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In this work we use a new approach to investigate the equilibrium and linear dynamic-mechanical
response of a polymer network. The classical Rouse model is extended to incorporate quenched
constraints on its end-boundary conditions; a microscopic stress tensor for the network system is
then derived in the affine deformation limit. To test the model we calculate the macroscopic stress
in equilibrium, corresponding to the long-time limit of relaxation. Particular attention is paid to the
treatment of compressibility and hydrostatic pressure in a sample with open boundaries. Although
quite different in general, for small strains the model compares well with the classic equilibrium
rubber-elasticity models. The dynamic shear modulus is obtained for a network relaxing after an
instantaneous step strain by keeping track of relaxation of consecutive Rouse modes of constrained
network strands. The results naturally cover the whole time range—from the dynamic glassy state
down to the equilibrium incompressible rubber plateau. © 2005 American Institute of Physics.�DOI: 10.1063/1.1955445�

I. INTRODUCTION

For more than half a century theorists have tried to
model the equilibrium and dynamical response of polymer
networks. Modern understanding of network or rubber elas-
ticity has come a long way since the first molecular models
were developed in the 1930s.1 Recent equilibrium theories
are sophisticated and try to incorporate topological con-
straints from cross-links and entanglements, excluded vol-
ume effects, and network features such as dangling ends,
inhomogeneities, and noninteracting strands.2–4 Although
generally successful and certainly valid conceptually, not one
of these theories provides a completely adequate understand-
ing of rubber elasticity. The predicted stress-strain forms and
elastic moduli under various nontrivial types of deformation
still show discrepancies with the experiment. Compared to
the developed state of understanding of equilibrium �long-
time� mechanical response, general dynamical response theo-
ries for polymer networks are markedly less successful. Once
again, a large body of seminal literature exists in the area of
dynamics of uncross-linked polymer chains �melts and
solutions�,5–8 however, the corresponding consistent ap-
proach to the dynamics and relaxation of fully percolating
random networks simply does not exist.

The dynamic response of networks is a research area
with great practical importance. Problems related to this field
are diverse, and include acoustics, vibration damping, impact
resistance, crack propagation, and the toughening of biologi-
cal tissues. The applications of dynamic response to defor-
mations are found in various technologies from automobile
tires to construction suspensions, to vibration dampers, and
are thus of ardent industrial interest.9 Fundamental theoreti-
cal research provides the basis for investigating and predict-
ing the properties of these systems. An extension of the tube-
model theory for rubbers, first proposed by Edwards,10 was

based on the reptation theory.11,12 On the other hand, the first
theoretical attempts to provide a consistent dynamic-
mechanical theory of polymer networks, e.g., Ref. 13, have
not advanced much. Few theories go beyond the phenomeno-
logical level to try and link macroscopic properties of the
system with molecular structure. One of the first attempts to
derive a statistical dynamics of networks by employing a
viscosity coefficient, as in the Rouse model, never managed
to explain the full set of dynamic properties.14 Recently,
work has been done on flexible polymer network dynamics
based on the tube-model approach.15 By analyzing the relax-
ation of strands between cross-link points the model success-
fully obtained the linear complex modulus of a highly en-
tangled rubbery network, albeit in the low frequency range
only.

The aim of the present work is to “start at the begin-
ning.” We construct a simple Rouse theory, on the level of
older ideal unentangled chains, but nonetheless geared to-
wards a dynamic-relaxation description of randomly cross-
linked networks. This model naturally allows an analytical
description of the relaxation of an affinely deformed ideal
network over the whole time range. Although such an en-
tropic theory alone is not wholly satisfactory �for example, to
examine glassy dynamics in short-time limit�, it remains a
self-consistent and interesting model to work with. The merit
of the present constrained dynamic Rouse model lies in that
it is the first model naturally covering an equilibrium and
dynamic-relaxation ranges of network response. One hopes
incorporating the required level of complexity, i.e., account-
ing for chain excluded volume and entanglement constraints,
should be an easier next step since these ideas and techniques
are developed.

A. Classical phantom models

In the simplest, ideal case, the cross-links holding to-
gether a network of entropic springs are responsible for net-
work elasticity. The two classic models of rubber elasticitya�Electronic mail: emt1000@cam.ac.uk
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commonly referred to in the literature are the Kuhn �or af-
fine� and the James-Guth �or phantom� models.1,16 Both of
these models are phantom in the sense that the excluded
volume is ignored and chains may freely intersect. Another
key idea is that the network strand conformations are as-
sumed to be independent of one another, thus ignoring the
long-range multichain correlations. The Kuhn model as-
sumes an affine deformation: if a macroscopic rubber sample
is deformed by the strain tensor E, then the end-to-end �span�
vector R of any subchain between two junction points will
be equal to E ·R after deformation. The affinity assumption
implies that the cross-links are spatially fixed, and do not
fluctuate. In the James-Guth model cross-links are essentially
unrestricted in their own fluctuation, but the resultant free
energy

F��� =
1

2
NckBT Tr�ET · E�

=
1

2
NckBT��2 +

2

�
� �if �z = �,�x,y = �−1/2� , �1�

is only altered by a factor of 1
2 . Here kBT is the Boltzmann

temperature and Nc is the number of cross-links in the net-
work sample. The last line of Eq. �1� is for a uniaxial stretch
by a factor � and uses an explicit constraint of material in-
compressibility, which will be a subject of special discussion
in Sec. IV B below. The force required to the change the
length of the sample from Lzi

to Lzf
is equal to the change in

the deformation free energy F��� with respect to the change
in the sample size along the axis of deformation

fz =
�F
�Lz

=
�F

���Lzi
�

=
NckBT

Lzi

�� −
1

�2� . �2�

The true stress ��� in an elastic medium is the ratio
between the force applied in the � direction and the cross-
sectional area of the strained sample perpendicular to the �
axis. For the current example of uniaxial deformation the
true stress is

�zz =
fz

Lxf
Lyf

=
�

Vi

�F
��

= c̃kBT��2 −
1

�
� , �3�

where c̃=Nc /Vi is the average cross-link density of the net-
work sample. A more convenient stress to measure in experi-
ments is the so-called engineering or nominal stress defined
as the force applied, divided by the original cross-sectional
area of the reference sample conformation:

�zz�eng� =
fz

Lxi
Lyi

= c̃kBT�� −
1

�2� . �4�

A recent network model by Panyukov and Rabin,17 based on
the Deam and Edwards model of instantaneous cross-linking
of ideal chains,18 led to a similar stress-strain relationship as
in Eq. �3�, but with a different numerical front factor. They
calculated a mean-field free energy by means of an elegant
field-theoretic method involving a double limiting procedure:
the replica trick and a generalization of the De Gennes n
=0 method.19

In this paper we use a microscopic stress-tensor method,
which, albeit less advanced for modeling rubber elasticity
than the above, can more naturally be extended to the dy-
namical problems of cross-linked polymers.

