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Abstract. — The fluctuation spectrum of membranes in nematic solvents is altered by the
boundary condition imposed on the bulk nematic director by the curved membrane. We discuss
some properties of single and multi-membrane systems in nematic solvents, primarily based on
the Berreman-de Gennes model. We show that: membranes in nematic solvents are more rigid
and less rough than in their isotropic counterparts; have a different Helfrich steric stabilization
energy, proportional to d−3, and hence a different compression modulus in the lamellar state;
and can exhibit phase separation via unbinding during a quench into the nematic state. We
also discuss the preparation and possible experimental effects of nematic-mediated surfactant
membrane system.

There are many instances in physics where the configuration of a field on a boundary is
influenced by the fluctuations of a conjugate field in the adjacent volume. Examples of this
are the Casimir effect, where the confinement of the electromagnetic field between conduct-
ing plates results in a net attraction [1]: related effects in soft condensed matter include a
fluctuation-enhanced interaction between inclusions on a membrane [2] and the interaction
between surfaces dipped in a structured fluid due to the change in fluctuation spectrum of the
fluid [3, 4]. While these are entropic in origin, there is another class of fluctuation enhance-
ments due to the energy of deforming the bulk field coupled to the boundary field by some
anchoring condition. Examples here include: interaction between membrane inclusions due to
the strain induced in the membrane [5]; the non-analytic contribution to the wetting contact
line elasticity due to deformations of the adjacent fluid-air interface [6]; and the example which
we explore here, a non-analytic contribution to the free energy of a surface in contact with a
liquid crystalline solvent [7,8].

In this article we explore some of the properties of fluid membranes in contact with nematic
liquid crystalline solvents, discussing both entropic and energetic effects. By ‘membrane’ we
envision surfactant bilayers arranged in the archetypical structures found in surfactant systems:
in this work we focus on lamellar phases. It is well known that surfactants induce varying
degrees and strengths of boundary conditions on the nematic director [9]. Here we consider
the simple natural case when the mesogenic molecules are strongly anchored by the hydrophobic
tails of surfactant in the direction along the membrane normal.

Our starting point is the well-known Berreman-de Gennes model [7,8], which was introduced
to describe the anchoring energy of a liquid crystal on grooved substrates. Here we consider
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Fig. 1. — Director field n near a fluctuating membrane, which imposes homeotropic anchoring.

the ‘grooved substrate’ to be thermal undulations of a bilayer surface, and hence consider
some of the consequences of the deformation of the nematic director field, induced by these
undulations, Figure 1. The principle is this: the equilibrium thermodynamics of a membrane-
liquid-crystalline-solvent system includes as fluctuating variables both the solvent and the
membrane. If we are interested in properties of the membrane we can ‘integrate out’ the solvent
degrees of freedom to find an effective theory for the membrane thermodynamics. To perform
such an integration and speak of a renormalized theory of membranes requires a separation of
timescales. That is, if we are interested in dynamical properties of the membrane, we must
ensure that the solvent fluctuations (in this case, the establishment of a deformed director field
in response to a surface undulation) are much faster than the characteristic membrane decay
time. However, if we are interested in equilibrium effects, such as fluctuation spectra as would
be measured in experiments lasting ‘long’ times, then this procedure is valid. It is with these
kinds of experiments in mind that we proceed. Let us first recall the fundamental ideas of the
Berreman-de Gennes model.

Nematic Energy

Consider a surface with a modulation of wavevector q⊥, in contact with a nematic solvent, and
assume strong homeotropic boundary conditions, δn̂(r⊥, z = 0) = −∇⊥u(r⊥) , where δn̂ is
a variation of the nematic director and u(r⊥) is a surface displacement along its equilibrium
normal ẑ; the dimensions in the membrane plane are denoted by r⊥. The bulk nematic solvent
minimizes the Frank elastic energy FF = (1/2)KF

∫
d3r(∇n̂)2 , [7], in which we make the one

constant approximation for the Frank constants KF. The solution is

δn̂(r⊥, z) =

∫
q⊥

iq⊥u(q⊥)e−iq⊥·r⊥−|q⊥|z, (1)

where
∫
q⊥
≡
∫

d2q⊥/(2π)2 with the limits between an upper cutoff 2π/a and a lower cutoff

2π/L⊥, with a being a microscopic dimension and L⊥ the membrane size. Substituting into
the Frank energy and integrating over the dimension z normal to the interface, we find

