)dS_(p_pR)dV+(ﬂ_ﬂR)dN

The system interacting with a reservoir has a probability to
have the value of its variable X given by P(X) CXP_(A(%T)

When you control a certain set of variables of your system,
e.g. (X'Y), then a small increment in availability is equal to
the increment of the corresponding T.D.potential TI(X,Y)

eg. dA| =dF(T.V,N)

T.V,N

15



Microstates and Macrostate

Microstate is a particular configuration (realisation) of the
system with certain values of microscopic parameters, e.g.

» set of solutions of a Schrédinger equation with an energy E;
* positions and velocities of particles in a classical gas

« an arrangement of spins in a paramagnetic lattice

Macrostate is a set of all microstates which has a certain
mean energy U and is subject to any other constraint: V, N, etc.

For an isolated system, all microstates compatible
with the given constraints are equally likely to occur

Statistical mechanics is all about finding 1 2lnQ
the number microstates: Q(U,V,N) T —( J
B

The Boltzmann entropy: S =k InQ
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Statistical entropy

The entropy (heat per unit temperature) is the measure of
irreversibility, of chaos, of disorder — quantitatively
measured as “number of configurations”: S =k;InQ
Examples: 1) Identical particles in a box: Q=N!

S =k, In(N!) =(NInN-N) using Stirling approximation:

N!=N"Ye™
: N!
2) Several populations (N;+ N, +N;+...=N): Q=——————
N,N,!N,!...

S =k, anzk]{NlnN—N— Y.IN, lnN,.—Nl.]]

i=1,2,3,...

=ky| Y NIInN-InN,]| =-Nk; Y, N N
i=1,2,3,... i=1,2,3,... N N

“Gibbs entropy”: S =—-Nky Y P (i)InP (i)
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Canonical ensemble

Microcanonical ensemble is just a collection of thermally
isolated systems, all with the same energy — and hence the
same probability of occurrence.

Canonical (or standard) ensemble is a collection of systems
all connected to a reservoir (and possibly to each other) so
that they can exchange energy. So the mean energy of this
ensemble U fluctuates. We have a definite number: N.

There will also be a grand canonical ensemble (for the lack of
a better name), in which the systems are also allowed to
exchange particles, so that both U and N fluctuate (while the
intensive variables T and u are fixed).

Gibbs derives the probability that a chosen subsystem (i)

to be foundin a microstate £;: 1 A/
Pi)=—e 7"
Z
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Partition function

The Boltzmann factor determines the probability for a
system to be found in a state with energy E;

1 -5 oL
P(i)=—-e 7" where the normalization factor

Z E,
zZ= > exp(— % Tj
all states {i} B

This is not just a mere normalization, but a very important

object in statistical physics, called the partition function.
It encodes the statistical properties of the whole system.

Its significance is mainly in its role in defining the free energy,
a most important form of thermodynamic potential energy,
expressed as F=—k,;TInZ or Z=e"""

Z‘ E. o EilkeT

We can find the average U =<E>=) E, P() D
energy of the system i

U =—la—z=—iln2 with B=1/kgT

zop B

17
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Maximum probability

It is now quite obvious that the maximum probability P(i)
has the microstate with: [1] the lowest energy (E;), and
[2] the largest “degeneracy” (N,), i.e. the number of states
with the same energy:

Z = z e_%BT = z e_l%BT . (Nl 1): Z e_%BT ‘eani

all states microstates {Ei } {Ei }
1 1
———(E;~kgTInQ;) ——(E;-TS;)
kgT kgT
IR EE R
{Ei } microstates microstates

Maximization of the partition function, or (equivalently!)
minimization of the free energy F = U-TS is the main
driving force in all Nature.

Average (potential) energy U — minimum? } In balance...

Average entropy S — maximum?

Summary so far........