B. Assumptions and outline

Apart from the assumption about the chains ideality �ne-
glecting both internal energy contributions and the topology,
which is the customary first approximation�, we also assume
that our model system is a homogeneous material where lo-
cal clustering of cross-links is negligible. In reality, the links
build up in time and one cross-link will affect the neighbor-
ing chain density, therefore influencing the position of the
next link, and clusters of junctions may appear.17,20,21 As the
cross-link density is increased there is an abrupt change of
the melt from a viscous liquid to a solid, elastic gel that
shows no tendency to flow. At this so-called gel point a giant
cluster or network spans the whole sample. The theoretical
explanations for how the transition actually takes place still
remain a worthwhile pursuit.22,23 In this paper, we calculate
the stress for a network system well above any gel-point
threshold.

This article is organized as follows. After briefly review-
ing the fundamental starting points, we next turn to the case
of constrained Rouse model in Sec. II. Although the prin-
ciples of Rouse dynamics are a truly classical foundation of
polymer physics, the formalism for a chain with constrained
end points required new development. This permits an adap-
tation of the microscopic stress tensor to the case of a cross-
linked polymer network, which is the subject of Sec. III. The
resulting expression for the dynamic-elastic stress tensor
forms the backbone of the remaining work. Section IV deals
with the long-time limit of the general theory, when the de-
formed network is at, or near the equilibrium. This leads us
to another theory of rubber elasticity. Although we do not
focus on this aspect, aiming to develop the dynamic theory,
the long-time limit of current model is compared with the
“standard” experimental data of rubber deformations, as well
as with classic rubber elasticity models. In deriving the true
stress for the strained network system, it is vital to treat
volume relaxation and appropriate boundary constraints—
phenomena largely ignored in many other theories and not
well represented in the literature. Section IV B deals with the
key aspects of �in�compressibility. The equilibrium calcula-
tion provides the basic groundwork for understanding and
approaching the actual problem of studying dynamics. In
Sec. V we approach the full linear dynamic response, that is,
how a rubbery network relaxes with time after a sudden de-
formation is applied. Here, again, we pay attention to the
aspects of dynamic volume relaxation and derive the time-
dependent linear-response moduli and the Poisson coeffi-
cient. In all of this work we assume that all deformations are
homogeneous, that is, the stress and strain components do
not vary with position in the body. Lastly, we conclude and
give an outline of possible improvements and future devel-
opments.
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II. CONSTRAINED ROUSE DYNAMICS

Here we consider the dynamics of an individual ideal
chain. The starting point for describing the motion of the
polymer is the Rouse model of beads, each connected to its
nearest neighbor with Gaussian springs.5 When a polymer
liquid is sheared, every segment of the polymer chain will
experience a certain friction together with random forces,
balancing the input energy of thermal fluctuations and the
dissipation. In the Rouse model this effect is modeled as a
continuous viscous background for each given segment. In
dense polymeric melts, in contrast with normal liquids or
dilute polymeric solutions, this first-order approach is ac-
ceptable.

For a Rouse system at a given temperature T, the in-
tramolecular forces are regarded as simple harmonic with
spring constant k=3kBT /�2, with � the segment size, and U
= 1

2k��rn−rn−1�2 the potential energy of each segment. If � is
the friction coefficient of a monomer and fn the stochastic
force �white thermal noise�, the position of the monomers
�chain segments� satisfies a Langevin equation, � drn /dt
=−�U /�rn+ fn. In the overdamped limit the frictional force
felt by monomer n is balanced by the random force fn, as
well as the sum of the forces acting on it from its two neigh-
bors, k�rn−1−rn� and k�rn+1−rn�. If rn denotes the position of
the nth monomer, the continuum limit of this Langevin equa-
tion can be written as

�
drn

dt
= k

�2rn

�n2 + fn. �5�

Since the interactions between the different monomer seg-
ments �or beads� are localized to nearest neighbors, each of
the N segments rn satisfies a linear differential equation de-
coupled from the the other beads. The dynamics of the whole
chain can thus be described by a set of normal modes. For a
free chain the elastic force vanishes at the ends, which im-
plies the following boundary conditions:

� �rn

�n
�

n=0
= 0 and � �rn

�n
�

n=N

= 0. �6�

In this case the amplitudes of the normal modes xp are de-
fined as xp�t�	1/N
0

Ndn cos�p�n /N�rn�t�, where p is an in-
teger denoting the pth mode.5 This formalism leads to the
classical Rouse model, described in every book on polymer
physics.

However, in a network the chain ends are cross-linked
and thus constrained to a certain extent. As a start, let us
consider the ends to be completely fixed, i.e.,

�r�n=0 = 0 and �r�n=N = R . �7�

To accommodate these new boundary conditions, we have to
decompose the harmonic-oscillator motion of Eq. �5� into the
normal modes �xp
, which are slightly different from the
classical free-ends Rouse form

xp�t� 	
1

N
�

0

N

dn rn�t�sin� �p − 1/2��n

N
� , �8a�

rn�t� = 2�
p=1

�

xp�t�sin� �p − 1/2��n

N
� . �8b�

Then the Langevin equation �5� with the associated stochas-
tic force transforms to a set of decoupled Rouse equations,

�R
dxp

dt
= − kpxp + f̂p, �9�

with � f̂ p��t� f̂ q��t���=2�RkBT�pq�����t− t�� �where �R	2N��
and the initial conditions xp�0�. As usual, this is a diffusion
problem for an effective “particle” in a harmonic potential
with a constant

kp =
2�k�p − 1/2�2

N
=

6�2kBT

Nb2 �p −
1

2
�2

. �10�

From Eq. �8b� the end-to-end vector R�t�	rN�t�−r0�t� for
the constrained Rouse description can be written as

R�t� = − 2�
p=1

�

�− 1�pxp�t� , �11�

in terms of the normal coordinates, again with a subtle dif-
ference with respect to the classical Rouse problem.