FF =
1

2
KF

∫
q⊥

|q⊥|3(1− e−|q⊥|Lz)|u(q⊥)|2 ≈ 1

2
KF

∫
q⊥

q4
⊥Lz

1 + |q⊥|Lz
|u(q⊥)|2, (2)

where Lz is a large distance cutoff which we take below to beLz =∞ for an isolated membrane
or Lz = d for a stack of membranes spaced by d. Equation (2) interpolates between the∼ |q⊥|3
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regime for an isolated membrane and the∼ |q⊥|4Lz long wavelength behavior in a finite system.
The second expression in (2) is an alternative approximation which handles properly the large
and small q limits, and is much easier for calculations. We shall mostly use this form of
equation (2) in this work, since we are primarily concerned with qualitative results. To this
must be added the Helfrich energy of the fluctuating membrane,

FH =
1

2
κ

∫
d2r⊥(∇2

⊥u)2 +

∫
d2r⊥ κ̄ G, (3)

where the Gaussian curvature G integrates to zero for lamellar systems without topological
defects and plays no further role here.

The unusual non-analytic form of equation (2) arises from the same considerations as the
linear-|q| elasticity of the air-fluid-solid triple line, where energy is stored in the deformation
of the air-fluid surface [6]. From this energy one finds many respects in which membranes in
nematic solvents differ from their isotropic counterparts. This behavior could most easily be
seen by preparing mixtures of surfactant and thermotropic liquid crystal, with the latter playing
the role of an oil (possibly with water or a cosurfactant, as is common in conventional surfactant
systems, to select from the zoo of possible phases), and cycling through the solvent’s isotropic-
nematic transition temperature. We proceed by briefly describing some of these properties in
order of complexity. We only consider the case of membranes without surface tension, where
this new term is most important. In the Appendix we present the contribution due to the
Casimir effect [4], which is an entropic effect in the correlated fluid mediating the membrane,
and show that the main effects of it are a renormalization of the area per surfactant head
group, and the bending modulus κ.

Single-Membrane Properties

For these properties we take Lz = ∞. The first obvious new effect is a qualitative change
in the surface fluctuations. Bilayers are typically rough due to thermal fluctuations, and
the combination of a two-dimensional surface fluctuating in three dimensions yields divergent
height fluctuations. In a nematic solvent, however, this changes. For example, fluctuations of
the surface normal are given by

〈|δn̂(r)− δn̂(0)|2〉 = 2kBT

∫
q⊥

1− cos q⊥ · r
KF|q⊥|+ κq2

⊥
' kBT

πκ
log

[
KF + 2πκ/a

KF + 2πκ/r

]
, (4)

where a is a microscopic cutoff. If we define the correlation length ξ0 as that distance along
the membrane for which fluctuations in the normal vector n orientation are of order 1 [10], we
find

ξ0
a

=
e2πκ/(kBT )

1− KFa

2πκ
(e2πκ/(kBT ) − 1)

. (5)

For KF = 0 the membrane in the isotropic non-correlated solvent is crumpled at distances
larger than ξ0. For KF 6= 0, in a nematic solvent, ξ0 increases rapidly and reaches the system
size (∞) for KFa/(2πκ) = (e2πκ/kBT −1)−1. Hence, for KFa/κ� 1, in the regime that should
be identified with a ‘strong nematic solvent’, the membrane would not be crumpled at all.
A typical estimate of the surfactant bilayer bending rigidity is κ ∼ 5 × 10−20 J, only slightly
larger than the thermal energy at room temperature. Taking a characteristic value for the
Frank constant, KF ∼ 10−11 J/m and the molecular size a ∼ 10 Å, one obtains an estimate of
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order unity and, therefore, both crumpled and flat regimes are accessible for a membrane in a
nematic solvent.

Also of interest is the related quantity, the membrane roughness, given by the mean-square
height fluctuations:

〈u(r)2〉 = kBT

∫
q⊥

1

κq4
⊥ +KF|q⊥|3

=
kBT

2πK2
F

{
KF

L⊥
2π

+ κ log

[
2πκ+ aKF

2πκ+ L⊥KF

]}
, (6)

where L⊥ is the transverse membrane dimension, coming from the lower cutoff in q-space.
As KF → 0 we recover, after expansion in powers of L⊥KF, the result for a conventional
membrane, 〈u2〉 ∼ L2ζS

⊥ , with a roughness exponent ζS = 1. In a strong nematic solvent we
have ζS = 1/2 and, as expected, the membrane is not as rough.