The maximum probability P(i) is for the microstate with:
[1] the lowest energy (E;), and [2] the largest “degeneracy”
(i.e. the number of states with the same energy)

1

,Eik r —W(E,.—annsz,.)
-3 e 3 s g
all states microstates {E; } microstates
1
1)
. kgT
Pli]l=—e ™
Z

Maximization of the partition function, or (equivalently!)
minimization of the free energy F, = E,— TS, is the main
driving force in all natural processes

Average entropy S — maximum

Average energy U — minimum
9 9y In balance...

18
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Two-level system

As one simplest example of a real physical case
that we can analyze within proper statistical <U;@: _

mechanics, let’s consider a 2-level system: ——

The object (e.g. electron in an atom, or a spin) . P
can exist on either of the two levels: Z = Z e " =1+e Jhat

all states

Once the partition function is found,
you know everything about the system!

Route 1: mean energy v =_£l?1nz where f=1/kgT

Here we have

_ 1 (_ae‘ﬁ‘ej_ g e
1+e7{ op 1+e7?¢ e%BT_H

U=¢ e_%BT

Two-level system
Partition function Z =1+e /" F=g
Once the partition function is found, <U>— . _
you know everything about the system! _@_E=O
Route 2: free energy F=—k,TInZ = —kBTln(1+e_€/kBT)
Recall thermodynamic potential properties: dF = —SdT — PdV
S = —(d—Fj =k, In (1+e—f”‘BT)+—k*j£k _ A et
drT ), 1+e /8" gr
— —&/kgT £ 1 S
= kB ln(1+e )+ T e elkgT +1 S =kBln(2)
At low temperature U — min “wins’ ;‘g > Low-T . I
entropy “loses out”... S=_e kol ﬁ High-T
At high temperature S — max “wins”;
energy follows...
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Paramagnetism
Paramagnetism, in its simplest form is analogous
to the 2-level system: e Zp

Consider a system (e.g. crystalline solid) in which
each atom has a magnetic moment [spin]: m = tys
Assume the spins do not interact (each on its own).

Quantum mechanics (selection rules for a spin s= V%) allows only in 2 states

for spins: “up” and “down” with the same energy. But if an external
magnetic field B is imposed, the “up” and “down” states have different

energy! _E; mB, -mB,
Z = Z e %BT=6 ABT—F«? ABT:Zcosh(m%BT)

all states

But there are N such atoms in the system, all independent: Z = Z,N

Once the partition function is found,
you know everything about the system!

Paramagnetism
. . may o sy A\
Partition function Z=|e 7" 4¢ /%

Route 2: free energy
mii e o T"Br
F=-Nk,TIln| e "™ +e 7™

Magnetization M (exactly like dielectric polarization P) should be
defined as the sum of all m-dipoles per 1 volume. It is an extensive
thermodynamic variable, forming a conjugate pair with the (intensive)

B-field (same with PdE):  yr _ _ 47 — P4V + MdB | which sign?|
e v
Average magnetization induced by an external B will be pf = (?) (d_F)
T,V =cons

determined by the appropriate thermodynamic derivative: dB
M
mB —mB,
M:NkBT%m(e (L ABT) ......... Nm

=Nm- tanh(mB kBT) _—/ \ B




Quantum oscillator

Oscillator (e.g. a vibrating molecular bond) has « number E,=ha(n+5)
of states (labeled by n) separated by equal energy gaps.

Whether we can “see” this discrete nature of oscillator motion
depends on our equipment: if it is sensitive to the accuracy AE =haw —

So, from statistical point of view, we look for the
partition function: , _ ie]’“’(”“’%r

_ho

n=0 hao
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oo 2k T
Geometric progression == 7 =¢ 2’<BTZa A 1 _
/\ kBT e2kB —e 2kgT

Low-temperature I|m|t High- temperature limit:
7 ~e 2kB 7 ~k Thw
. 0
Mean energy: U==55n2 U~;ﬁln(h(o,3) ; kT
uzerO—tempereture za(hwﬁjzlhw “Classical limit”, Cv=kB
oscillations”  dB\ 2 2
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Quantum oscillator

Oscillator (e.g. a vibrating molecular bond) has « number E,=ha(n+5)
of states (labeled by n) separated by equal energy gaps.

