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PREFACE

Liquid crystals are unusual materials. As their name suggests, they inhabit the grey area
between liquids and solids. They have long range orientational order, typically of the
unique axes of their component rod-like or plate molecules. Spatial variations of this
average direction of molecular orientation are resisted by so-called curvature (Frank)
elasticity. On the other hand liquid crystals can flow, albeit as anisotropic liquids.

Polymers too are unusual materials. Above the glass transition, the physics is mostly
dominated by the high entropy inherent in the disorder of their component long chain
molecules. Resistance to molecular shape change arises mostly from the imperative to
maintain high entropy. Viscoelastic flow and rubber elasticity are macroscopic manifes-
tations of this principle. Thus rubber, where the long molecules are linked together, also
inhabits the grey region between liquids and solids. Though nominally a solid, rubber
is capable of very high deformations, greater than any other type of solid. Its internal
molecular motion is rapid, as in a liquid, with the resulting amorphous solid being highly
extensible rather than glassy. If it were not for the few crosslinks holding the chains into
a percolating network, rubber would flow under stress, as ordinary polymers and other
liquids do. The bulk (compression) modulus of typical rubber is of the same order as
that of all liquids, and solids, but the shear modulus is about 10~* — 10~ times smaller.
Thus rubber essentially deforms as a liquid, that is by shearing at constant volume. It is
a weak solid and therein lies its enormous technological importance.

This book is concerned about the phenomena arising when these two marginal ma-
terials, liquid crystals and polymers, are combined into one even more mysterious mate-
rial — polymer liquid crystals. For two compelling reasons we shall concentrate on such
polymers crosslinked into networks, that is, on elastomers and gels made from polymer
liquid crystals:

1. Liquid crystal elastomers exhibit many entirely new effects that are not simply
enhancements of native liquid crystals or polymers. We shall see their thermal
phase transformations giving rise to spontaneous shape changes of many hun-
dreds of per cents, transitions and instabilities induced by applied mechanical
stress or strain, and some unusual dynamical effects. Strangest of all, we shall
see elastomers under some conditions behaving entirely softly, deforming as true
liquids do without the application of stress. All these new forms of elasticity have
their genesis in the ambiguities between liquid and solid that are present in lig-
uid crystals and polymers, but are only brought to light in a crosslinked rubbery
network.

2. A molecular picture of rubber elasticity is now well established. Since the late
1930s its entropic basis has been understood and turns out to be as universal as,
say, the ideal gas laws. The rubber shear modulus, y, is simply ngkgT where ng
counts the number of network strands per unit volume, and temperature T enters
for the same entropic reason it does in the gas laws. There is no mention of the
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chemistry of chains or other molecular details and the picture is thus of great
generality. We call this the classical theory, to which various complexities such
as crosslink fluctuations, entanglements and nematic interactions have later been
added.

By contrast to simple polymers, which change shape only in response to external
forces, liquid crystal polymers do so spontaneously when they orientationally or-
der their monomer segments. Can one nevertheless create a picture of their rubber
elasticity of the same generality as that of classical rubber? It turns out that one
can, with the sole extra ingredient of chain shape anisotropy (a single number
directly measurable by experiment). We shall treat this anisotropy phenomeno-
logically and find we can explore it at great length. One could go into many
theoretical complexities, taking into account effects of finite chain extensibility,
entanglements and fluctuations — however, in all cases, the underlying symmetry
of spontaneously anisotropic network strands enters these approaches in the same
way and the new physical phenomena are not thereby radically influenced.
Alternatively, one could try to calculate the polymer chain anisotropy that ap-
pears in the molecular picture of rubber elasticity. There is, however, no universal
agreement about which way to do this. A further complication is that polymer
liquid crystals can be either main chain or side chain variants, where the rod-like
elements are found respectively in, or pendant to, the polymer backbone. Nematic
and smectic phases of considerable complexity and differing symmetry arise ac-
cording to the molecular geometry. For instance side chain fluids can exist in 3
possible uniaxial nematic phases, Nj, Ny, and Ny, with still further biaxial possi-
bilities.

In this book, by concentrating on Liquid Crystal Elastomers, rather than polymer
liquid crystals per se, we relegate these theoretical uncertainties in the under-
standing of polymer liquid crystals to a subsidiary role. Key physical properties
of crosslinked elastomers and gels are established without any detailed knowledge
of how chains become spontaneously elongated or flattened. When more molec-
ular knowledge is required, an adequate qualitative understanding of nematic and
smectic networks can be obtained by adopting the simplest molecular models of
polymer liquid crystals. In contrast, a treatise on polymer liquid crystals would
have to address these issues rather more directly.

