

Michaelmas 2012

Michaelmas 201

Part II Thermal & Statistica

Part II Thermal & Statistica

Temperature and Entropy

Entropy (Clausius 1850, Gibbs, Boltzmann) is a measure of the unavailability of a system's energy to do work (see $1^{st} \text{ law } \Delta U = \Delta W + \Delta Q$). In simple terms, the entropy *S* is the "*heat per unit temperature*":

$$\Delta S = \frac{\Delta Q}{T} \quad \text{or} \quad dQ = T \cdot dS$$

However, the modern (primary) definition of entropy is from statistical principles. This is often called "Boltzmann entropy" and is defined as $S = k_{\rm B} \ln \Omega$

where Ω is the number of states the system can explore

The Second Law of thermodynamics states that the entropy of an isolated system can only increase with time (Δ S>0) and approaches its maximal value in equilibrium.

 \rightarrow Heat cannot spontaneously flow from a material at lower temperature to a material at higher temperature.

Variable particle number

Consider a gas in a box – change particle number $(N \rightarrow N+dN)$ while keeping the volume constant (dV=0). If this addition was done reversible, that is, not creating heat (dQ=TdS=0), then the increase in the energy of this gas:

$$\Delta U = \mu \, \Delta N$$

This defines the chemical potential $\mu = \left(\frac{\partial U}{\partial N}\right)_{V,S}$

In summary, for an arbitrary process capable of changing the volume of gas (i.e. do mechanical work), converting some of the energy into heat, and also exchanging particles – we have the energy increment:

$$dU = TdS - pdV + \mu \, dN$$

Michaelmas 2)12	Part II Thermal & Statistical	
Thermodynamic variables			
<u>Thermodynamic variables</u> are observable properties of any system. They fall into two categories, intensive and extensive:			
System	Intensive	Extensive	
Linear spring Gas Particle exchange Surface film Electrostatic Magnetic any	 F force p pressure μ chemical potential γ surface tension V potential B "magnetic field" T temperature 	 x displacement V volume N number A area q charge M "magnetic moment" S entropy 	
Intensive and extensive variables form conjugate pairs , whose product has the dimensionality of (and therefore represents) energy, e.g. $\Delta U = \Delta Q + \Delta W = T \cdot \Delta S - P \cdot \Delta V$ Other forms of work: $\Delta W = -F \cdot \Delta x \Delta W = \gamma \cdot \Delta A$ etc.			

Michaelmas 2012	Part II Thermal & Statistical	
Thermodynamic potentials		
We have just seen, for the <u>m</u> system: $\Delta U = T \cdot \Delta S - p \cdot \Delta V$	or $dU = T \cdot dS - p \cdot dV$	
This means that (S, V) are the which means that to determi measure S and V (or "keep the second seco	e natural variables of <i>U(S,V)</i> ne the value of <i>U</i> we must hem under control").	
But in some situations (e.g. in an open container) it may be hard to control/measure the volume, instead the pressure <i>P</i> would be a more natural variable?		
Introduce enthalpy: $H = U +$	· pV	
then $dH = dU + d(pV) = TdS$	-pdV + pdV + Vdp = TdS + Vdp	
We conclude that the function $\underline{pair}(p, V)$ "switched" – that is, while <i>P</i> the "displacement"	H = H(S,p), with the <u>conjugate</u> now V plays the role of a "force"	

Michaelmas 2012 **Thermodynamic potentials** What we have just seen: $U(S,V) \rightarrow H(S,p)$ is one example of a general "Legendre transformation" switching between the "force" and "displacement" within pairs of thermodynamic variables. In many situations it may be hard to control/measure the <u>entropy</u>, instead the temperature *T* would be a more natural variable? Introduce free energy: F = U - TSthen dF = dU - d(TS) = TdS - pdV - TdS - SdT = -SdT - pdVWe conclude that the function F = F(T,V). In the similar way we may introduce the Gibbs free energy: G = H - TS = F + pVdG = dF + d(pV) = -TdS - pdV + pdV + Vdp = -SdT + Vdp