Once we know the partition function, we know —
all properties of our system... o

_he

Low-temperature limit: Z =~ e **" High-temperature limit: Z =~ ks%w
Entropy is zero in the Find entropy in this
“ground state”: F=U classical limit
s=-9 i, ("BT )+k T(lj
S(T) aT he)" "\ T

kT
=kBln(e B ha))

b
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Take a deep breath.
... Stretch.

... We move forward

Michaelmas 2012 Part Il Thermal & Statistical

Continuous systems

So far we have seen how to handle physical systems in which
we can enumerate different microstates (E; and ;) — and find
the partition function, which in turn makes accurate predictions
about average (most probable) state of such systems.

But the simplest(?) and most common object to study in
thermodynamics is the ideal gas: PV=Nk,T. Let’s look at it:

Actually, N particles is far too many: m_—
4

let’s start with just one particle in a box!
E;

Z — Ze kgT
all states VOlU me V= L3

We have two (related) difficulties:

(a) what is E, when the particle doesn’t interact with anything,

and (b) how to count the “states”...

22



Phase space

Normally, by E we would want to mean the m

potential energy W(x), which would have a e v
“minimum” and the higher Boltzmann factor.

But here there is no P.E. (only kinetic energy) | V=L? |

Normally, you would describe you system (here — just 1 particle)

by assigning it a position, say, x(¢) if we look only on 1 dimension.

But this is clearly not a full description!
p(1)

x(t)

Introduce the “phase space”, the coordinate and the momentum
along this axis, x(¢) and p=mv. An element of phase space, at a
time ¢, gives a full predictive description of where it will be at r+dt

Need velocity?...

Continuous states

So we account for all the possible states of a
particle by summing over all possible points in 4
its phase space. Consider how to do this on a

1-dimensional example (along x-axis):  tp1) | V=L
= — |dxdp dx
HIIS%GS 1; J- Ax Ap /%

x(t)

But note that the sum was non-dimensional, while the integral
has dimensionality of [kg.m?%/s] ? The formal conversion of a sum
into an integral requires dividing by the elementary “step of
discretisation”. Here it is Ax Ap.

What is the smallest possible value Ap Ax can take? |27h

dxdpzj‘ dk

x_

This result is worth remembering: Z - J
27

“the world is discrete in phase space” a1l states (27[ h)
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One particle in a box

We can now make progress: the single particle
of mass m and momentum p has its statistical 14
partition function: 2
__p° —
-Ef d*xd’p “amkgT ) V=L?
Z = Ze 5= j—3 e :
all states (27[ h)

First of all notice that nothing under the integral depends on x,
i.e. there is no potential energy V(x): this is ideal gas!

2 p.2 3
“2mk,T dp. “omk.T
Z, =V sl _ x B
I m) ¢ VAl @xn)°

Secondly, instead of doing complicated 3-dimensional integrals,
notethat p®=p;+p;+p’ and d’p=dp dp dp,

This is a very important expression, and let’s call it 1/4

Michaelmas 2012
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One particle in a box

The particle of mass m and momentum p has its
o . A3
partition function: ) “g!
dxd'p Tk _V o
2ﬂ'h A ’

This is how many ways you can “pack” the particle into this box!
So what is this length scale 47?

p2

p 27 h’
j migl 1 2 mk,T so A=
Zirh “orh mkgT

Recall the de Broglie wave length of a wave representation of a particle.
Also recall the mean thermal velocity from the Maxwell distribution.

e 2zh 2xh 2zh Qxh)?
p o (m)  mfkTim \ mk,T
So we managed to “count” the possible states a free classical
particle can have in the box — and the result is just: Z=V/A3
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Classical ideal gas

One particle of mass m has its partition function: M iﬁ
3 A
What is we have N such |’ V( mk,T ] 8! o

_ P _‘-é
particles, all independent of Zl - P - 27 h? = 3
each other? 1 V=L =

|
Zy= ﬁ Z, But if all particles are exactly the same
(indistinguishable) — we could not tell the

difference between many configurations!