These two reasons, the existence of novel physical phenomena and their relative inde-
pendence from the details of molecular interactions and ordering, explain the sequence
of arguments followed by this book. We introduce liquid crystals, polymers and rubber
elasticity at the rather basic level required for the universal description of the main topic
— Liquid Crystal Elastomers. Then we look at the new phenomena displayed by these
materials and, finally, concentrate on the analysis of key features of nematic, cholesteric
and then smectic rubbery networks.

Rubber is capable of very large extensions. Many important new phenomena of
nematic origin only occur at extensions of many tens of percents and are themselves
highly non-linear. Linear continuum theory is utterly incapable of describing such a
regime and this inadequacy is a motivation for our molecular picture of nematic rubber
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elasticity. However, it is clear that in liquid crystal elastomers we have not only the Lamé
elasticity of ordinary solids and the Frank curvature elasticity of liquid crystals, but also
novel contributions arising from the coupling of the two. The richness and complexity
of this new elasticity are such that it is worthwhile also analysing it using the powerful
and general methods of continuum theory. There is a second motivation for studying
continuum theory — for smectic elastomers there is not yet any underlying molecular
theory and phenomenological theory is the best we can do. Because of their important
technological applications, for instance in piezo- and ferroelectricity, an understanding
of smectic elastomers is a vital priority. The latter chapters of our book are devoted to
this, addressing the linear continuum approaches to elastomers with more complicated
structure than simple uniaxial nematics. We also build a bridge between the elasticity
methods of rubber and the application of continuum theory into the non-linear regime.
At this point we revisit the symmetry arguments which explain why ‘soft elasticity’ is
possible and why it cannot be found in classical elastic systems.

We were tempted to take ‘Solid Liquid Crystals’ as our title. This would have been
apt but obscure. We hope that this book will illuminate the peculiar materials that merit
this description.

Mark Warner and Eugene Terentjev
26 February 2003
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1

A BIRD’'SEYE VIEW OF LIQUID CRY STAL ELASTOMERS

Liquid crystal elastomers bring together, as nowhere else, three important ideas: orien-
tational order in amorphous soft materials, responsive molecular shape and quenched
topological constraints. Acting together, they create many new physical phenomena
that are the subject of this book. This bird’s eye view sketches how these themes come
together and thereby explains the approach of our book.

We introduce the reader to liquid crystals and to polymers since they are our building
blocks. One could regard the first part of our book as a primer for an undergraduate
or graduate student embarking on a study of polymer or liquid crystal physics, or on
complex fluids and solids. Then elastomers are discussed both from the molecular point
of view, and within continuum elasticity. We need to understand how materials respond
at very large deformations for which only a molecular approach suffices. Also one needs
to understand the resolution of large deformations into their component pure shears and
rotations, the latter also being important in these unusual solids. Hopefully we also
provide a primer for the basics of these two areas that are otherwise only found in
difficult and advanced texts.

Classical liquid crystals are typically fluids of relatively stiff rod molecules with
long range orientational order. The simplest ordering is nematic — where the mean
ordering direction of the rods, the director n, is uniform. The rod-like character of
the molecules changes little when they orient to form a nematic phase. Long poly-
mer chains, with incorporated rigid anisotropic units can also order nematically and
thus form liquid crystalline polymers. Now, by contrast, these molecules elongate when
their component rods orient. A change of average molecular shape has thus been intro-
duced, from spherical to spheroidal as the isotropic polymers become nematic. In the
prolate spheroidal case, the long axis of the spheroid points along the nematic director
n, Fig. 1.1.

So far we have no more than a sophisticated liquid crystal. Changes in average
molecular shape induced by changes in orientational order do little to modify the prop-
erties of this new liquid crystal. Linking the polymer chains together into a gel network
fixes their topology, and the melt becomes an elastic solid — a rubber. It will turn out that
radical properties can now arise from this new ability to change molecular shape while
in the solid state. To understand the consequences we have to consider rubber elasticity.