In this section, and in this work, we focus on a Rouse
chain with fixed end points. There are, perhaps, surprisingly,
only few examples in the literature when Rouse modes have
been derived for other boundary conditions: for ends fixed at
the same point �a loop with rn=r0=0�,24 for one end fixed
and one free �a tethered chain�,25,26 and for a block copoly-
mer system with free ends, but chain connectivity at the in-
terblock junction.27

III. A NETWORK OF ROUSE CHAINS

Section II introduced the main ingredients for studying
phantom network dynamics, but is so far only applicable to a
single, constrained chain. Now consider a random network
of such end-linked chains, deformed by strain tensor E, and
let each strand R0 �between two connected junction points�
be deformed affinely, that is, R=E ·R0. We assume that the
network is initially isotropic. Cross-links are permanent and
will impose the topological constraints on the chains, given
that the cross-link density is high enough. Since the cross-
links are randomly quenched, fixing the N and the initial R0

for each strand, the probability to find a corresponding de-
formed strand is given by the same distribution function
P�R0�, as has been established at network formation. The
notation �¯�P refers to the quenched average over the sim-
plest appropriate probability distribution

P�R0� = � 3

2�N�2�3/2

exp�−
3R0

2

2N�2� . �12�

Furthermore, since xp�t� depends linearly on the stochastic

force f̂p�t�, which is the annealed variable, the ensemble av-
erage �¯�	 is naturally replaced by the time average calcu-

lated over the functional distribution 	�f̂p�t��. Therefore, the
notation �¯�	 denotes the time-average of the components

of stochastic force f̂p�t� over the distribution
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	� f̂ p��t�� 
 exp�−
1

4�RkBT
� dt f̂ p��t�2� . �13�

The microscopic stress tensor ��� of a viscoelastic ma-
terial consists of the stress contribution due to the polymers
���

�p�, the solvent molecules ���
�s� , and an isotropic pressure

term �kBT���, as follows:

�14�

The last two contributions are of minor significance for a
phantom network model and are thus neglected from here
onwards. In the above c is the monomer density, N is the
number of segments of a given polymer chain, so that c /N
= c̃ is the number of chains per unit volume in the system.

These monomers �or beads� have position vectors rn�t� and
find themselves subjected to a potential U. For the Rouse
model of constrained chains the stress tensor Eq. �14�, in the
continuous limit, is given by

���
�p� =

c

N
k�

0

N

dn� �rn�

�n

�rn�

�n
�

	

�15�

=
c

N
�

p

kp�xp��t�xp��t��	. �16�

The stress tensor of the whole network can be expressed
as the ensemble average of ��� over the quenched probabil-
ity to find the given strand, which is the Eq. �12�. This op-
eration is denoted by the square brackets in Eq. �17� below.
Crucially, we must implement the constraint ensuring that
only the end-to-end vectors deform affinely, leading to

�netw,�� =
c̃

V�
p=1

�

kp��xp��t�xp��t���E · R0 + 2�
q=1

�

�− 1�qxq�t���
	

�
P�R0�

, �17�

where V is a normalization factor of the ensemble averaging. V has the dimensions of inverse volume. The need for the
constant V arises naturally since the Dirac-delta constraint has dimensionality of inverse volume; this constant turns out to be
equal to V= �3/2�N�2�3/2. After exponentiating the � constraint as

V
�2��3�

−�

�

d�ei�·�E·R0+2 �
q=1

�

�− 1�qxq�t�� , �18�

and performing the Gaussian integration over R0, with probability distribution in Eq. �12�, and then another over the auxiliary
vector field �, the stress tensor becomes

�netw,�� =
c̃

�det EET�1/2 �
p=1

�

kp�xp��t�xp��t�exp�−
6

N�2�
q,r

�

�
�,�=1

3

�− 1�q+rxq��t��EET���
−1xr��t���

	

, �19�

which still depends on the solution xp��t� of the Langevin
equation �9�, the specific type of deformation E, and another
functional integration over the remaining set of chain sto-
chastic variables �xp�t�
. Recall that there are other contribu-
tions to ���, in Eq. �14�, apart from the polymeric part we
are considering now. However, in our model for a network
we assume the polymer concentration to be sufficiently high
such that the viscous stress �from intermolecular collisions�
is negligibly small compared with the elastic stress due to
intramolecular forces. The issue with hydrostatic pressure is
quite delicate in an elastic system; we devote the whole
Sec. IV B to this problem of volume relaxation and effective
�in�compressibility.

In order to compute the continuum elastic stress tensor
�19� one must know the solution for xp�t� in terms of sto-
chastic force and the initial conditions. Before embarking on
the general solution of this problem, we first examine the
limit of long times. Although our ultimate purpose is to de-

scribe the full dynamical range of relaxations, testing the
model against equilibrium rubber elasticity is an important
reference point.

IV. PRACTICAL IMPLICATION I:
EQUILIBRIUM RESPONSE

First we shall implement the formalism developed in
Sec. III for a network system that has reached its equilibrium
state. At t→�, when the memory of the initial condition for
the Langevin equation is lost, the stochastic solution of Eq.
�9� is given by

xp��t� =
1

�R
�

−�

t

e−�t−t��/
p f̂ p��t��dt�, �20�
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where 
p	�R /kp is the mode relaxation time. This defines
the famous Rouse time, the longest time of relaxation of the
lowest �p=1� collective mode of a chain N segments long:

R=�N2�2 / �3�2kBT�. In order to complete the averaging

with respect to the distribution function 	�fp��t��, we substi-
tute the equilibrium solution Eq. �20� for xp�t�, to obtain an
expression for the stress tensor in Eq. �19� in the limit of t
�
R,

�netw,�� =
c̃

�R
2 �det EET�−1/2�

p=1

�

kp�
−�

t

dx�
−�

t

dy e−�2t−x−y�/
p� �Df�fp��x�fp��y�

�exp�−
1

2 �
�,�=1

3

�
q,r=1

� �
−�

�

dt��
−�

�

dt�fq��t��Mq,r
�,��t�,t��fr��t��� . �21�

Introducing the tensor notation M enables us to write the stress �netw,�� as a compact Gaussian path integral. It consists of two
parts: a diagonal contribution due to the distribution function 	�fp��t��, and the additional part coming from the exponent in
Eq. �19�. The latter part is only integrated and defined for times �t. This upper limit on time is dealt with by using Heaviside
�step� functions. The tensor M can thus be written as

Mqr
���t�,t�� = A��t� − t���qr��� + �− 1�q+rb�EET���

−1e−�t−t��/
qe−�t−t��/
r��t − t����t − t�� 	 AI + bB . �22�

We use shorthand for the combinations of material param-
eters: A= �2�RkBT�−1 and b=12/ ��R

2N�2�. The matrix B de-
pends on the times and the applied strain tensor: B
= �−1�q+r�EET���

−1e−�t−t��/
qe−�t−t��/
r. In order to compute the
stress tensor given by the Gaussian integral in Eq. �21� we
have to find the determinant of Mqr

���t� , t�� as well as the
correct inverse matrix element. The full calculation is pre-
sented in the Appendix, and here we shall only quote the
results. If no assumption is made about the type of deforma-
tion, then from Eqs. �A3�, �A6�, �A7�, and �21�, the general
expression for the equilibrium stress tensor at t→� is given
by

�netw,�� =
c̃kBT

�Det EET�1/2 �1 + �EET���
−1 �−1

� exp�−
1

2�
n

�− 1�n+1

n
Tr��EET�−n
� . �23�

The value of the trace and the result of summation in the
exponent depend on the type of deformation E and we shall
next investigate two specific cases.