We now know everything
about ideal gas

Route 1: Mean energy [/ =— Z, [N InZ, —In(N")]

ln
ap )

Using factorizing property 3
IR Y [ LI VI
27 h o | pB
3.1 3

of logarithms! 7 = _N_—_1n
=—N—==—Nk,T --Thisis actually correct!
2

B
2 B
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Classical ideal gas
The ideal gas of particles of mass m has I*j F/m
3
z) T )
Z, =" where ZI=K3=V ka2 re/
N! A 27 h e V—L3

Route 2: Free energy
F=-k;TInZ, =—k,T[NInZ —~NInN +N]|

Using factorizing property

of logarithms! B [ (Nf ) ]_ NZ
F=Nk|[mWN0 - 1]= N &, T1n -

Let’s find the pressure: p = _(d_Fj _ N&T
dV T=const V

Note: we could not find the ideal gas law from the mean energy U,
which was in the “wrong variables” T, V!

3
Entropy is a bit of work: S = —(d—Fj =—Nk; In N +%NkB
14

e
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Grand partition function

In the same way, for a grand canonical ensemble, the
probability for a given system to have energy E; and a number
of particles N; (in contact with reservoir that maintains 7,y) is:

P(i) :l-exp[—w} with the grand partition function

N;=0 | allstates {i}

(x]

[x]

There is a corresponding thermodynamic potential that needs
to be minimised in equilibrium. It is called the grand potential:

®=—k,TInE or E=e*"

Note that its natural variables are (7,V,x) and it is obtained
from F(T,V,N) by the Legendre transformation: ®=F-uN

Grand potential

In the same way as we have analysed the canonical p.f. Z, by
identifying a free energy of a microstate E,—TS,, let us re-order
the grand-canonical summation and arrange the exponent:

uN 1 1

E,
TOTAL fadii i - (E.— — .
o Z ekBT Ze kT _ z ze kBT(E‘ kpTInQ;—4N; ) :Ze kBTq)’
N;

N=0 allstates {i} microstates E; {E;}

The first observation is that one can have a “grand partition
function” and a grand potential for a given microstate, if it can
exchange particles with other microstates.

Secondly, as in the canonical ensemble, the minimum of &; is
the most probable microstate, and at sufficiently low T is can
be treated as the average, i.e. thermodynamic ®(7,v,u)=F-uN.
_E —k,TInQ,—uN,

kyT

Probability P(E,,N,) = é exp(




Grand potential

. i TOTAL ,uly
You will have noticed: 2= > zZ®)e /"
N=0

For instance, for a classical ideal gas we know what Z(N) is, so

ST S AL S CA Gl LT
N=0 N! No0 N! 1

,u/kBT)

So if this ideal gas is in contact, and can exchange particles,
with a (big) reservoir which maintains a chemical potential u:

4 j wlkgT We have the pressure:

® =—k,TIn kg 7 e kT s

Mean number of particles:

0P vV “
=—€%BT SO <I>=—kBT<N>;
1

<N>=_$ P

N

Summary so far........

Partition function of classical ideal gas Hﬁ? @
7 —K—V mkyT p _ZlN 4 @ .
R 271’ Ve v

Systems open to particle exchange:
grand partition function OTAL
=Y { > exp[—E"_ﬂN’)}
kT

N;=0 | all states {i}

Classical ideal gas:
== exp(Zle”/kBT)
O=—k,TInE=(F—-uN)= —kBT(%je“”‘BT = _kBT<N>




p-T and p-T-u ensembles

.C!h- By analogy with constructing the grand partition
= ?.g*z: function in an ensemble when we had particle
exchange, under controlled g, we should build a

@7
corresponding statistical sum:

1

SN Bk TN, oY) G, (Tpy.N)
W= e MZ@ V. Nt = Y dfaviet =Ye"

microstates E; {E;}

The corresponding thermodynamic potential is G(7,p, N)=F+pV.

If now in addition we also open the system to
exchange particles (at x imposed by the reservoir),
then the corresponding thermodynamic potential
would be Y(T,p,ut) = G- uN = F + pV— uN = &+pV

In fact, in such an ensemble there is no proper (extensive)
thermodynamic potential of the system, that is, dY = 0.