In rubber, monomers remain highly mobile and thus liquid-like. Thermal fluctu-
ations move the chains as rapidly as in the melt, but only as far as their topological
crosslinking constraints allow. These loose constraints make the polymeric liquid into a
weak, highly extensible material. Nevertheless, rubber is a solid in that an energy input
is required to change its macroscopic shape (in contrast to a liquid, which would flow in
response). Equivalently, a rubber recovers its original state when external influences are
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FiG. 1.1. Polymers are on average spherical in the isotropic (1) state and elongate when
they are cooled to the nematic (N) state. The director n points along the long axis
of the shape spheroid. (The mesogenic rods incorporated into the polymer chain are
not shown in this sketch, only the backbone is traced.)

removed. Systems where fluctuations are limited by constraints are known in statistical
mechanics as ‘quenched’ - rigidity and memory of shape stem directly from this. It is
a form of imprinting found in classical elastomers and also in chiral solids, as we shall
see when thinking about cholesteric elastomers.

Can topology, frozen into a mobile fluid by constraints, act to imprint liquid crys-
talline order into the system? The expectation based on simple networks would be ‘yes’,
This question was posed, and qualitatively answered, by P-G. de Gennes in 1969. He
actually asked a slightly more sophisticated question: Crosslink conventional polymers
(not liquid crystalline polymers) into a network in the presence of a liquid crystalline
solvent. On removal of the solvent, do the intrinsically isotropic chains remember the
anisotropy pertaining at the moment of genesis of their topology?? The answer for ideal
chains linked in a nematic solvent is ‘no’! Intrinsically nematic polymers, linked in a
nematic phase of their own making, can also elude their topological memory on heating.
How this is done (and failure in the non-ideal case) is a major theme of this book.

Second, what effects follow from changing nematic order and thus molecular shape?
The answer is new types of thermal- and light-induced shape changes.

The third question one can ask is: While in the liquid-crystal state, what connec-
tion between mechanical properties and nematic order does the crosslinking topology
induce? The answer to this question is also remarkable and is discussed below. It leads
to entirely new effects — shape change without energy cost, extreme opto-mechanical
effects and rotatory-mechanical coupling. We give a preview below of these effects in
the form a sketch — details and rigour have to await the later chapters of the book.

Rubber resists mechanical deformation because the network chains have maximal
entropy in their natural, undeformed state. Crosslinking creates a topological relation
between chains that in effect tethers them to the solid matrix they collectively make
up. Macroscopic deformation then inflicts a change away from the naturally spherical
average shape of each network strand, and the entropy, S, falls. The free energy then
rises, AF = —TAS > 0. This free energy, dependent only on an entropy change itself

1 G. Allen saw the similarity of this question to that of crosslinking in the presence of a mechanical fi eld,
agreat insight considering how monodomain liquid crystal elastomers are made today.
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FiG. 1.2. A unit cube of rubber in the isotropic (I) state. Embedded in it is shown the
average of the chain distribution (spherical). The block elongates by a factor A, on
cooling to the nematic (N) state, accommodating the now elongated chains.

driven by molecular shape change, explains why polymers are sometimes thought of as
‘entropic springs’. Macroscopic changes in shape are coupled to molecular changes. In
conventional rubber it is always the macroscopic that drives the molecular; the molecu-
lar conformational entropy offers the elastic resistance.

Nematic polymers suffer spontaneous shape changes associated with changing lev-
els of nematic (orientational) order, Fig. 1.1. In monodomain nematic elastomers one
now sees a reversal of influence; changes at the molecular level induce a corresponding
change at the macroscopic level, that is induce mechanical strains, Fig. 1.2: a block of
rubber elongates by a factor of Ay, > 1 on cooling or 1/Ay, < 1 on heating. This pro-
cess is perfectly reversible. Starting in the nematic state, chains become spherical on
heating and lose memory of their nematic genesis. But mechanical strain must now ac-
company the molecular readjustment. Very large deformations are not hard to achieve,
see Fig. 1.3. Provided chains are in a broad sense ideal, it turns out that chain shape can
reach isotropy both for the imprinted case of de Gennes (on removal of nematic solvent)
and for the more common case of elastomers formed from liquid crystalline polymers
(on heating). Chains experiencing entanglement between their crosslinking points also
evade any permanent record of their genesis. Many real nematic elastomers and gels in
practice closely conform to these ideal models. Others are non-ideal — they retain some
nematic order at high temperatures as a result of their order and topology combining
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FiG. 1.3. A strip of nematic rubber extends and contracts according to its temperature.
Note the scale behind the strip and the weight that is lifted!
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FIG. 1.4. The director and thus chain shape distribution is rotated by 90° from n, in
(a) to n in (b). The rubber is mechanically clamped and hence the chains in (b) that
would be naturally elongated along n must be compressed: the dotted spheroid in
(b) is compressed to the actual solid spheroid.

with other factors such as random pinning fields and compositional fluctuations. They
still show the elongations of Fig. 1.3, but residues of non-ideality are seen in the elastic
effects we review below.

