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Abstract. We develop a continuum theory of linear viscoelastic response in oriented monodomain ne-
matic elastomers. The expression for the dissipation function is analogous to the Leslie-Ericksen version
of anisotropic nematic viscosity; we propose the relations between the anisotropic rubber moduli and new
viscous coefficients. A new dimensionless number is introduced, which describes the relative magnitude of
viscous and rubber-elastic torques. In an elastic medium with an independently mobile internal degree of
freedom, the nematic director with its own relaxation dynamics, the model shows a dramatic decrease in
the dynamic modulus in certain deformation geometries. The degree to which the storage modulus does
not altogether drop to zero is shown to be both dependent on frequency and to be proportional to the
semi-softness, the non-ideality of a nematic network. We consider the most interesting geometry for the
implementation of the theory, calculating the dynamic response to an imposed simple shear and making
predictions for effective moduli and (exceptionally high) loss factors.

PACS. 61.30.-v Liquid crystals. — 61.41.+e Polymers, elastomers and plastics — 83.50.Fc¢ Linear viscoelas-

ticity

1 Introduction

The equilibrium mechanical response of liquid crystalline
elastomers can be soft or hard depending on the relation
between the imposed strains and the nematic director,
in particular, if the director is able to respond by rotat-
ing. With such unusual equilibrium elasticity one might
expect dynamical response to be equally unusual. If the
elastic forces are small, then the return to equilibrium is
driven more weakly than in conventional systems. How
does the dynamics of internal director rotation, and the
corresponding time-dependent softening of rubber-elastic
response, determine the dynamic mechanical response of
a nematic rubber to a small-amplitude oscillatory shear?

In a dynamic-mechanical study of Gallani et al. [1] a
stress response to an imposed oscillating shear has been
studied. Although a polydomain elastomer has been exam-
ined, the authors reached a conclusion that the response
“is insensitive to the isotropic-nematic transition” and
only obtained a non-trivial result in the smectic-A phase.
Subsequent studies of aligned monodomain elastomers [2]
also did not find any unusual effect in the nematic phase
and went on to investigate the mechanical effects in the
smectic-A phase. The elastic properties of smectic rub-
bers are very interesting on their own, with a number of
spectacular effects even in equilibrium, see [3—6]. However,
here we would like to address a more basic and physi-
cally clear case of nematic elastomers, that is, rubbery
networks with an aligned uniaxial anisotropy of their poly-
mer strands.

Some of the reasons that no exceptional effects were
found in the nematic phase by [1,2] could be that i) the
nematic region for the materials studied was only ~ 7°
and smectic pre-transitional effects were important, ii) the
authors aimed to plot the whole range of dynamic mod-
ulus, including very high glassy values at low tempera-
tures, thus masking a subtle nematic region and iii) they
did not study low enough frequencies. More recently [7], it
has been demonstrated, both theoretically and experimen-
tally, that a dramatic reduction of storage modulus G’ and
the associated increase in the loss factor tand should be
expected and indeed found in monodomain nematic elas-
tomers sheared in certain geometries (cf. Fig. 2 in Sect. 4).
This effect allows one to directly probe the basic equilib-
rium properties of nematic rubbers and also access the new
kinetic parameters — viscous coefficients and relaxation
times.

In order to study the dynamics of mechanical response,
one needs to model viscoelastic properties, that is, de-
scribe viscous dissipation in a system moving towards its
equilibrium. At present, there is no microscopic model
that would even approximately describe the dynamics of
anisotropic rubbery networks. However, as in the contin-
uum theory of liquid crystals, much progress can be made
on a phenomenological level, using the symmetries of vari-
ables contributing to the physical effects.