Renormalization of Bending Modulus

Since the membrane in the nematic solvent is stiffer, we expect the renormalization ofκ due to
thermal fluctuations [11] to be much reduced. There are two new sources of renormalization for
membranes in nematic solvents: entropic, due to the Casimir effect, which we briefly discuss
in the appendix; and energetic, due to the Berreman-de Gennes energy. Following the simple
procedure outlined by Helfrich [11], we find

κR = κ − kBT

4π

[
log

(
κqmax +KF

κqmin +KF

)
− 3

32
log

L⊥
a

]
, (7)

where the first correction is from the Helfrich renormalization and the second term is produced
by the Casimir effect in the correlated solvent. In the limitKFL⊥/κ� 1 (isotropic solvent) the
Helfrich effect returns to the usual logL⊥/a reduction of the bending rigidity [11, 12]. In the
nematic solvent with KF 6= 0 it is replaced by the constant factor log

[
1+(κ/KFa)

]
, so that the

renormalization κR−κ can be large or small depending on the ‘strength’ of the nematic solvent.
In addition, there is an increase of κ due to the Casimir effect, also logarithmically divergent
with the system size. This result supports the intuitive expectation that the membrane becomes
more rigid due to the anchoring with the nematic solvent.

Lamellar Phase: Helfrich Interaction

In a lamellar state we take Lz = d as the cutoff in equation (2), since the range of the solvent
extends only up to neighboring membranes. We define a ‘strong’ nematic solvent in this context
as one for which KFd � κ (which is, in fact, a much weaker condition than KFa � κ in Eq.
(5)). To estimate this we again take κ ∼ 10−20 J ,KF ∼ 10−11 J/m, and lamellar spacings
ranging from 10-1000 Å, yielding KFd/κ ∼ 1-100. Since the moduli κ can be changed by
adding co-surfactant and Frank constants depend on the nematic order parameter, it is quite
easy to span the whole range from weak to strong nematic solvents.

In stacked lamellar phases there are two well-known interactions which stabilize the lamellar
phase: electrostatic stabilization and steric interaction. The electrostatic effect [13] yields an
interaction energy per unit area of F/A ∼ kBT/(LBd), where LB is the Bjerrum length and
d is the membrane separation. We shall not consider this interaction, exploring instead the
more interesting statistical effects of electrostatically screened membranes [14]. In an isotropic
solvent these effects lead to the steric stabilization [15], giving F/A ∼ (kBT )2/(κd2). This
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steric interaction arises due to the divergence of the height fluctuations of a single membrane,
〈|u|2〉 ∼ L2ζS

⊥ ; membranes in a stack experience collisions with a characteristic length between
collisions governed by ζS. Since ζS is positive we expect a steric interaction in the nematic
solvent as well, but with a different character than for the standard Helfrich interaction.

Rather than going through a calculation similar to Helfrich’s, we content ourselves here with
a scaling-type analysis to obtain the d-dependence of the steric stabilization of membranes in
a nematic solvent. We first calculate the height fluctuations, using the equipartition theorem
for the membrane Hamiltonian, given by equations (2) with Lz = d and (3), and integrating
over wave vectors q⊥

〈u(r)2〉 ≈ kBT

4πκq2
0

1 + [KFd/κ](1 + 2q0d)

(1 + [KFd/κ])2
, (8)

where q0 = 2π/L⊥ is the low-q cutoff in the membrane plane (we have ignored subdominant
terms logarithmic in q0). Now, the membrane will be sterically stabilized when the height
fluctuations are of order the layer spacing, 〈u2〉 ' d2. This determines q0. For a weak nematic
solvent, KFd� κ, we recover the Helfrich result q0d ≈

√
kBT/κ. For a strong nematic solvent

we find

(q0d)2 =
kBT

4πKFd
(1 + 2q0d) ; KFd� κ . (9)

Since, typically, κ > kBT we have KFd � kBT , in which case q0 ≈ (kBT/4πKF)
1/2

d−3/2.
This defines a new length ξ = q−1

0 , the in-plane correlation length for height fluctuations, or
mean distance between collisions. Now we may compute the interaction energy. Crudely, the
pressure P due to undulations may be calculated as that of a gas of sterically interacting ‘discs’
of dimension ξ. This yields P ∼ kBT/(d ξ

2). Using our result for ξ, and realizing that the free
energy per unit area is then given by F/A = Pd, we arrive at

F

A
=

(kBT )2

4πKFd3
, (10)

which should be compared with the d−2 and d−1 behavior of, respectively, the standard Helfrich
and electrostatic stabilizations.