This extreme thermomechanical effect, and the phenomena of Figs. 1.5 and 1.7, can
only be seen in monodomain, well aligned samples. Without very special precautions
during fabrication, liquid crystal elastomers are always found in polydomain form, with
very fine texture of director orientations. The great breakthrough in this field, developing
a method of obtaining large, perfect monodomain nematic elastomers was made by
Kipfer and Finkelmann in 1991.

Nematic-elastic coupling was the third question we posed and gives rise to another
phenomenon. Imagine rotating the director while clamping the body so its shape does
not change, Fig. 1.4. The natural, nematic spheroidal distribution when rotated by 90° to
be along n has a problem. Chains do not naturally fit since the clamped body, to which
they are tethered, is not correspondingly elongated along n to accommodate their long
dimensions. Chains in fact must have been compressed to fit, at considerable entropy
loss if they were very anisotropic. A rotation of 180° recovers the initial state, so the free
energy must be periodic, with period 71, and turns out to be F = 1D sin?6 for a director
rotation of © with respect to the body. The rotational modulus, D1, was first given by
de Gennes? in the infinitesimal form %DleZ. A rotation of the body and its director
in Fig. 1.4(a) would lead to a gedanken intermediate state depicted by dotted lines in
Fig. 1.4(b). Subsequent squeezing to get back the actual form demanded by the clamp
condition (full lines) of Fig. 1.4(b) costs an energy proportional to the rubber modulus,
K, and to the square of the order, Q, (since Q determines the chain shape anisotropy to be
compressed away). Thus D1 ~ Q2. An important idea emerges — rotating the director
independently of the rubber matrix costs energy.

Uniform rotation of the director costs no energy in liquid nematics. It is the director
gradients that suffer Frank elastic penalties, and thus long-wavelength spatial variations
of the rotation angle cost vanishingly small energy. Thermal excitation of these rota-
tions causes even monodomain nematic liquids to scatter light and to be turbid. Not so

2de Gennes, in 1981, also discussed the other four moduli for an incompressible nematic elastomer in the
limit of linear continuum mechanics.
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monodomain nematic elastomers which are clear because even long wavelength rota-
tions cost a finite energy %Dlez and cannot be excited, see Fig. 1.5. The excitations
have acquired a mass, in the language of field theory.
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FiG. 1.5. Astrip of monodomain ‘single-crystal’ nematic rubber. It is completely trans-
parent and highly birefringent (image: H. Finkelmann).

Local rotations are central to nematic elastomers and yield a subtle and spectacular
new elastic phenomenon which we call ‘soft elasticity’. Imagine rotating the director
but now not clamping the embedding body, in contrast to Fig. 1.4. One simple response
would be to rotate the body by the same angle as the director, and this would clearly
cost no energy. However, contrary to intuition, there is an infinity of other ways by me-
chanical deformation to accommodate the distribution of chains (as characterised by its
average, the prolate spheroid) without its distortion as it rotates. Thus the entropy of the
chains does not drop, in spite of macroscopic deformations, AS = 0. Figure 1.6 illus-
trates the initial and final states of a 90° director rotation. They are separated by a path of
states, characterised by an intermediate rotation angle 8 and by a corresponding shape
of the body, one of which is shown. This 8-state is shown accommodating the spheroid
without distorting it. A special combination of shears and elongations/compressions is
required, but it turns out not very difficult to achieve!

Practically, one might instead impose one of the components of distortion (say an
elongation, A, perpendicular to the original director) and have the other components
and the director rotation follow it. The result is the same — extension of a rubber with
no elastic energy cost accompanied by a characteristic director rotation. The mechan-
ical confirmation of the cartoon is shown in Fig. 1.7(a) and the director rotation in
Fig. 1.7(b). The director rotation curve 8(A) will be universal to all nematic elastomers,
when appropriately scaled.

P ¢
)
R

N

FiG. 1.6. Chain shape distribution is rotated by 90° from ng to n with an intermediate
state © shown. The rubber is not clamped, and so it deforms to accommodate the
changing chain shape distribution without distorting it.
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FiG. 1.7. (a) Stress-deformation data of Kiipfer and Finkelmann (1994), for a series of
rubbers with the same composition and crosslinking density, but differing in prepa-
ration history: some show a normal elastic response while others are remarkably
soft on extension of up to 50%. (b) The angle of director rotation on stretching a
piece of nematic elastomer perpendicular to the director, data from Finkelmann et
al. (1998). The solid line, with its singular points and characteristic shape, presages
the collapse of all data to a universal form.