A. The stress tensor: Diagonal deformations

If E is a diagonal deformation, say, uniaxial or biaxial
extension then

E = ��1 0 0

0 �2 0

0 0 �3
� ⇒ Tr��EET�−n
 = �

�

E��
−2n. �24�

In this case the stress tensor is given by

��� =
c̃kBT

�
�

E��

���� + E��
−2 �−1��

�

�1 + E��
−2��−1/2

= 0 if � � � . �25�

For an isovolumetric, uniaxial extension, or compression
�see Fig. 1�, �1=�2=�−1/2 from symmetry, and �3=�, the
stress �uni depends only on the single Cartesian extension
ratio �, as follows:

�uni,xx

yy
= c̃kBT�1 + ��−2�1 +

1

�2�−1/2

, �26a�

�uni,zz = c̃kBT�1 + ��−1�1 +
1

�2�−3/2

. �26b�

In this type of extension the side surfaces are stress-free and
one would therefore expect the corresponding principal
stresses in to be zero. Why we are not finding this in Eq.
�26a�? Most rubber-elasticity theories calculate the change in
free energy upon deforming the network sample. Before de-
termining the expressions for the stress, any indeterminate
pressure terms are by that stage already subtracted or are
simply discarded since they do not depend on the deforma-
tion �. For this reason seminal literature always mentions
that it is important to examine relative stress expressions
only, cf. Ref. 28. It is known that these arbitrary pressure
terms are due to a change in the volume of the network
system during deformation. However, one cannot accept that
hydrostatic pressure is different in an open sample of rubber
with stress-free boundaries. We have to look more carefully
at the effect of volume relaxation on these stress expressions.
Since the present model works with the stress tensor from
the onset—in contrast with a partition function and associ-
ated free energy, like most models—it is important to deal
with this phenomenon correctly.
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B. „In…compressibility and volume relaxation

Consider an initial polymer melt sample of volume V0.
After sufficient cross-linking a network is formed, contained
in a volume V, smaller than the initial volume. This volume
change, or syneresis, is caused by the reduction in overall
entropy due to cross-linking, and is penalized by a bulk en-

ergy contribution 1
2 K̃�Det E−1�2 in the elastic free-energy

density, and correspondingly in stress by the amount

K̃�Det E−1�. Here K̃ is a very large bulk modulus usually of
the order 109 J /m3 or greater.29

Our first task is to determine what the impact of syner-
esis is on the stress-tensor expression. Denote by E0 the
ininitial deformation associated with volume relaxation after
network formation. Since we expect this deformation to be
small relative to any future imposed strain, as well as being
isotropic, we have E0= �1+a0�I. For simplicity, we consider
first the case of no additional external deformation. Then the
stress tensor in Eq. �25� is only a function of a0,

�syn,�� =
c̃kBT

�1 + a0�3����1 + �1 + a0�−2�−1

� �1 + �1 + a0�−2�−3/2 + K̃��1 + a0�−3 − 1����. �27�

After network formation, the system will reach its equilib-
rium state, which implies that all the resultant stresses should
be zero. Since the correction a0 is expected to be small, we
can expand Eq. �27� up to linear order in a0 and solve for
�syn,��=0. This step is equivalent to minimizing the free-
energy density of the system as discussed in Ref. 29. The
equilibrium solution for this syneresis correction is found to
be

a0
* =

2�2c̃kBT

− 48K̃ + �2c̃kBT

 −

c̃kBT

K̃
� 1. �28�

Next, imagine imposing an external deformation E, for ex-
ample, the uniaxial extension. During this deformation a sec-
ond volume relaxation is possible and should also be ac-
counted for. The total deformation therefore takes the form
Etot=Euni�1+a��1+a0

*�, where Euni is the strictly isovolumet-
ric strain tensor and a0

* is given by Eq. �28�. When the
sample is strained by Euni, it will lead to the well-known
rubber-elastic response, but also to an additional small bulk
compression, represented by a, which is dependent on the
imposed strain �. Again, the underlying physical reason for
this extra compression is the further reduction in conforma-
tional entropy on deformation. Substituting the total defor-
mation into the stress tensor in Eq. �25�, we have for the
nonzero diagonal components,

��� =
c̃kBT

�1 + a0
*�3�1 + a�3�1 +

E��
−2

�1 + a0
*��1 + a�

�−1

��
�=1

3 �1 +
E��

−2

�1 + a0
*�2�1 + a�2�−1/2

+ K̃��1 + a0
*�−3�1 + a�−3 − 1� . �29�

The required second volume-relaxation correction a is un-

covered by demanding that for, e.g., uniaxial extension in the
ẑ direction we should have �uni,xx=�uni,yy =0. Again, by ex-
panding the stresses up to first order in a, one obtains a* for
which only �uni,zz is nonzero. To present it explicitly, we
must specify the axes and the principal imposed strain �,

a* �
c̃kBT

24K
��1 + ���1 + �2�2�− 8 +�2 +

2

�2 �1 + ��2�
��1 + � + �2 + �3����1 +

1

�2 �1 + ��4�1 + �2�3�−1

.

This volume-relaxation factor is written in the leading ap-
proximation in the small parameter, the ratio of shear to bulk
modulus, simply to give the reader an idea of the expression
structure. Only the exact, nonsimplified expression would
achieve, on substitution into Eq. �29�, the zero-stress condi-
tions on free surfaces.

Lastly, after substituting a* to Eq. �26b�, we can now

take the limit K̃→� and obtain the correct expressions for
the stress in uniaxial deformation,

�uni,zz =
c̃kBT��3 − 1�

�1 + ��2�1 + �2��1 + �−2�1/2 ,

�30�
�uni,xx = �uni,yy = 0.

The stress �zz vanishes when there is no deformation, that is,
when �=1. This behavior is expected, but is only obtained
here after accounting for the bulk modulus term and by in-
cluding small corrections to the overall strain tensor E due to
volume relaxations. There are alternative approaches used in
continuum mechanics of large deformations, e.g., Refs. 30
and 31, based on keeping the rigid constraint of Det E=1 by
means of a Lagrange multiplier which has the meaning of
system pressure �so that the actual stress is ���− P����.
There are, however, many negative consequences of inde-
pendently defining the hydrostatic pressure in a solid system
with open boundaries.

The majority of mechanical tests on polymer networks
are conducted in uniaxial extension. Together with the data
from compression of the sample, it can portray interesting
properties of the material. Figure 2 shows the predictions of
the present model in Eq. �30�. It is clear that this equilibrium
model is far from being successful in predicting the observed

FIG. 1. A uniaxial extension, �1=�2=�−1/2, and �3=�.
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nonlinear response �although it does have the right qualita-
tive features�. One should not be surprised by that, as the
present model ignores such key effects as chain entangle-
ments. We remind the reader that our aim is to develop a
basic framework for a consistent model of the dynamic re-
sponse and in doing so we remain within the phantom chain
approximation.