Chemical potential of ideal gas

Many different ways to obtain this, but the properly systematic
is to obtain the canonical Z(N), then its F(T,N) and then u:
3

3 3
ALS ﬂ=kBT(1nN’1 +1j=kBT1nAy
e e

Some additional factors may contributed to the single-particle Z,. For
instance, a constant (adsorption) potential ¢, or an internal (e.g. vibrational)
degree of freedom: Z, =k,T /hw

NA N2 |e?
F=Nk,TIn| —— |; =k.TIn
’ (Ve : e_ﬁ¢zvib j # ? (Zvib

F = Nk,Tln

Alternatively, from
_861)

—— = Ke%BT Extras...
ou

TV A Let us examine what
this factor implies

()=

28
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Mixtures

Let us consider the p-T controlled ensemble (natural on the
laboratory benchtop) where the gas has several species, that
is, N=X, N, .The partial (osmotic) pressure law gives

_ _ NikBT/
and similarly for the entropy: P=2, =2, 1%
5/2
S =Z, S, =z, Nk, ln(constT JzSNkB ln(TJ—Z,NikB ln( p"]
i i pi 2 T() i po

So the change in entropy is: |AS =—k, > N, In(c,)

In the same way, using the general form for the chemical
potential of ideal gas, we have for each species:

N2 NA

i, = k,Tln =k,TIn " +k,TIn(c,)= u,(p.T)+k,TIn(c,)
Pure gas of i-species Addition due to
at current p, T current ¢=N,/N

Chemical reactions
Consider a generic chemical reaction, say, A + 2B = 2C.

Remaining in the p-T ensemble, we must work with the Gibbs
potential G(p,T,N) = £,G;. In equilibrium: dG=0, so we obtain

dG =—SdT +Vdp+Y)_ p,dN, = pt,dN , + f1,dN, + i.dN. =0

1 1
but dNAZEdNBZ_EdNC
For an arbitrary reaction in equilibrium: = f, +24, 24, =0

Zi Vil =0= Zi Vil (p,T)+k,T ln(Hl- (Ci )Vi )

Define the chemical - ” e
equilibrium constant K.(p.D=]] () = K=t

1
InK =—— v.u(p,T
. kBTZ 4:(p.T)
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Chemical reactions
Consider a fully general chemical reaction, X, v.A. =0

171 1

Remaining in the p-T ensemble, with dG = Zi MdAN, =0
Let us recall what we know about : NA
=k,T1n .

hence Z V.U = sz lnN—an1<>) 0

Define an alternative chemical g (p,T) :I‘L (N,)
equilibrium constant

Then its value is given by: K, H )"

For instance, for A + 2B = 2C, we might get | Potential gain —¢

_ VIV _VIE)V I )
N WIRY? N VI E)?

>>1  but e P<<1

Summary so far

A generic chemical reaction, X; v;A;=0 (e.g. 2H+O=H,0)

A “chemical” (empirical) version of
. L K. (p.T)=1|.
chemical equilibrium constant (p.T) H

A “statistical” version of v, v,
. . K )=l 1 \N.)' =11 \Z)°
chemical equilibrium constant (D) H ( ) H ( )

This is how you calculate it...
For instance, for 2H + O = H,O, we get

_WVIRWVIRY e _VIRWVIARY
(V1 Ayo) VI R

N —

Bonding potential energy —¢
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Classical vs. Quantum _
The ideal gas of particles of mass m has M iﬁ
Z, = L o F= N kT In N e
N! Ve l—g V=L3

Note how this factor turns up under the logarithm!"

What is the meaning of | N4’ _ﬁ[ 2xh’ jm

. Vv Vmk,T
N NA

1> —

v J >>1

Quantum physics, particles

Classical physics, particles are
interact and behave as waves

localized and interact via forces
L]
* /71 | /f"r;‘—! |
® |
° ‘ —H ‘ Bt p ,/j
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Classical vs. Quantum

We established an important operation, of changing the order
of summation (in different ensembles), to end up summing over
the microstates E;. In the grand canonical ensemble:

1
——®,(T,V,
% ((T.V.)