The conclusion is that, for electrostatically screened membranes in a nematic solvent, much
closer lamellar packing can be achieved, which again confirms the intuitive expectation for
more rigid and flat membranes. The resulting “smectic” lamellar phase will have a different
layer compression modulus of the corresponding Landau-Peierls elastic energy

Fsm =
1

2

∫
d3q
[
B̄q2

z + (K +KF)q4
⊥
]
|u(q)|2, (11)

where K = κ/d is the layer bending modulus in the absence of nematic solvent. In writing this
we have ignored the |q⊥|d term in the denominator of equation (2), since smectic elasticity is
concerned with wavelengths much larger than the smectic spacing, |q⊥|d� 1. The compression
modulus is B̄ = B − C2

cχ, where B is the bare compression modulus, and B̄ includes the
renormalization due to the coupling between solvent composition and layer spacing [16]. B̄ is
given essentially by the pressure of the gas of colliding membranes, which scales as B̄ ∼ 1/dρ ,
where ρ = 2, 3, 4 for electrostatic, standard Helfrich, and nematic-solvent membranes equation
(10). The compression modulus may be measured by, for example, small angle scattering [14].
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More useful information can be extracted from the line shape of the diffusion scattering
peak, following from the Landau-Peierls energy (11). As in ordinary smectics, the structure
factor behaves as, for example, S(0, qz) ∼ (qz − qd)−2+η with the usual Caille exponent [17],

η = q2
d

kBT

8π
[
B̄(K +KF)

]1/2 . (12)

Because KF � K in strong nematic solvents, η should strongly decrease when the solvent
undergoes a nematic transition, leading to a more rapid decay of the structure factor, as noted
above. Notice also that the exponent depends on B̄, which changes its qualitative dependence
on d as one moves into the strong solvent regime. By measuring η and the penetration depth
λ =

√
B̄/(K +KF) (which may be extracted by the corrections to the low-q behavior of

S(0, qz) [18]) one may determine both B̄ and K +KF by systematic dilution and temperature
experiments.

Unbinding Transition

Upon lowering the temperature into the nematic phase, the steric repulsion energy F/A at
fixed d drops by a factor fN/fI ∼ κ/(dKF) � 1. This dramatic decrease should affect the
unbinding of layers [19,20]. Within a Flory-type theory, Milner and Roux showed that one can
write the free energy per volume f of a stack of bilayers as [19]

f =
F

dA
= c

(kBT )2

κδ3
φ3 − χkBTφ

2, (13)

where c is a numerical constant, δ is the bilayer thickness, and χ accounts for contributions to
the second virial coefficient from other than steric (i.e. typically van der Waals) interactions.
Here φ ' δ/d is the surfactant volume fraction, and the φ3 term follows from the isotropic-
solvent steric interaction. When the solvent undergoes a transition into the nematic phase the
φ3 term should be replaced by

c′
kBT

KFδ4
φ4, (14)

where c′ is another numerical constant. Since KFd can be much larger than κ, the result is a
smaller repulsion and a smaller preferred interlayer spacing.

At fixed φ the characteristics of the unbinding transition are: at low χ a single bound phase
exists, while χc = 3ckBTφ/(κδ

3) marks the spinodal line at which the system phase separates
into bound (φ 6= 0) and unbound (φ = 0) phases.

For nematic solvents the spinodal line is given by

χc =
6c′kBT

KFδ4
φ2, (15)

which allows for the possibility of, for example, phase separation by quenching the solvent into
a nematic state. The resulting dynamics would be very complicated, due to the simultaneous
nematic coarsening and phase separation.