C. The stress tensor: Small deformation

Next we investigate Eq. �23� when E is a small defor-
mation. Although the results in equilibrium regime are nearly
trivial, this is the important limit as the reference point for
the subsequent linear dynamic-mechanical theory. The strain
tensor is E=I+e, so that

EET = I + e + eT + ¯ � I + 2� . �31�

In the last step we identified the symmetric part �= 1
2 �e

+eT� of the general, infinitesimal strain tensor e, and dis-
carded insignificantly small terms of O��2�.33 For a small,
simple shear Tr �=0 and the determinant is given by
�Det M�−1/2�e−1/2 Tr ln AI /2�2. The resulting stress again
gives nonzero components that ought not to exist, for ex-
ample, �xx��c̃kBT� /4�2. When we take syneresis into ac-
count by including a bulk modulus term and the a0

* correction
in Eq. �28�, as was done in Sec. IV B, the diagonal elements
of the corrected stress tensor are all zero and the off-diagonal
elements are given by

��� �
c̃kBT

4�2
���. �32�

Consider the example case of simple shear equivalent to the
sliding of two planes, normal to the z axis, �yz=�zy = 1 � 2�.
The equilibrium shear modulus G is defined as the stress-
strain ratio

G =
1

8�2
c̃kBT . �33�

In the case of a small volume-preserving uniaxial deforma-
tion, that is when �zz=1+�, we can expand Eq. �30� in terms
of the infinitesimal strain �, and define the Young modulus

Y =
3

8�2
c̃kBT . �34�

The Young modulus in extension and is three times the shear
modulus G, in accordance with the theory of small, homoge-
neous strains for isotropic incompressible solids.34 Both con-
stants are, comfortingly, proportional to the classical c̃kBT,
with a hardly relevant numerical factor difference with re-
spect to the phantom chain rubber elasticity.

V. PRACTICAL IMPLICATION II: LINEAR DYNAMIC
RESPONSE

The effect of cross-linking during network formation is
to transform a viscoelastic liquid �the melt� into a viscoelas-
tic solid �the rubber�, the material now acquiring an equilib-
rium modulus.35,36 In the transition zone between the glassy
state �short times� and the equilibrium rubber plateau the
properties of a network are not profoundly different from
that of an entangled melt.

Since even basic dynamics of stress relaxation is poorly
understood from a theoretical point of view, it is worth ap-
plying our first-order constrained Rouse model to a simpler
particular case of the generally applicable expression �19�. In
the remaining sections we specifically consider a small, iso-
volumetric, uniaxial deformation thus focusing on the linear
dynamic-mechanical response functions.

A. Stress tensor after a step strain

Consider a step strain of constant magnitude � that is
applied instantaneously at time t=0 to an ideal network
sample, that is, ��t�=� ��t�. The constitutive equation theory
of linear viscoelasticity for a homogeneous deformation re-
lates the strain E�t� and stress ��t� as follows:35

����t� = �
−�

t

Y�t − t��
���t��

�t�
dt�, �35�

where Y�t� is the dynamic linear-response coefficient, e.g.,
the Young modulus in the case of uniaxial extension. Thus,
for the present case of fixed imposed strain this equation
simplifies to a time-dependent version of Hooke’s law:
����t�=Y�t��. For a rubbery network Y�t� will relax to a
finite value, the equilibrium elastic modulus, defined as Yeq

= limt→�Y�t�, which has been given in Eq. �34�.
Let us apply the model of microscopic stress tensor de-

veloped in Sec. III to the case of a step deformation. In order
to investigate the entire time spectrum of the linear response,
we now need to use the full solution of the Langevin equa-
tion �9� describing the normal modes, and depending explic-
itly on the initial condition,

xp��t� = xp��0+�e−t/
p +
1

�
�

0

t

e−�t−t��/
p f̂ p��t��dt�. �36�

Applying the present model embodied by Eq. �19� to this
nonequilibrium case is not as straightforward as the equilib-
rium case has been. The first challenge is to choose an ap-
propriate initial condition xp��0�. From Eq. �9� one finds the

FIG. 2. The Mooney-Rivlin plot of reduced stress function f*=�eng/G��
−1/�2� vs. 1 /�, together with a set of experimental uniaxial deformation
data from Ref. 32, shown as dots. The phantom affine model is shown as the
dashed line f*=1, for comparison.
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time-correlation functions of the normal modes. In equilib-
rium, they are given by

�xp��t�xq��0��	�f� = �pq���

kBT

kp
e−t/
p, �37�

where 
p=�R /kp	
R / �p−1/2�2 is the relaxation time of the
pth Rouse mode, as introduced in Sec. III. In Sec. IV we
imposed the constraint that only the topologically quenched
cross-links are affected by the deformation, thereby applying
the affine deformation approximation only to the span vec-
tors R. Here, at arbitrarily short time after an instantaneous
strain, we have to assume that the positions of all the seg-
ments between two cross-links are changed on instantaneous
deformation, in the same proportion as the macroscopic
strain dictates. Thus, applying a step strain E at time t=0, a

given segment position before deformation rn�0−� will
change to rn�0+� after deformation,

rn�0+� = E · rn�0−� → xp�0+� = E · xp�0−� . �38�

The second equality follows from the fact that the real
segment positions �r
 are linear functions of the normal
coordinates in Eq. �8b�. Applying the affine deformation to
all normal modes, the right-hand side of Eq. �36� becomes

E��xp��0−�e−t/
p +
1

�R
�

0

t

e−�t−t��/
p f̂ p��t��dt�. �39�

After substituting this xp��t� into the main expression for
stress in Eq. �19�, we obtain an expression with the Gaussian
path integrals having quadratic and linear cross terms in the
random force f ,

����t� =
c̃

�det EET�1/2e−6/N�2�r��,��E���E�����EET�
���
−1 �kBT/kr�e

−2t/
r

��
p=1

�

kp� kBT

kp
E��E��e−2t/
p� �Df�e−1/2fTM f−gTf +

E��xp��0−�
�R

�
0

t

dxe−�2t−x�/
p� �Df�fp��x�e−1/2fTM f−gTf

+
E��xp��0−�

�R
�

0

t

dye−�2t−y�/
p� �Df�fp��y�e−1/2fTM f−gTf +
1

�R
2�

0

t

dx�
0

t

dy e−�2t−x−y�/
p� �Df�fp��x�fp��y�e−1/2fTM f−gTf� ,

�40�

where M represents the tensor defined in Eq. �22� and the
linear term involves a vector g, determined by the “memory”
of the initial condition, c.f. �39�, given by

g�
q�t�� =

12

�RN�2�
r

�EET��,��
−1 E���xr��0−�e−t/
re−�t−t��/
q.