Michaelmas 2012 Part II Thermal & Statistical Maxwell relations Thermodynamic potentials are different forms of energy, expressed in appropriate "natural variables". We have seen four: $U(S,V) \rightarrow H(S,p) \rightarrow G(T,P) \rightarrow F(T,V)$. $dU = TdS - pdV \qquad dH = TdS + Vdp$ $dG = -SdT + Vdp \qquad dF = -SdT - pdV$ One can evaluate a second derivative in two ways: e.g. $\left(\frac{d^2U}{dS \, dV}\right) = \left(\frac{dT}{dV}\right)_s = -\left(\frac{dp}{dS}\right)_V$ One of Maxwell relations $\left(\frac{dS}{dP}\right)_T = -\left(\frac{dV}{dT}\right)_P \qquad \left(\frac{dS}{dV}\right)_T = \left(\frac{dp}{dT}\right)_V \qquad \left(\frac{dT}{dP}\right)_S = \left(\frac{dV}{dS}\right)_P$ Do you notice the pattern? 1) Which two variables $\rightarrow 2$) Which potential $\rightarrow 3$) What sign?

Michaelmas 2012
Part II Thermal & Statistical
One particle in a box
We can now make progress: the single particle
of mass *m* and momentum *p* has its statistical
partition function:

$$Z_1 = \sum_{all \text{ states}} e^{-\frac{E}{k_B}T} = \int \frac{d^3x d^3p}{(2\pi\hbar)^3} e^{-\frac{p^2}{2mk_B}T}$$
First of all notice that nothing under the integral depends on *x*,
i.e. there is no potential energy *V(x)*: this is ideal gas!

$$Z_1 = V \cdot \int \frac{d^3p}{(2\pi\hbar)^3} e^{-\frac{p^2}{2mk_B}T} = V \cdot \left(\int \frac{dp_x}{(2\pi\hbar)} e^{-\frac{p_x^2}{2mk_B}T}\right)^3 = V / \lambda^3$$
Secondly, instead of doing complicated 3-dimensional integrals,
note that $p^2 = p_x^2 + p_y^2 + p_z^2$ and $d^3p = dp_x dp_y dp_z$
This is a very important expression, and let's call it $1/\lambda$

Michaelmas 2012

Part II Thermal & Statistical

Grand partition function

In the same way, for a grand canonical ensemble, the probability for a given system to have energy E_i and a number of particles N_i (in contact with reservoir that maintains T,μ) is:

$$P(i) = \frac{1}{\Xi} \cdot \exp\left[-\frac{E_i - \mu N_i}{k_B T}\right] \quad \text{with the grand partition function} \\ \Xi = \sum_{N_i=0}^{TOTAL} \left\{ \sum_{\text{all states }\{i\}} \exp\left(-\frac{E_i - \mu N_i}{k_B T}\right) \right\}$$

There is a corresponding thermodynamic potential that needs to be minimised in equilibrium. It is called the grand potential:

$$\Phi = -k_{\rm B}T\ln\Xi \quad \text{or} \quad \Xi = e^{-\Phi/k_{\rm B}T}$$

Note that its natural variables are (T, V, μ) and it is obtained from F(T, V, N) by the Legendre transformation: $\Phi = F - \mu N$

Michaelmas 2012 Part II Thermal & Statistical **Grand potential** In the same way as we have analysed the canonical p.f. Z, by identifying a free energy of a microstate $E_i - TS_i$, let us re-order the grand-canonical summation and arrange the exponent: $\Xi = \sum_{N=0}^{TOTAL} \left\{ e^{\frac{\mu N}{k_B T}} \sum_{\text{all states } \{i\}} e^{-\frac{E_i}{k_B T}} \right\} = \sum_{\text{microstates } E_i} \left\{ \sum_{N_i} e^{-\frac{1}{k_B T}(E_i - k_B T \ln \Omega_i - \mu N_i)} \right\} = \sum_{\{E_i\}} e^{-\frac{1}{k_B T}\Phi_i}$ The first observation is that one can have a "grand partition function" and a grand potential for a given microstate, if it can exchange particles with other microstates. Secondly, as in the canonical ensemble, the minimum of Φ_i is the <u>most probable</u> microstate, and at sufficiently low T is can be treated as the <u>average</u>, i.e. thermodynamic $\Phi(T,V,\mu)=F-\mu N$. Probability $P(E_i, N_i) = \frac{1}{\Xi} \exp\left(-\frac{E_i - k_B T \ln \Omega_i - \mu N_i}{k_B T}\right)$