The continuum dynamics of anisotropic fluids de-
scribes macroscopic phenomena on the level of coarse-
graining analogous to that of the nematic Frank elastic
free energy. By movements of a “liquid particle” one un-
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derstands bodily translations and also changes of local
director orientation of a physically infinitesimal volume,
generally of the correlation size {n ~ 10 nm, including
many molecules in thermal equilibrium with the reser-
voir, and characterised by the local nematic tensor or-
der parameter Q;;(T) = Q(n;n; — %&j). Two physical
fields describe the state of motion of nematic liquid: the
local variation of director orientation én(r,t) = n — ng
with respect to the equilibrium ng and the fluid veloc-
ity v(r,t), the time derivative of the corresponding elastic
displacement w(r,t) in the description of elastic response.
The original derivation of hydrodynamic equations for the
nematic liquid, due to Ericksen and Leslie, is presented
in some detail in key monographs on liquid crystals, e.g.
[8]. Here we only discuss the matters relevant for the ba-
sic description of nematic elastomers, omitting many fine
and subtle points of this complicated subject, e.g. [9]. We
develop a formalism describing the linear viscoelasticity
of an elastic medium with an independently relaxing di-
rector degree of freedom and make a connection between
the (anisotropic) rubber-elastic and viscous coefficients in
such a system. The nematic dynamics coupled to the un-
derlying rubber elasticity leads to an expression for the
entropy production density, the Rayleigh dissipation func-
tion in the Leslie-Ericksen form, determined by the fluxes:
€ — the symmetric strain rate, and %(O —w) — the rate
of relative rotation between the nematic director and the
elastic matrix:

T = Ai(n-€-n)*+244[n x € x n]*+4A45([n x & - n])?
+amln x G2 —w)Ptypn-g-nx (02 -w),

where the new linear viscous coefficients, A;, are linear
combinations of the classical Leslie coefficients, which in
elastomers can take extraordinarily high values [7] com-
pared with simple nematics. y; and 7, describe the same
kind of losses involving the rotating director as they do in a
conventional nematic liquid. We find a direct proportional-
ity between the symmetry-related elastic and viscous con-
stants, connected by the corresponding relaxation times
for each deformation mode. One of the main results of
our analysis is a new dimensionless number, which we call
Ne = nv/(Lu), where 7 is a viscosity, u is a rubber shear
modulus and L is a characteristic length. Ne determines
the local balance between viscous and elastic torques in
the material, in analogy with the Ericksen number Er [8].
An essential part of the description developed in this
paper is the separation of time scales. We argue, on the
basis of comparison with available experiments and qual-
itative arguments, that the characteristic relaxation time
of director motion is much greater than the time scale
of mechanical relaxation in an ideal polymer network. Ac-
cordingly, we only consider the low-frequency limit of rub-
ber viscoelastic response, reflected in essentially linear fre-
quency dependence of complex modulus G* = Gy + iwn.
In contrast, the much slower director relaxation allows us
to examine both its low- and high-frequency regimes.
This paper is organised as follows. The next sec-
tion, continuing the introduction into the subject, briefly
sketches the fundamentals of equilibrium nematic rub-
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ber elasticity, focusing on the linear continuum descrip-
tion rather than the full molecular theory valid to high
deformations. Following this, in Section 3 we revisit the
Leslie-Ericksen formulation of the continuum dissipation
function T's and show that, as would be expected by sym-
metry, it is identical to the elastic energy density only
with strains substituted by strain rates. We then discuss
the fundamentals of nematic rubber viscoelasticity. In Sec-
tion 4 the practical calculation of dynamic moduli G*(w) is
presented for three principal shear geometries, as an exam-
ple of general theory implementation. The results indicate
which combinations of elastic and viscous coefficients are
relevant for the response and, therefore, directly measur-
able by experiment. We then conclude by discussing the
role of soft elasticity in slowing the mechanical relaxation
and make contact with new experimental data.

2 Nematic rubber elasticity

Equilibrium elastic properties of monodomain nematic
rubbers are well studied, both theoretically and experi-
mentally and are described at some length in review arti-
cles [10,11]. A full molecular theory of ideal nematic net-
works gives the elastic free energy density
F=lekgT TeAT £, -2-£)) + 1B(Det]A] — 1), (1)
where A is a Cauchy strain tensor, \;z; = JR; /8Rg. In
a nematic elastomer network, £ are the uniaxial matri-
ces of chain step-lengths before (0) and after the director
n has rotated by a certain angle # during the deforma-
tion: £;; = €10;; + [ZH - fJ_] n;n;. The last term in (1),
the bulk-modulus contribution independent of the con-
figurational entropy of polymer chains, is determined by
molecular forces resisting the compression of a molecu-
lar liquid, B ~ 10° J/m3, much greater than the typical
value of rubber modulus y ~ ¢, kgT, with ¢, the effective
crosslinking density, giving p ~ 105 J/ m®. This large bulk
energy penalty constrains the value of the strain determi-
nant, Det[A] ~ 1 (which, in other words, means that the
material is physically incompressible when subjected to
all strains except hydrostatic compressions and dilations).
Equation (1) is only limited by the Gaussian network as-
sumption and is valid up to very large strains where me-
chanical softness, rotational instabilities and optical ef-
fects occur — well beyond the limits of continuum theory.
Olmsted [12], in studying soft elasticity — shape
changes in nematic elastomers without energy cost, has
derived the small-deformation continuum limit of the full
expression (1), when A\;; = d;; + Oju; and |Vu| < 1. We
shall use a slightly different notation, more suitable for the
linear-elastic description because it better complies with
the standard textbook formalism of uniaxial elasticity, e.g.
[13]. The small-deformation limit of (1) is
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where n is the undistorted nematic director. £;;, = ;5 —
%Tr[g] 0;r is the traceless part of linear symmetric strain
Eik = %(&ul + O;ug), which is the only variable of clas-
sical continuum elasticity [13]. In a system with an inter-
nal orientational degree of freedom, the nematic director
with its own relaxation and dynamics, the antisymmetric
part of the strain expressed by the local rotation vector
2 = %curlu may contribute to the physical properties.
Analogously, the small vector w is a convenient measure
of director rotations, w = [n x dn]. In fact, it is the rela-
tive rotation, the difference n x (£2 — w), that causes the
elastic response and a number of effects unique to nematic
elastomers [14].