�41�

From Eq. �37�, the time-correlation function of the nor-

mal modes before deformation is equal to �xp��0−�xq��0−��
=�pq���kBT /kp. After performing the functional integrations

�see the Appendix, Eq. �A9�� the computation procedure is

analogous to the one for the equilibrium case. However, here

the calculation involves integrations up to finite time t �in-

stead of t→� as in Sec. IV�, and we are left with these

intractable sums:

S1 = �
q=1

N
1

�q − 1/2�2 , S2 = �
q=1

N
e−2�q − �1/2��2t/
R

�q − �1/2��2 ,

�42�

S3 = �
q=1

N

e−2�q − 1/2�2t/
R, S4 = �
q=1

N
e−4�q − �1/2��2t/
R

�q − �1/2��2 .

Note that all these sums are explicit functions of N and
t /
R�N� only �to remind, N is the number of segments on a
strand between cross-links�. For illustration, a more detailed
calculation of a linear term �second term on the 2nd line in
Eq. �40�� is explicitly presented in the Appendix �Eq. �A10��.
In the remaining sections we probe the physics of the system
without attempting to obtain closed-form solutions for Eq.
�42�.

B. Uniaxial extension and compressibility

For a uniaxial deformation given by Eq. �24�, before
accounting for volume relaxation, the nonzero diagonal com-
ponents of the stress tensor are given by

��� = c̃kBT�
i

1

�i
�1 +

2

�2

�S1 − S2�
�i

2 �−1/2

exp� 2

�4 �S1 − S2�S2�
i

�i
−2�1 +

2

�2

�S1 − S2�
�i

2 �−1

−
3

�2S2�
����

2S3 + �1 +
2

�2

�S1 − S2�
��

2 �−1�4�S2 − S4�
�2 +

�S4 − 2S2 + S1�
�S1 − S2� �1 +

4

�4 �S1 − S2�S2�
i

�i
−2�1 +

2

�2

�S1 − S2�
�i

2 �−1��� . �43�
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The same procedure, as in Sec. IV B, for dealing with vol-
ume relaxation after network formation and after imposed
strain is applied to the numerical problem, Eq. �43�. The first
correction, due to the initial volume change on network for-
mation, is of course independent on the subsequent dynam-
ics. The syneresis factor a0

* is still given by the Eq. �28�. The
second volume-relaxation factor a* is time dependent. If we

expand it in terms of a small parameter, 1 / K̃, the inverse of
the bulk modulus, its approximate form would illustrate the
evolution,

a*�t� =
c̃kBT�

3K̃
S�S1�t�,…,S4�t�� + O�K̃−2� . �44�

Time dependence enters through S, which is a function
of the sums in Eq. �42�, and which is explicitly given in the
Appendix, Eq. �A11�. After inserting a0

* and a*�t� into the
stress expression Eq. �43� �where for the uniaxial extension
the Cartesian factor �zz→ �1+���1+a*��1+a0

*��, one can fi-

nally take the K̃→� limit. The resulting expression gives the
relevant stress, adjusted after volume relaxation, which is
proportional to the Young modulus, Y�t�	��t� /�, or explic-
itly in terms of the sums:

Y�t� = 3c̃kBT S�t� . �45�

Next, we consider the Poisson ratio n, which is the ratio
of transverse contraction strain to longitudinal extension
strain in the direction of the stretching force. In a viscoelastic
material the Poisson ratio is time dependent for transient
tests such as stress relaxation. In other words, the polymeric
material is “a lot less incompressible” at very short times
after an instantaneous strain is applied. For the current ge-
ometry n�t�= �a�t�−� /2� / �a�t�+��. Written as the dominant

term in a 1/ K̃ expansion, this Poisson ratio takes the simple
form

n�t� =
1

2
−

c̃kBT

2K̃
S�t� . �46�

In isotropic elasticity the Poisson ratio is bounded, −1�n

�1/2 and related to the ratio of elastic moduli K̃ , Y and the
shear modulus G.34 Comparing Eq. �46� with Eq. �45�, we

indeed find n=1/2−Y�t� /6K̃ independently of time, in ac-
cordance with the fundamentals of elasticity. Lastly, we can
directly obtain the linear shear modulus G�t� from this analy-
sis, instead of applying a different, simple-shear deformation.
This is because an alternative form of the Poisson ratio ex-

pansion is n=1/2−G /2K̃, and so G�t�=Y�t� /3= c̃kBTS�t�.
In Fig. 3 we show graphically the numerical result of our
investigation, with the sums in Eq. �42� evaluated over a
broad time range. The left y axis gives the log-log plot of the
scaled dynamic shear modulus G�t� /ckBT versus the scaled
time t /
* for three different network strand lengths N. The
time is reduced by the shortest of all Rouse relaxation times,

*	
p=N=��2 / �3�2kBT�, corresponding to the rate of mo-
tion of a single chain segment. Accordingly, the short-time
dynamic glass plateau is reached at t�
*. The second obser-
vation �expected within the realm of Rouse dynamics� is that
the slope of the dynamic glass transition very closely follows

the G�t�
 t−0.5 law. The log-log slope indicated by the dashed
line makes this comparison in the plot. In this transition zone
the chain segments try to move to more favorable configu-
ration positions such that the stored elastic energy �from de-
formation� is reduced. The Rouse relaxation process starts
with the high p modes and ends when the last p=1 mode has
relaxed. This is expected to happen at t�
R, after which the
equilibrium rubber plateau should set in. Both the Rouse
time 
R and the equilibrium rubber value of G= c̃kBT /8�2
are functions of N, as clearly seen in the graphs. In contrast,
the glassy modulus in this model Gglass is universal, being
proportional to c̃NkBT, that is, the total monomer �segment�
density c.

The other set of data in Fig. 3 is a plot of the Poisson’s
ratio n, also against t /
*. In this case we plot a full numerical

expression, not the expansion in 1/ K̃ as discussed earlier.
The graph clearly indicates the transition from a Poisson
ratio significantly lower than 0.5, eventually reaching the
“incompressible” value as t /
*�1. Interestingly, this transi-
tion does not depend on N �or, in other words, network cross-
link density�, at least for large N. Since n�t� is always deter-

mined by the ratios of shear and bulk moduli, G / K̃, its
reduction to n=0.5 occurs when G�t� diminishes to a value

significantly lower than K̃. This takes place somewhere along
the �t−0.5 relaxation, in most cases well before the rubber-
plateau onset.