ToraL | V. L Bk, TN Q-
g= Z{ekBTZ<N>}= > {Ze =2
N; {E:}

N=0 microstates E;

In this way we identified the grand partition function of a
given microstate, and the corresponding potential:

—
Hoo=
—

k

TOTAL _L[gk(n)—;m]
> et ; ®, =—k,TInZ, i

n=0

In the quantum regime, when the separate particles
cannot be properly distinguished and the statistical sum 2

over microstates could be very difficult, we have an
interesting way forward, if it happens so that: &(n)=n-g,

7
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Classical vs. Quantum

When the energy of a microstate E, factorises with the number
of particles in this state, E(n)= n, g (and remember, the
entropy is always extensive t00), then

1 1 1
(&= —— (&=, ———(&=p)ny —7(& —H)ny
= Ze G K e’ =| I Z =| IE
ny,ny Ny ... k k

The corresponding full grand potential is just the sum over
each energy state:

DT, u)=—k,TY InE, =) @,
k k
However, to find any average (e.g. the mean energy U), w
need to use the probability:
UN)= D, &P(.N)

microstates {k }

[x]

Fermi statistics

The Pauli exclusion principle prohibits more than one Fermi
particle to occupy a given energy level g, :

Jrlec# o T
—_ k
n=0,1 e
do ore 1
n(g,)=——=L=k, T2 =——
k d B _E—H eﬁ[gk 1”]_{_1
l+e ™

This is the famous expression of the Fermi occupation number:
it tells how many particles you can find having the energy E, at

temperature T. E @
n(E) & This picture makes it clear that
1 T=0 M at low temperature is the
\ “Fermi energy” — the highest
U N E n level particles have to pack to.
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Fermi energy

Fermi energy is the chemical potential of Fermi particles at

very low temperatures, when the density of states is sharp:
n(E)
n(E) = T —) ] T=0

kT

e +1 & E

0
If we have the total of N particles, then the sum of all n(g) has to=N

3. 43
N = Zn(gk)z J' d’xd 3p n(E) This is actually very easy, if
2
micromares &, ) (27[ h) you recall that E=p*2m

N = VI 4z p* dp

ey "E= VJ‘\/_23\/_dEn(E)

2 2/3
N _\/_m 3/2 £, z74h_(_j
v \/_zrﬁw_E &) m \V

Note how Fermi energy depends on the particle density (or pressure),
i.e. itis increasingly hard to add more particles to the system.
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Bose statistics
If particles do not have half-integer spin, they are not subject
to the Pauli exclusion principle, and can all occupy the same
level of energy. These are called Bose particles.

& —H
lex 41 1 -
_(8k) Z( kT ) =W ->(I)k =kBTln 1—e ksT
1_e kgT
As before, we evaluate the &-u
mean number of particles 1 kgT
—€
with energy E: ne,) = dCI)k —k.T kT — 1
k B _aH  GAlaul g
1—6 kgT

This is the famous expression of the Bose occupation number:
note that n(E) can easily be >1. But we really need to know
what is the value of chemical potential u in this case!
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Bose condensate
Fermi particles, due to the exclusion principle, must occupy
increasingly high levels of energy. Bose particles do not! So,
at very low temperatures they can all sit at the level E=0,

which is called Bose condensate. £ o E
H=E —
The picture for Bose patrticles already —— e
suggests the answer for y=? g u=?
n n
OO O——
0 1 0 Ne

A more sophisticated argument says: we have some number of particles
(N¢) in the E=0 condensate, and some number (N-N.) excited. If the two
subsystems are in equilibrium, then their chemical potentials are equal
(particles can exchange). How to find the optimal number N-? Itis
achieved when the corresponding free energy is minimized, that is, when
dF,

dN,
Conclusion: as soon as the Bose condensate appears, u=0.