One expects that in a rubber or dense polymer melt
the bulk modulus Cj is very large, C5 ~ B. We, there-
fore, shall only consider deformations with no bulk com-
pression: Tr[e] = 0. In general, all other constants in the
expression (2) are of the same order of magnitude, similar
to the rubber modulus u. The molecular model of ideal
nematic elastomer [11] gives specific forms for these con-
stants:

1 2
Cs = %kaBTWT)’

1—7r2

Cl = 204 = kaBT,

—1)2
Dy = ey "1
T

Dg = Cy k’BT (3)

in which case the condition for ideal soft elasticity holds,

D2
c§=05—8—51=0.

(4)
Model expressions for elastic constants (3) depend, apart
from the universal rubber-elastic energy scale p, on a sin-
gle parameter r. In the molecular model (1) of ideal ne-
matic polymer networks one finds that r = £/, the
ratio of the principal step lengths of the anisotropic poly-
mer backbone (or, equivalently, r = (R;/R1)? in terms of
the principal values of gyration radii tensor). In non-ideal
elastomers, this parameter is more complex, determined
by a number of other factors, for instance when there are
fluctuations in composition, see the Appendix. Neverthe-
less, it has to be a function of nematic order parameter
Q(T), satisfying a linear limit r =~ 143 @, at least at small
Q. In the isotropic phase, at @ = 0 and r = 1, the elastic
constants (3) become, as expected: C; = 2Cy = 2C5 = p,
Dy = Dy = 0 and the elastic energy (2) reduces to a stan-
dard Lamé expression. See the Appendix for a discussion
of non-ideality, that is where CF # 0.

In an incompressible material, all deformations are es-
sentially shears, albeit sometimes seen in a rotated frame.
Figure 1 shows the character of these shears in equa-
tion (2) and their corresponding elastic constants. Cy
“lives” along the director Cy4 in the plane perpendicular
to ng in which properties are isotropic (€xk, Emm and e,k
are of the same status since the solid is uniaxial). Most in-
teresting are Cjs, involving shears such as €,, which span
directions parallel and perpendicular to the initial direc-
tor and which can induce it to rotate; D; which resists
director rotations with respect to the solid matrix; and
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Fig. 1. The symmetries of the shears and rotations possible in
a uniaxial solid at constant volume and with an internal ori-
entational degree of freedom. The modes are labeled with the
appropriate elastic constant and symmetric shear or rotation.
C4 also shows a section perpendicular to the director to illus-
trate shears e,,; not involving n (the directions m and k are
perpendicular to n). In the two coupling terms, Di and Do,
the small director rotation |w| ~ |0n|.

Dy where the rotation is coupled to the symmetric shears
also involved in C5. The inter-relation between these three
processes is what gives rise to the effect of soft elasticity
— here shape change of the type €, without energy cost.
If the director is allowed to react ideally and is regarded
as a slave variable, then the renormalised resistance to
deformations &, that is C5R, vanishes as we see in equa-
tion (4). We shall see, in Section 4 for simple shear geome-
tries, the mechanism by which this is achieved — at least
at harmonic order (since these simple geometries do not
allow the full shear and extensional freedom required for
softness at all amplitudes).