Conclusions

In summary, a membrane in a nematic solvent should be much stiffer than in an isotropic
solvent, leading to its different scaling behavior. Layered systems are in this stiff regime when
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KFd/κ � 1, which should be experimentally realizable. The stiffening can be seen in several
quantities, such as the correlation length ξ0 for surface normal fluctuations; the roughness ex-
ponent ζS; and intermembrane interactions, in which the standard Helfrich interaction changes
its dependence on the intermembrane spacing d. In addition to the effect of the bulk nematic
elastic energy, a membrane is also affected by the entropic Casimir-like effect of fluctuations
of the coupled director field. We have not yet considered the case of smectic solvents, but it
is straightforward to show, by arguments very similar to those used in deriving equation (2),
that there is a simple renormalization of the membrane elasticity modulus, κR = κ+2

√
κsBsd,

where the subscript s refers to the solvent smectic elastic constants; and the Helfrich interaction
is the same as in the isotropic case, with κ replaced by κR.

Interesting effects are expected in the presence of an external magnetic fieldH, which pro-
vides a “mass” for the nematic director fluctuations. While the effect of magnetic field on a
membrane is, in principle, the same as for an isotropic solvent, the anisotropy of the diamag-
netic susceptibility of a bilayer membrane should be negligibly small compared to that of a bulk
nematic liquid crystal. It is straightforward to show that the application of a magnetic field H
along the layer normal yields a term in the free energy equation (2) (for a single membrane in

an infinite system) proportional to q2
⊥

√
q2
⊥ + ξ−2

H , where ξH =
(
KF/(χaH

2)
)1/2

is the standard

magnetic coherence length. This term further reduces the height fluctuations of the membrane
to 〈|u|2〉 ∼ logL⊥/a, which leads to a very weak steric Helfrich repulsion F/A ∼ 1/d4, and
suppresses the Landau-Peierls instability in favor of Bragg peaks at the smectic wavevector.

It seems fairly straightforward to perform experimental checks on the described system,
by mixing a thermotropic nematic with a small concentration of surfactant, choosing its hy-
drophobic part to be closely related to mesogenic molecules. Addition of a small amount of
water would further stabilize the bilayer membrane structure. All our arguments suggest that
it would be very difficult to create curved micellar structures in the nematic solvent (spherical
micelles, for example, would have to create a topological defect in the nematic field around
them, due to the radial director anchoring). Instead, we expect the formation of rather flat
bilayers even at very low concentrations and dense lamellar and sponge phases with more
surfactant/water, with the morphology driven by the elastic energy effects in the mediating
nematic solvent.
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Appendix

Casimir Effect

In addition to the energy stored in the director field there is an entropic contribution to the
membrane free energy due to the analog of the Casimir effect, calculated for liquid crystals
by Ajdari et al. [3] and Li and Kardar [4]. From the results of Li and Kardar, the entropic
contribution to the free energy per unit area of a membrane fluctuating above a flat surface a
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distance d away is [4]

F

kBTA
= −a1

d2

[
1 +

3A

2d2

∫
q⊥

|u(q⊥)|2
]

+
A

64πa2

[
1 + 4πC1(1)

(a
d

)2
]∫

q⊥

q2
⊥|u(q⊥)|2

+
3

128π

[
log

L⊥
a

+ 4πC1(2)

] ∫
q⊥

q4
⊥|u(q⊥)|2,

where a1 = 0.04792, and C1(ζ) is given by equation (2.19) of reference [4b] and, generally,
are very small. To obtain this we have expanded Li and Kardar’s results, which hold for
an arbitrary surface, in a gradient expansion in the membrane fluctuation u(r⊥). The term
multiplied by a1 is essentially the classic Casimir attraction between the plates, and contributes
a small renormalization to the existing attractive interactions, which are typically van der Waals
[22]. The q2

⊥|u(q⊥)|2 term renormalizes the surface tension and, since a surfactant system in
solution adjusts its area per head group Σ to retain equilibrium and satisfy vanishing surface
tension [10], leads only to a slight decrease in Σ. The last term, written in the single-membrane
limit d → ∞, renormalizes the membrane bending rigidity κ by a relevant logarithmic term
(see Eq. (7), where we neglected the small correctionC1(2) ∼ 10−3), which should be compared
with the value [kBT/4π] log(L⊥/a) found for the renormalization due to thermal fluctuations
of membranes in isotropic solvents [11].
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