=0 ... which conveniently happens to be the definition of z-=0.
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Bose condensate

The total (fixed) number of particles is determined E
by the familiar constraint:

3 3
N = Zn(gk)z jm.n@)

®
3 =7
microstates { £, } (27[7;1) {f “ n
—Crrooo—" .
In 3D, we have for bosons: . 0 Ne
3/2
e AN NE g | 1
a2 ) b A |

The area under each curve should be L: 7°
equal to N, but at 7—0 the area can’t
be preserved...

All particles in the ground state:
n(E)=N for E=0, hence — 1=N
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Summary so far........

. NE N(2znt)" <1
Quantum vs. classical =
mkgT

4 4 >>1

Fermi particles:

2/3__4/3 2 2/3
) ME) e s %h(NJ
n(E) = W > 1 2 m\V
AR |
0 & E
Bose particles: N( 2zn* "
Condensate from - =~
1 — V \ mk,T.
n(E) = ymr
¢ -1 u=0 {infact ,u~—kBT}
N
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Chemical potential, again

In the classical regime: the ideal gas of N particles
ﬂ:kBTln(Nﬂ%) at NAYV small
U

At NA3/V large, we are

in the quantum regime,
so Fermi and Bose 0
systems are different:

72 (N
My =&, = 7.4—(—) classical \

m\V \
Mz =0 Due to the Bose-condensation  This defines the condensation
in the state with E=0 temperature

Can you estimate number of particles in
the condensate, N, at any given T<T.?
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Ideal Fermi gas at low-T
By doing the “grand partition function” trick (for additive gn)=ng)
we got the probability to occupy a level g, : n(e,) ==
This is essentially the probability P(gN),
to be used in place of our earlier forms of statistical probability,
which was normalised by the corresponding partition function.

Now we can find the averages e. g

d’xd’p .
U= in 3D
Z ) = J‘(27L'h) PLE= 5F1+1

eﬁ[gk —u] + 1

microstates { k }
32 32 32 3/2
v (Y E v (2me a V (2mY(2
e e C R C N b

n(E) . N 2/3 "
! £ :—(mz v} 50 7~4 6—(1%)5

E

Part Il Thermal & Statistical

Michaelmas 2012

Ideal Fermi gas at low-T
At low, but nonzero temperature the problem is much more

complicated Vv (2m)? e E?
U (?j o eﬂ[Ef/l]_’_ldE n(E)

4r
1
Low-T series expansion of “Fermi integrals” A \ E

= _f(E)
J a1 E = N f(E)dE+6(kT)f(8)+

Note that this works the same way
for any g(¢g), i.e. in any dimension

For the mean internal energy, in 3-dimensions:

6\ n°

7T2

=7g(8F)k§T

oU
oT

Thisis U(T,V\N), so: C, =

V.N

3/2 3/2
= (2212’5} so U=U +V(2mJ ek, TV =U, + 7 g(SF) (k,T)
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Ideal Fermi gas at low-T

But what if we need any other thermodynamic quantity, not just
Cy , which is all we can get from U(T,V,N)?

The full grand partition functionis = =
microstates {k }

Therefore the grand potential'

d’xd’ p_ PE-u]
d=) P, =|P(g)—F=—k,T 1+e BlE-u
% e @xhy .
. 2V (2m)" = 3
Integration by parts — =—§~W(?J jo de:—gU

Now we can legitimately differentiate the proper thermodynamic
potential ®(T,V,u):

a(p 2m 2 V 1/3
Pressure P=—av=pF(To)+const~[hz) [N) (k,T)’

312
Entropy S = _g;;) = const(i;nj k;T
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Bose gas at low-T
The principle is exactly the same: we either find the average
energy U(T,N) from which the heat capacity follows — or go for
the full grand potential ®(7,x) and the rest of thermodynamics.

The good (or bad) news is that 4=0. s is o(E)
V (2m
0T mmgtes{k}gk (6= ‘[ ldE in 3D

. . 2 . 3/2
Non-dimensional substitution — = 4V2 (mj (kBT)S’QL X—ldxzconst-Tf”2
T

hZ X

. V 2 3/2
©=Y @, =k,T| 1n(1—eﬂl“l)—2(h—’?j JE dE

0
(k} 47[

2V (2m\" = E”? 2
Integrate by parts — =2-= (1‘12} L S dE=3U
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Be fluent at........