Michaelmas 2012
Grand potential
You will have noticed:
$$\Xi = \sum_{N=0}^{TOTAL} Z(N)e^{\mu N/k_B T}$$
For instance, for a classical ideal gas we know what $Z(N)$ is, so

$$\Xi = \sum_{N=0}^{TOTAL} e^{\mu N/k_B T} \frac{Z_1(T,V)^N}{N!} = \sum_{N=0}^{TOTAL} \frac{(Z_1 e^{\mu I/k_B T})^N}{N!} = \exp(Z_1 e^{\mu I/k_B T})$$
So if this ideal gas is in contact, and can exchange particles, with a (big) reservoir which maintains a chemical potential μ :

$$\Phi = -k_B T \ln \Xi = -k_B T \left[\frac{V}{\lambda^3} e^{\mu/k_B T} \right]$$
We have the pressure:

$$p = -\frac{\partial \Phi}{\partial V}\Big|_{T,\mu} = \frac{k_B T}{\lambda^3} e^{\beta \mu}$$
Mean number of particles:

$$\langle N \rangle = -\frac{\partial \Phi}{\partial \mu}\Big|_{T,V} = \frac{V}{\lambda^3} e^{\mu/k_B T}$$
So $\Phi = -k_B T \langle N \rangle$; $\Xi = e^{\langle N \rangle}$
Probability $P(N) = \frac{1}{\Xi} \cdot \frac{(e^{\beta \mu} Z_1)^N}{N!} = \frac{\langle N \rangle^N e^{-\langle N \rangle}}{N!}$

Michaelmas 2012 Part II Thermal & Statistical Chemical reactions Consider a generic chemical reaction, say, A + 2B = 2C. Remaining in the *p*-*T* ensemble, we must work with the Gibbs potential $G(p,T,N) = \Sigma_i G_i$. In equilibrium: dG=0, so we obtain $dG = -SdT + Vdp + \sum_i \mu_i dN_i = \mu_A dN_A + \mu_B dN_B + \mu_C dN_C = 0$ but $dN_A = \frac{1}{2} dN_B = -\frac{1}{2} dN_C$ For an arbitrary reaction in equilibrium: $\Rightarrow \mu_A + 2\mu_B - 2\mu_C = 0$ $\sum_i v_i \mu_i = 0 = \sum_i v_i \mu_i (p,T) + k_B T \ln (\prod_i (c_i)^{v_i})$ Define the chemical equilibrium constant $K_c(p,T) = \prod_i (c_i)^{v_i} \Rightarrow K_c = \frac{c_A c_B^2}{c_C^2}$ $\ln K_c = -\frac{1}{k_B T} \sum_i v_i \mu_i (p,T)$

Summary so far...... A generic chemical reaction, $\Sigma_i v_i A_i = 0$ (e.g. $2H+O=H_2O$) A "chemical" (empirical) version of chemical equilibrium constant $K_c(p,T) = \prod_i (c_i)^{v_i}$ A "statistical" version of chemical equilibrium constant $K_N(p,T) = \prod_i (N_i)^{v_i} = \prod_i (Z_i)^{v_i}$ This is how you calculate it... For instance, for $2H + O = H_2O$, we get $K_N = \frac{(V/A_0^3)(V/A_H^3)^2}{(V/A_H^3)^2} >>1$ but $K_N = \frac{(V/A_0^3)(V/A_H^3)^2}{(V/A_H^3)^2} e^{-\frac{\phi}{K_BT}} <<1$ Bonding potential energy $-\phi$

Michaelmas 2012 **Classical vs. Quantum** When the energy of a microstate E_k factorises with the number of particles in this state, $E_k(n) = n_k \cdot \varepsilon_k$ (and remember, the entropy is always extensive too), then $\Xi = \sum_{n_1, n_2, n_3, ...} e^{-\frac{1}{k_B T} (\varepsilon_1 - \mu) n_1} e^{-\frac{1}{k_B T} (\varepsilon_2 - \mu) n_2} e^{-\frac{1}{k_B T} (\varepsilon_3 - \mu) n_3} ... = \prod_k \left\{ \sum_{n_k=0}^{TOTAL} e^{-\frac{1}{k_B T} (\varepsilon_k - \mu) n_k} \right\} = \prod_k \Xi_k$ The corresponding full grand potential is just the sum over each energy state: $\Phi(T, \mu) = -k_B T \sum_k \ln \Xi_k = \sum_k \Phi_k$ However, to find any average (e.g. the mean energy U), we need to use the probability:

$$U(N) = \sum_{\text{microstates } \{k\}} \varepsilon_k P(\varepsilon_k, N)$$

Michaelmas 2012
Part II Thermal & Statistical
Fermi energy is the chemical potential of Fermi particles at
very low temperatures, when the density of states is sharp:

$$n(E) = \frac{1}{e^{\frac{E-\varepsilon_{F}}{k_{B}T}} + 1} \longrightarrow 1^{\binom{n(E)}{0}} \underbrace{\varepsilon_{F}}_{\varepsilon_{F}} \underbrace{E}_{\varepsilon_{F}}$$
If we have the total of *N* particles, then the sum of all $n(\varepsilon_{k})$ has to = *N*

$$N = \sum_{\text{microstates} \{\varepsilon_{k}\}} n(\varepsilon_{k}) = \int \frac{d^{3}x d^{3}p}{(2\pi\hbar)^{3}} \cdot n(E)$$
This is actually very easy, if
you recall that $E=p^{2}/2m$

$$N = V_{0}^{\infty} \frac{4\pi p^{2} dp}{(2\pi\hbar)^{3}} \cdot n(E) = V_{0}^{\infty} \frac{m^{3/2}}{\sqrt{2\pi^{2}\hbar^{3}}} \sqrt{E} dE \cdot n(E)$$

$$\frac{N}{V} = \frac{m^{3/2}}{\sqrt{2\pi^{2}\hbar^{3}}} \int_{0}^{\varepsilon_{F}} \sqrt{E} dE = \frac{\sqrt{2}m^{3/2}}{3\pi^{2}\hbar^{3}} (\varepsilon_{F})^{3/2} \longrightarrow \varepsilon_{F} \approx 7.4 \frac{\hbar^{2}}{m} \left(\frac{N}{V}\right)^{2/3}$$
Note how Fermi energy depends on the particle density (or pressure),
i.e. it is increasingly hard to add more particles to the system.

Michaelmas 2012
Bose statistical
Bose statistical
If particles do not have half-integer spin, they are not subject
to the Pauli exclusion principle, and can all occupy the same
level of energy. These are called Bose particles.

$$\Xi(\varepsilon_k) = \sum_{n=0}^{\infty} \left(e^{-\frac{1}{k_B}T} \left[\varepsilon_{k} - \mu \right] \right)^n = \frac{1}{1 - e^{-\frac{\varepsilon_k - \mu}{k_B T}}} \longrightarrow \Phi_k = k_B T \ln \left(1 - e^{-\frac{\varepsilon_k - \mu}{k_B T}} \right)^n$$
As before, we evaluate the
mean number of particles
with energy E:

$$n(\varepsilon_k) = -\frac{d\Phi_k}{d\mu} = k_B T \frac{\frac{1}{k_B T} e^{-\frac{\varepsilon_k - \mu}{k_B T}}}{1 - e^{-\frac{\varepsilon_k - \mu}{k_B T}}} = \frac{1}{e^{\beta[\varepsilon_k - \mu]} - 1}$$
This is the famous expression of the Bose occupation number:
note that $n(E)$ can easily be >1. But we really need to know
what is the value of chemical potential μ in this case!

Michaelmas 2012 Ideal Fermi gas at low-T By doing the "grand partition function" trick (for additive $\varepsilon(n)=n\varepsilon_k$) we got the probability to occupy a level ε_k : $n(\varepsilon_k) == \frac{1}{e^{\beta(\varepsilon_k-\mu)}+1}$ This is essentially the probability $P(\varepsilon,N)$, to be used in place of our earlier forms of statistical probability, which was normalised by the corresponding partition function. Now we can find the averages, e.g. $U = \sum_{\text{microstates}\{k\}} \varepsilon_k n(\varepsilon_k) = \int \frac{d^3x d^3p}{(2\pi\hbar)^3} \frac{E}{e^{\beta(E-\varepsilon_F)}+1}$ in 3D $T=0: U = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\infty} \frac{E^{3/2}}{e^{\beta(E-\mu)}+1} dE = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\varepsilon_F} E^{3/2} dE = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \left(\frac{2}{5}\varepsilon_F^{5/2}\right)$ $n(E) \int_{0}^{1} \frac{1}{10} \frac{1}{10$