C. Stress tensor: Limiting cases

The sums in Eq. �42� depend on the value of the time t at
which the stress is measured and are explicit functions of N
and t /
R�N� only. In the short-time limit, t→0, we obtain
straightforwardly

FIG. 3. Linear dynamic-mechanical response within the constrained Rouse
model, against dimensionless time t /
*, for different cross-link densities,
after a small step strain. The left �logarithmic� y axis gives the relaxation of
shear modulus, scaled by its universal value in the glass �t→0� state,
G�t� /ckBT. Three sets of data for different N show the different levels of
rubber plateau but the slope of the dynamic glass transition nearly following
t−0.5 law, traced by the dashed line. The right �linear� y axis gives the t

evolution of the Poisson ratio n against the same time scale, for K̃=109 Pa,
and c̃=1.25�1026 m−3. The dependence on N is hardly visible in n�t�,
which reaches the incompressible value n�0.5 as soon as G�t� drops below
a sufficiently low value.
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��� =
c̃

�Det EET�1/2 �
p=1

�

kpE��E���xp��0−�xp��0−��

= c̃kBT N�Det EET�−1/2�EET���. �47�

At short times a large force is generated in response to the
instantaneous step strain and this is expected to affect the
network chains on the local monomer �segment� length scale.
Equation �47� gives the stress in the glass regime, before
accounting for volume relaxation, as discussed in Sec. V B.
Substituting the small uniaxial extension and performing the
volume adjustment operation, we directly obtain the Young’s
modulus on the glassy plateau, Yglass=3c̃N kBT	3c kBT, and
the shear modulus Gglass=Y /2�1+n�. Deviations of Gglass

from 3Y and of the Poisson’s ratio from 0.5 are, as usual, of

the order Yglass / K̃. This factor, however, does not have to be
small. In the present theory the glass moduli are appropri-
ately large �factor of N higher than the rubber moduli�, but of
course this misses much of the specifics of glass phase and
there could be factors making these moduli even higher in
reality �e.g., not simply proportional to kBT�.

In the long-time limit, i.e., t→�, the stress tensor sim-
plifies the previous equilibrium case result of Eq. �23� giving
the rubber-plateau shear modulus Geq= c̃kBT /8�2. If we con-
sider the approach towards this equilibrium, at t�
R, the
sums in Eq. �42� are dominated by the first term �q=1� and
we may approximate them by these leading terms. For ex-
ample, S1��2 /2 and S2�4e−t/2
R. The final, nonzero stress
of a system subjected to a small, isovolumetric uniaxial de-
formation �=1+�, at times t�
R, after taking account of the
usual two-step syneresis, is then

�zz�t� �
3c̃kBT

2�2
�1 + 4�1 −

3

�2�e−t/2
R�� , �48�

which shows the last remnant of relaxation of the longest
�p=1� Rouse mode for an average chain. Note that the re-
laxation modulus G�t� depends implicitly on N in various
ways. Firstly, through the cross-link density c̃=c /N, but also
via the Rouse time 
R
N2. The role of the factor N can be
seen in Fig. 3, the equilibrium rubber plateau is reached
sooner as N decreases �increasing cross-link density�.

VI. CONCLUSIONS

We have developed a simple model for the purpose of
investigating the linear dynamic response of a polymer net-
work, based on the naturally dynamic Rouse model and in-
corporating various constraints arising in the polymer net-
work. The model predictions can be summarized as follows.
Firstly, for long times �t�
R� we obtain a constant rubber-
elastic plateau �with associated Poisson ratio of 1

2 �, which
depends on temperature and the average cross-link density of
the network. At short times we found a constant high-level
plateau, a few orders of magnitude �N� larger than the equi-
librium modulus value, which we associate with and call the
glassy plateau. As expected, we obtained a Rouse-power law
�t−1/2 for time scales when the large number of Rouse
modes is still relaxing.

Section III captured the essence of the dynamic stress-
tensor approach, and laid the groundwork before attempting
the real dynamic-mechanical problem in Sec. V C. The
quenched permanent cross-linking was treated in a similar
way to elementary phantom models—by averaging the de-
formed span vectors over the initial distribution function of
the undeformed end-to-end vector between links, and assert-
ing that these deformed span vectors deform affinely. For the
dynamical case, especially allowing for short times, Sec. V,
this assumption was modified by allowing each monomer �or
chain segment� to deform affinely assuming that in the t
→0 �glass� limit the system is completely frozen. This intro-
duced the “memory” of the initial condition into the Lange-
vin stochastic problem and generated the plausible macro-
scopic dynamics. Whether this is an acceptable treatment
remains open to question.

Many improvements in this model are possible and re-
quired. Firstly, there is the question of working with a more
physically appropriate, initial condition: how does one de-
scribe the monomer motion and chain configuration immedi-
ately after a step strain is applied? In this work, we essen-
tially used equilibrium pair-correlation functions �xp�xq�� to
describe nonequilibrium phenomena. It is expected that the
Rouse model breaks down at short times �or at high frequen-
cies� when the segment-segment bonds, taken as harmonic
here, are modified by the sudden imposed force. In future we
shall have to employ theoretical apparatus for studying
glassy dynamics to enable a more precise examination of
polymer network dynamic response and treat the “upper pla-
teau” of G�t� in a better way, accounting for additional forces
at t→0.

In all of the calculations, we assumed a phantom model.
Thus, an obvious improvement of the model would be to
include trapped entanglements and excluded volume effects.
This extension could, for example, be based on a tube or
slip-link model with nonaffine deformation.3 Accounting for
the nonlocal multichain correlations between the dynamics
of randomly linked strands should generally improve the
long-time description of the “lower plateau” of G�t�.

Lastly, in this model we have assumed the cross-links to
be spatially fixed and to deform affinely. Experiments have
shown that network deformations at a microscopic length
scale are not affine.20,37 Future improvements of this work
will attempt to constrain the cross-links less rigidly. Talking
about experimental observations on rubber relaxation, in de-
tailed literature one finds that neither glassy nor rubber pla-
teau has a constant slope. In equilibrium the rubbery network
may take days to fully relax, following very slow functions �
t−0.1, if not logarithmic�. This reflects more complex effects
of multichain correlations, dangling ends, and entangle-
ments. The glassy plateau also has a time dependence, a few
decades higher than the present prediction, due to continuing
relaxation of intrasegmental motion modes �often referred to
as � relaxation, etc.� Further, for networks consisting of real
chains the dynamic glass transition slope is often in the range
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of − 2
3 rather than our −0.5. This is similar to a Zimm-model

value, although it is hard to find a physical reason to include
hydrodynamic effects in a dense solvent-free rubber network.
Many mysteries remain untouched in this old field.
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APPENDIX: MATRIX MANIPULATION

For fixed coordinate components �� ,�
, the Rouse mode
indices �q ,r
 and fixed time positions �t� , t�
� t, the tensor
M defined in Eq. �22� is explicitly given by

Mqr
���t�,t�� = �2�RkBT�−1I + bqr

��e−�t−t��/
qe−�t−t��/
r

	 AI + bB . �A1�

The shape of this matrix in the �t� , t�
 space is

− �………t� = t→�

− �
�
�
�

t� = t
↓
� �

A b̃qr
��e−T1/
q−T2/
r … b̃qr

��e−T1/
q

b̃qr
��e−T2/rq−T1/
r A + b̃qr

��e−T2/
q−T2/
r … b̃qr
��e−T2/
q

b̃qr
��e−T3/
q−T1/
r b̃qr

��e−T3/
q−T2/
r A + b̃qr
��e−T3/
q−T3/
r � 0

� � � �

b̃qr
��e−T1/
r b̃qr

��e−T2/
r … A + b̃qr
��

A

0 A

�

� , �A2�

where and T1	�t− t1�, etc. Here we have temporarily discretized time for the sake of illuminating the properties of this matrix.
The functional Gaussian integral �given by the second line in Eq. �21�� evaluates to