We have made liquid crystals into solids, albeit rather weak solids, by crosslinking
them. Like all rubbers, they remain locally fluid-like in their molecular freedom and
mobility. Paradoxically, their liquid crystallinity allows these solid liquid crystals to
change shape without energy cost, that is to behave for some deformations like a liquid.
Non-ideality gives a response we call ‘semi-soft’. There is now a threshold (seen to
varying degrees in Fig. 1.7) before director rotation; thereafter deformation proceeds at
little additional resistance until the internal rotation is complete. This stress plateau, the
same singular form of the director rotation, and the relaxation of the other mechanical
degrees of freedom are still qualitatively soft, in spite of a threshold.

There is a deep symmetry reason for this apparently mysterious softness that Fig. 1.6
rationalises in terms of the model of an egg-shaped chain distribution rotating in a solid
that adopts new shapes to accommodate it. Ideally, nematic elastomers are rotationally
invariant under separate rotations of both the reference state and of the target state into
which it is deformed. If under some conditions, not necessarily the current ones, an
isotropic state can be attained, then a theorem of Golubovic and Lubensky shows that in
consequence soft elasticity must exist. It is a question of care with the fundamental tenet
of elasticity theory, the principle of material frame indifference. We shall examine this
theorem and its consequences many times in this book, including what happens when
the conditions for it to hold are violated, that is when semi-softness prevails.

Elastic softness, or attempts to achieve it, pervade much of the elasticity of nematic
elastomers. If clamps or boundary conditions frustrate uniform soft deformation trajec-
tories, microstructures will evolve to allow softness with the cost of interfaces being
a relatively smaller price to pay. There are similarities between this so-called ‘quasi-
convexification’ and that seen in martensite and other shape-memory alloys.
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Cholesteric liquid crystals have a helical director distribution. Locally they are very
nearly conventional nematics since their director twist occurs typically over microns, a
much longer length scale than that associated with nematic molecular ordering. They
can be crosslinked to form elastomers which retain the cholesteric director distribution.
Several phenomena unique to cholesterics emerge: Being locally nematic, cholesteric
elastomers would like on heating and cooling to lose and recover orientational order as
nematic elastomers do. However, they cannot resolve the requirement at neighbouring
points to spontaneously distort by Ap, but in different directions. Accordingly, their
chains cannot forget their topologically imprinted past when they attempt to reach
a totally isotropic reference state (the second de Gennes’ prediction of 1969). Thus
cholesteric rubbers also cannot deform softly in response to imposed strains. Their op-
tical and mechanical responses to imposed stress are exceedingly rich as a result. They
are brightly coloured due to selective reflection and change colour as they are stretched
— their photonic band structure is changing with strain. They can perform as lasers with
a colour shifted by mechanical effects. Further, the effect of topological imprinting can
select one and not the other handedness of molecules from a mixed solvent. Such rub-
bers can act as a mechanical separator of chirality — a new slant on a problem that goes
back to Pasteur.

We have sketched the essentials of nematic (and cholesteric) rubber elasticity. This
survey leaves out many new phenomena dealt with in later chapters, for instance elec-
tromechanical Freedericks effects, photo-elastomers that drastically change shape on
illumination, rheology and viscoelasticity that crosses between soft and conventional
depending upon frequency and geometry, and so on.

Smectics are the other class of liquid crystal order. They have plane-like, lamellar
modulation of density in one direction (SmA), or additionally a tilt of the director away
from the layer normal (SmC). Many other more complex smectic phases exist and could
also be made into elastomers. As we see in our final chapter, layer spacing is hard to
change, at least on the rubber elastic energy scale. Thus SmA elastomers are rubbery
in the two dimensions of their layer planes, but respond as hard conventional solids
in their third dimension. Such extreme mechanical anisotropy promises interesting ap-
plications. The tilted SmC liquids also exist in chiral forms which must, on symmetry
grounds be ferroelectric. Their elastomers are too. Ferroelectric rubber is very special:
mechanically it is soft, about 10* times lower in modulus than ordinary materials be-
cause, as sketched above, its molecules are spatially localised by topological rather than
energetic constraints. Distortions give polarisation changes comparable to those in or-
dinary ferroelectrics. But the response in terms of stress must necessarily be 10* times
larger than in conventional materials.

We end our preview as we started — solids created by topological constraints are soft
and highly extensible. Liquid crystal elastomers share this character with their important
cousins, the conventional elastomers. But their additional liquid crystalline order gives
them entirely new kinds of elasticity and other unexpected phenomena.