Michaelmas 2012
Ideal Fermi gas at low-T
At low, but nonzero temperature the problem is much more
complicated

$$U = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\infty} \frac{E^{3/2}}{e^{\beta(E-\mu)} + 1} dE$$
Low-T series expansion of "Fermi integrals"

$$\int_0^{\infty} \frac{f(E)}{e^{\beta(E-\mu)} + 1} dE \approx \int_0^{\varepsilon_F} f(E) dE + \frac{\pi^2}{6} (k_B T)^2 f'(\varepsilon_F) + ...$$
Note that this works the same way
for any $g(\varepsilon)$, i.e. in any dimension
For the mean internal energy, in 3-dimensions:

$$f = \frac{V}{4\pi^2} \left(\frac{2mE}{\hbar^2}\right)^{3/2}$$
, so $U = U_0 + \frac{V}{16} \left(\frac{2m}{\hbar^2}\right)^{3/2} \varepsilon_F^{1/2} (k_B T)^2 \equiv U_0 + \frac{\pi^2}{4} g(\varepsilon_F) \cdot (k_B T)^2$
This is $U(T, V, N)$, so: $C_V = \frac{\partial U}{\partial T}\Big|_{V,N} = \frac{\pi^2}{2} g(\varepsilon_F) k_B^2 T$

Michaelmas 2012 Part II Thermal & Statistical **Ideal Fermi gas at low-T** But what if we need any other thermodynamic quantity, not just C_V , which is all we can get from U(T,V,N)? The full grand partition function is $\Xi = \prod_{\text{microstates}(k)} \Xi_k$ this is g(E)Therefore the grand potential: $\Phi = \sum_{\{k\}} \Phi_k = \int \Phi(\varepsilon_k) \frac{d^3 x d^3 p}{(2\pi\hbar)^3} = -k_B T \int_0^{\infty} \ln(1 + e^{-\beta[E-\mu]}) \frac{V}{4\pi^2} (\frac{2m}{\hbar^2})^{3/2} E^{1/2} dE$ Integration by parts $\rightarrow = -\frac{2}{3} \cdot \frac{V}{4\pi^2} (\frac{2m}{\hbar^2})^{3/2} \int_0^{\infty} \frac{E^{3/2}}{e^{\beta[E-\mu]} + 1} dE \equiv -\frac{2}{3} U$ Now we can legitimately differentiate the proper thermodynamic potential $\Phi(T, V, \mu)$: Pressure $p = -\frac{\partial \Phi}{\partial V} = p_F(\tau=0) + \text{const} \cdot (\frac{2m}{\hbar^2})^2 (\frac{V}{N})^{1/3} (k_B T)^2$ Entropy $S = -\frac{\partial \Phi}{\partial T} = \text{const} \cdot (\frac{2m}{\hbar^2})^{3/2} k_B^2 T$

Michaelmas 20)12	Part II Thermal & Statistical	
Photons Photons ($E=\hbar\omega$) are Bose particles of a special type. Since their mass=0, their "number of particles" is not fixed, but varies			
with temperature. E.g. $E=0$ condensate has no particles at all.			
$n(E) = \frac{1}{e^{\hbar\omega/k_{\rm B}T} - 1}$	Can we find the m of the selected "co	nean number of photons, plor" given by the fixed ω ?	
$N = \sum_{\text{microstates} \{\varepsilon_k\}} n(\varepsilon_k) =$	$\int \frac{d^3x d^3p}{\left(2\pi\hbar\right)^3} \cdot n(\hbar\omega)$	Instead of $E=p^2/2m$ now there is a <u>different</u> relation between energy and momentum:	
		$p = \hbar k = \hbar \omega / c$	
$N = V \int -$ Spectral density <i>n</i> (a) of particles at a give	$\frac{4\pi^2 \omega^2 d\omega}{(2\pi)^3 c^3} \cdot \frac{1}{e^{\hbar \omega/k_B T}}$ w) is the number on ω $N = \int n(\omega) d\omega$	$\frac{1}{-1} \int_{0}^{n(\omega)} \int_{0}^{\infty}$	