3 Nematohydrodynamics of elastic solids

When nematic elastomers are strained, there is director ro-
tation along with stresses — the latter yielding both body
forces and torques. At finite strain and rotational rates
there will be stresses of both elastic and viscous origin, the
latter being conceptually parallel to those arising in clas-
sical liquid nematics. We shall accordingly review classical
nematohydrodynamics, ignoring the subtleties that reside
at the heart of the subject. There are important differ-
ences with liquids — if torques are induced by flow, they
will be balanced in solids, on length scales longer than the
nematic penetration depth, by torques generated by the
matrix, that is, by D; and Ds elastic terms that involve
the anti-symmetric part of the strain A. The issue of possi-
ble director gradients and corresponding Frank elasticity
in nematic elastomers has been extensively discussed in
the literature [10,11,15]. It is known that, unless there
are special reasons for a director singularity (such as in
disclinations or narrow domain walls), Frank elastic effects
play a minor role in the free energy balance and can be
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neglected. Instead, the rubber-elastic matrix generates the
torques, which shape the final character of the dynamics.
A new dimensionless number will be introduced to replace
the Ericksen number describing a torque balance in ordi-
nary nematics. There is another important difference —
in liquids, as flow proceeds, the strain and the director ro-
tation can increase without limit, whereas in solids both
are constrained (and are coupled to each other) by the
matrix. Elastomers are capable of huge distortions but we
shall limit ourselves to linear theory. Nematohydrodynam-
ics in the elastically highly non-linear regime is a subject
of another study.

3.1 Leslie-Ericksen formulation of nematic viscosity
The equation of motion can be written in the usual form

of local balance of forces: in vector components,

o, .\ omy
a(pvl) - 33% 9 (5)

where p is the density and ITy; the tensor of momentum
flux density, ITy; = pvgv; — op; + P dy; with P the local
pressure and oy; the stress tensor. In an isotropic New-
tonian liquid oy; is proportional to the symmetric strain
rate, Ag; = % (Okv; + O;vk) = €k;. In uniaxial nematic lig-
uid crystals, the stress tensor depends not only on the fluid
velocity gradients, but also on the components and the
gradients of the local nematic order ;. Because rotations
and corresponding torques are involved if the director
changes differently from the local fluid rotation, the stress
tensor is no longer symmetric and also depends on the
relative rotation combinations N = $6n + 1[n x curl v]
[8], which is nothing but a time derivative of the relative-
rotation combination, that is N = [n x & (2 — w)], cf.
equation (2). As a result, Leslie writes the viscous stress
tensor:

Oi5 = alnmjAkmnknm + ()ZQniNj + OégﬂjNi
+044Aij + asnmkAkj + agnjnkAki (6)

(assuming incompressible fluid, Ay = divv = 0). Its anti-
symmetric part contributes to the local torque I' = [n x h]
(cf. [8]) where h is the molecular field. h derives also in
part from Frank and external field terms. These contribu-
tions are balanced by the anti-symmetric terms deriving
from viscous flow processes:

0 oF oF

with 71 = g — g and 2 = ag+as = ag— a5 (the Parodi
relation, a representation of the Onsager principle of ki-
netic coefficient symmetry). Here the viscous coefficients
ay, ...,ag all depend on the magnitude of the nematic
order parameter Q(T'). One can show that in an ordinary
nematic liquid crystal near the weak first-order transition,
as @ — 0, they should behave as [16]

ar < Q% (o, as, as, ag) < Q, (8)
also 71 x Q? and 7, x Q.
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Thus, in the isotropic phase, only one of the Leslie co-
efficients survives: oy — 27. Molecular theory [17,18]
also shows that in a typical nematic liquid of rod-like
molecules these coefficients may have very different mag-
nitude and even sign: as, ag, ag negative, ay, as positive;
(lag] ~ as) > |as|, |as|; a1 is generally small and may
be positive or negative in different materials; far from the
nematic transition (at @ — 1) the “isotropic coefficient”
ayg ~ |ag| ~ as. de Gennes assembles the experimental
values for Leslie coefficients in MBBA at 25°C [8], while
the monograph by de Jeu [19] provides the values for an-
other classical nematic, PAA at 122°C: in 1073 Pas:

Q] Q2 as Q4  Qp Qg 71 Y2
MBBA : 6.5 —775 —1.2 83.2 46.3 —34.4 76.3 —78.7
PAA: 4 -69 -0.2 6.8 5 -2 6.8 —T71

3.2 Nematic elastomers

We now develop Leslie-Erickson theory for solid nemat-
ics by a direct analogy. The nematic dynamics is coupled
to the underlying anisotropic elasticity described in its
linear limit by equation (2) and sketched in Figure 1. It
is thus natural to develop the dynamics using the same
symmetry-grouping of terms as in (2), rather than as in
(6), as is usual for classical nematics.