I 	

� �Df�fp��x�fp��y�exp�−
1

2
�

�,�=1

3

�
q,r
� dt�� dt�fq��t��Mqr

���t�,t��fr��t���
� �Df�exp�− �4�RkBT�−1 �

�,�=1

3

�
q,r
� dt�� dt�fq��t������qr��t� − t��fr��t��� = N

�2��3/2�M−1�pp
���x,y�

�Det M�1/2
, �A3�

where x and y are the time arguments of the stochastic force, the second moment of which we are evaluating, cf. Eq. �21�. The
normalization factor N= �2��−3/2exp� 1

2Tr ln AI� is defined as the denominator in the first big fraction in Eq. �A3�. In order to
calculate the determinant we use the identity, ln�Det M�1/2= 1

2 �Tr ln AI+Tr ln�I+b B /A��, and the series representation of the
logarithm:

1

2
Tr ln�I +

b

A
B� =

1

2
Tr�

n=1

�
�− 1�n+1

n
� b

A
�n

Bn =
1

2�
n=1

�
�− 1�n+1

n
� b

A
�n

Tr��Bt�,t�;q,r
�� �n
 ,

where the trace accounts for the summation over all relevant indices in the matrix B

Tr�� �
 = Tr�� �
j1…jn−1=1

dt

�
l1…ln−1=1

dq

�
k1…kn−1=1

3

Bt�,j1;q,l1

�k1 Bj1,j2;l1,l2

k1,k2 …Bjn−1,t�;ln−1,r
kn−1� �� �A4�

=Tr� �
�ji
;�li
;�ki


�− 1�q+l1�EET��k1

−1 e−�t−t��/
q−�t−j1�/
l1 ¯ �− 1�ln−1+r�EET�kn−1�
−1 e−�t−jn−1�/
ln−1

−�t−t��/
r�
= Tr��EET�−n
� �

q=1

qmax �
−�

t

dt�e−2�t−t��/
q�n

= Tr��EET�−n
��
q=1

�

q

2
�n

, �A5�
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where the mode relaxation times are given, to remind the
reader, by 
q=�N2�2 / �3�2kBT q2�. Since b /A�q
q /2	1, by
construction, the most general expression for the determinant
is given by

�Det M�1/2 = exp�1

2
Tr ln AI

+
1

2�
n

�− 1�n+1

n
Tr��EET�−n
� . �A6�

Similarly, to compute the second moment of the stochastic
force fp�t� via the Gaussian integral, we need to calculate the
following inverse matrix element:

�M−1�pp
���x,y� = ��AI + bB�−1�pp,xy

��

=
1

A
�
n=0

�

�− 1�n� b

A
�n

�Bx,y;p,p
�� �n. �A7�

At this point we write the product of n terms in an expanded
form in order to observe the necessary cancellations in the
exponents, as in Eq. �A4�, but without taking the final trace.

�M−1�pp
���x,y� =

1

A
�
n=0

�

�− 1�n

�� �
�ji
;�li
;�ki


Bx,j1;p,l1

�k1
¯ Bjn−1,y;ln−1,p

kn−1� �
=

48�kBT�2

N�2 e−�2t−x−y�/
p���� + �EET���
−1 �−1.

�A8�

These equations are combined to produce the final form of

the equilibrium stress tensor before volume relaxation, Eq.
�23�, as well as in the computation of the dynamic response.
In the linear-response case �Sec. V�, the full solution of
xp��t� given by Eq. �39� leads to the linear terms in the sto-
chastic force fp�t� and the three different Gaussian functional
integrals are solved,

� �Df�e−1/2fTM f−gTf = N�2��3/2�Det M�−1/2e1/2gTM−1g,

�A9a�

� �Df�fp��x�e−1/2fTM f−gTf

= N�2��3/2�− �
r
�

0

t

dt��M−1���
pr �x,t��g�

r�t���
��Det M�−1/2e1/2gTM−1g, �A9b�

� �Df�fp��x�fp��y�e−1/2fTM f−gTf

= N�2��3/2�M−1���,xy
pp �I + gTM−1g�

��Det M�−1/2e1/2gTM−1g. �A9c�

Recall the normalization factor N first introduced in Eq.
�A3�, as well as the tensor M of Eq. �A1� and the additional
vector g given by Eq. �41�. The linear term in the stress
tensor in Eq. �40� for the dynamical case, after the functional
integrals are evaluated, is shown below to illustrate the ori-
gin of the time-dependent sums S1−S4:

−
24kBT

�RN�2 E��xp��0−��
0

t

dxe−�3t−2x�/
p�
�
�1 +

2

�2 �EET���
−1�

q

1

�q − �1/2��2 �1 − e−2t/
q��−1

�
r�

E���
T−1xr����0

−�e−t/
r�

� exp� 2

�4�
q

1

�q − �1/2��2 �1 − e−2t/
q��
r

1

�r − �1/2��2e−2t/
r �
�,��

E���
T−1E����

T−1 �1 +
2

�2 �EET����
−1 �

q

1

�q − �1/2��2 �1 − e−2t/
q��−1�
� exp�−

1

2�
n

�− 1�n+1

n
Tr��EET�−n
� 2

�2�
q

1

�q − �1/2��2 �1 − e−2t/
q��n� . �A10�

Lastly �not shown here�, the combination of initial-condition
normal coordinates is replaced by its equilibrium value be-
fore deformation, xp��0−�xr����0

−�→�pr�����kBT /kp. This
allows us to explicitly perform the sum over p and the inte-
gration with respect to x. Here the deformation E is fully
arbitrary and we sum over repeated Cartesian indices �e.g.,
���.

Finally, the second syneresis factor in Eq. �44�, Poisson’s
ratio in Eq. �46�, Young’s modulus, and dynamic modulus all
depend on the following function of time, whose long ex-

pression is nevertheless explicit �the sums S1−S4 are defined
by Eq. �42� in the main text�:

S�t� = �3��6S3 + 2�4�3�S1 − S2�S3 + S4 + S1 − 2S2�

+ 4�2�S1 − S2��3�S1 − S2�S3 + 3S4 + S1 − 4S2�

+ 8�S1 − S2���S1 − S2�2S3 − 2�S1 − S2��S2 − S4�

+ 3S2�S4 + S1 − 2S2���e−3S2/��2+2�S1−S2��

���2 + 2�S1 − S2��−9/2. �A11�
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