. NA N(Zizhz j”
Quantum regime =— >> 1

VoV mk,T

Fermi particles at low (non-zero) temperature:

n(E) = . 1 How to “do” Fermi integrals...

E—¢&p )l kT +1
(mean energy, ®, pressure)

Bose particles at low temperature:
1 13 ” H —
n(E) = T How to “do” Bose integrals (u=0)

E—p)l kT
-1 (mean energy, etc)
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Photons

Photons (E=hw) are Bose patrticles of a special type. Since
their mass=0, their “number of particles” is not fixed, but varies
with temperature. E.g. E=0 condensate has no particles at all.

n(E)= ; Can we find the mean number of photons,
e"®*" _1 of the selected “color” given by the fixed &?
d3xd3p Instead of E=p%2m now there
N= . Zn(gk)z J ( )3 n(ho) is a different relation between
microstates { £y } energy and momentum:
] p=hk=hwlc
dr’w’dw 1
N = VJ 3 3 halkT
2z)c e -1

Spectral density n(w) is the number
of particles at a given @x 7 — Jn(w)dw
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Stefan-Boltzmann law

Photons in thermal equilibrium (emitted by a hot body) have a
very characteristic power spectrum, which has originally led
Planck to suggest E=/@. Now we can understand why!

E)= 1 Let us find the mean energy of photons.
n( )_ ha)/k T
-1 p=hk=hw/c
Ar*w’dw hw
U= Vj o — =V [ u@do
)c e " = 5
: . 1 ho
The spectral density of energy is: u(@w) = Py : e
The full energy emitted: T e oo N ek s
U 1 A | w=27clA
—=——"F— (kT 1
Vo 2rien’ (k) H
+;

Stefan-Boltzmann law: U=oT*

T T T 1
1O 8.0 .40 100

T T L) T
1.0 2.0 30 4.0 50 6.0

Wavelength/pim
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Other excitations

All elementary excitations are Bose particles with =0, zero
rest mass (so E=#Aw ) and a dispersion relation between the

energy andlthe momentum @ = w(k). ®
nk)=———-
(B)=—5a— /

K

1
1 Tmax

3. 43 A®
N = Zn(gk): jdx—df).n(hw) Tk
microstates (k] (Zﬂ'h) In each case there is a need
to find the right form of
density of states g(E) dE,
which is now g(®) do

*dk ho

) ' kT

2
U= Zekn(gk) VI 47k
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Phonons and Debye model

Normal modes of vibrations in a lattice follow the dispersion

relation (lowest energy mode) w w
|
:
L]

=2, [sin(4 ka) \/‘

where q is the lattice spacing and o,_+

plAb- -3
s~
HIE Rttt

[«] - O
the frequency of each bond. * K= k>
The Debye model preserves the cutoff, but ignores the slowing of the wave
@p 3V \%
3 modes per atom: 3N = 1= —wdo =——
P allges J.O 27[26'3 27[26'3 P
3V e ha)Sda) 3Vh y dy 3
low —T: U_zyz%ﬁjo N by ( J N o =CeT
3V o h@wdw 3V e, h@dw |72
high—-T: U = = = w, -k, T
g 27%° I -1 271’ I (fho+..) 27°c 7 °
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Phonons and Debye model

At high-T one can re-express the integral via the 3N constraint,
giving the result:

) This is the energy of 3N simple
high—T: U =3Nk,T harmonic oscillators (see lecture 5).

There we had: 7 1
c, f 2sinh(} BTia,)
U =1, tanh(L Bra,)
(ha, 1
4k,T* sinh*(L S ha,)

Low-T limit (quantum oscillator)
is very different...

C, =

T

"

So at high-T phonons behave exactly the
same as classical oscillators, but at low-T
the major difference is due to the continuous
phonon spectrum (no gaps!)

"'energy gap"=C, oc ¢ /"
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