Two differential equations (5) with the viscous stress
given by egs. (6) and (7), form the complete set describing
the linear viscous effects in the nematic fluid. Neglecting
the effects of heat convection, the total energy dissipation
(the entropy production) in such anisotropic medium is
expressed by the volume integral of the conjugate forces
and fluxes:

= /dV (O’ijéij—F(h'N))- (9)

We re-write the density of dissipation function in a form
matching the elastic energy density (2):

Ts=Ai(n € -n)’>+244n x € x n]* + 445([n x & - n))*

+3nN? +7n-€-N (10)
in the fully incompressible case. Thus, by differentiation of
(10) respectively by the symmetric strain rate €;; and by
N,, one obtains a representation of the symmetric viscous
stress tensor and the nematic molecular field, contributing
to the local torque, analogous to the parallel expressions
(6) and (7) for simple nematics:

ij =24, (ngn) nin; + 444 [n X (n X € X n)anj
+4A5 ([(n X gn) X n]inj—l—[(n X gn) xn]jm)
+272 (n;Nj + Ninj) ; (11)

hi = y1N; + yam es;
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where o7, is the symmetric part of an expression like (6)
which emerges naturally since we express T's in terms of
symmetric and anti-symmetric variables separately. Here
the constants are linear combinations of classical Leslie
coefficients:

Al = %(0&1+0¢4+0¢5+0¢6), (12)
A4 = iaﬁh
As = %(20&4 + a5 + ag).

In the isotropic limit, one finds A; = 244 = 245 — 7,
reminiscent of the isotropic Lamé limit of the correspond-
ing elastic constants.

3.3 Relaxation times

The direct correspondence between the elastic constants
of the energy density F, equations (2), and the viscous
coefficients of the dissipation function T'3, equation (10),
gives

Ai_)civ

Of course, this is not a surprise since the symmetry of an
equilibrium elastic deformation and of a viscous flow in a
uniaxial continuum is the same. Equally, there is a direct
correspondence in the dependence of the various coeffi-
cients on nematic order parameter @, see equation (8) for
viscosities and equation (3) for elastic constants. We can
equivalently, therefore, represent the viscous coefficients
of a nematic elastomer by products of the correspond-
ing rubber-elastic constant and an appropriate relaxation
time, that is

v1 — D; and vy, — Ds.

Ai=Citr, m=Dim1, 72 =Dam. (13)
In principle, the relaxation times for the various A; will be
different, and different from the 7;. However, one expects
a significant separation between the two groups of charac-
teristic time scales, that is between the mg’s and the 7;’s.
The director rotation time, 71 = 71/D1, has been used
in a simplified, single-viscosity analysis [7], and then esti-
mated experimentally as 71 ~ 1071-10% s. In contrast,
the characteristic time of rubber relaxation 7R is expected
to be much shorter. A recent statistical theory explicitly
calculated this time from the analysis of network strand
relaxation within a tube model [20], and showed that this
is of order of Rouse time. One could also confirm this
by a following qualitative observation: The linear viscous
stress (11) and the analogous corresponding expression for
the elastic stress could be combined, producing the effec-
tive frequency-dependent moduli in a form (C; + iwA;).
This is the low-frequency limit of a general complex mod-
ulus G*(w), showing the rubber plateau modulus G’ = C;
and the initial rise in the loss modulus with frequency,
describing a viscous flow. In the classical picture of poly-
mer dynamics, e.g. [21], the next characteristic regime is
at a Rouse frequency, when the signal cannot propagate
along the polymer chain length and mechanical response
is provided by individual segments, thus causing a climb

347

of G*(w) towards the glass plateau. Therefore, the char-
acteristic time scale Tg in the estimation relations (13) is
of the order of the Rouse time, 7 ~ 1074-1076 s.

Could there be viscous softness analogously to the
elastic softness of ideal elastomers, for instance in equa-
tion (4)7 Two related arguments suggest that this is not
possible. The viscous combination As —~3/8v;, analogous
to the renormalised elastic constant C, can be rewritten
with the benefit of time scales equation (13) as

7'22 D%
TRT1 8D1 ’

As — 3 /8y, = Tr <C5 - (14)

Even if we took the rotational relaxation times equal,
T1 = To, the translational relaxation time 7 would ap-
pear to upset the possibility of renormalising (14) to zero,
even if we had C — 0. Elastic softness arises because an
anisotropic distribution of chains can be rotated undis-
torted and thus at constant entropy. However, individ-
ual chains will be distorted and there must reasonably
be dissipation associated with their flow relative to the
matrix. Thus elastically soft distortions should have asso-
ciated dissipation, except perhaps accidentally if rates of
71, 72 and Aj relaxations compensate to make (14) vanish.

3.4 Symmetries and order parameter

The ability to neglect complicated inertial effects in fluid
dynamics is controlled by the small magnitude of Reynolds
number, Re = pvL/n <« 1, with L the characteristic
length and 7 the typical viscosity. In nematic liquids, an-
other dimensional number is introduced to characterise
the relative magnitude of hydrodynamic and Frank elas-
tic torques contributing to equation (7), where the left-
hand side is ~ K'V?n, while the right-hand side is ~ vV,
with the rotational viscosity v ~ 7. Small Ericksen num-
ber Er = nuL/K < 1 means that the director orienta-
tion is mostly controlled by equilibrium elastic free energy,
while at Er > 1 the director generally follows the lo-
cal orientation provided by the flow. In elastomers we are
concerned with the balance between flow-induced torques,
again scaling as ~ nVv, and those of the rubbery matrix,
expressed by OF /00 ~ D16. This yields a new dimension-
less group characterised by the number Ne = nv/(LDy).
Note that the assumed domination of rubber-elastic over
Frank effects essentially means that D; > K/L? that
is, Ne <« Er. Our analysis of an example of simple shear
deformation, in the next section, spans the full range of
small to large Ne, which we shall define more precisely for
that geometry.

We have seen in Section 2, in the discussion of equa-
tions (3) and chain-anisotropy parameter r, how the
anisotropic rubber moduli depend on the underlying ne-
matic order parameter @, usually a function of temper-
ature or solvent concentration. In the isotropic phase, at
@ = 0 and r = 1, the elastic constants return to the clas-
sical Lamé values Cy = 2Cy = 2C5 = u, D1 = Dy = 0.
The coupling constant Dy depends on the linear power
of Q. As a result, when there is anisotropy, @ # 0 and
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r # 1, the sign of the elastic constant Dy depends on
whether r > 1 (prolate order, Dy < 0) or r < 1 (oblate
order, Dy > 0). The sign of director rotation relative to
the matrix, w — §2, varies accordingly to whether chains
are prolate (they align with the extension direction associ-
ated with the shear, see Fig. 1 for Ds) or oblate (alignment
along the compression axis). In any event, a term such as
Dseypw, bilinear in e,w, always reduces the elastic en-
ergy, irrespective of the sign of Dy, and indeed this is the
actual mechanism whereby a shape change can ideally be
achieved with no energy cost [12,22]. There is an appealing
analogy between this behaviour and the Leslie coefficient
2 of discotic nematics. It is known [23,24] that the dif-
ferent (disk- instead of rod-like) molecular shape leads to
the opposite sign of 5, with the according consequences
for the flow alignment properties.

Ideal rubber-elastic expressions (3) suggest that the
coupling constant D; is proportional to (r — 1)2 ~ Q2.
Continuing the analogy with liquid nematic viscosity, we
should recall the estimates of Imura and Okano [16], but
also a following qualitative consideration. The rotational
viscosity «y; is determined by the antisymmetric part of the
viscous stress tensor o ;j» which cannot be proportional to
the linear power of the symmetric tensor nematic order
parameter );;, but at least its square. However, there is
a delicate problem arising in the analysis of soft elastic-
ity. The renormalised shear modulus C} = Cs5 — D2 /8D,
should reduce to the bare C5 — % 1 in the isotropic phase,
at Q — 0. However, the ideal values of D; and D, re-
sult in a finite renormalisation in this limit. One must
revise the conclusions of non-ideal, semi-soft theory [11].
Equation (A.1) and the discussion in the Appendix sug-
gest that, in fact, D; has a additional small (semi-soft)
correction ~ . This resolves the problem of making the
renormalisation D3/8D; vanish at @ — 0, but raises a
question about the symmetry consideration that v; (and
D4, by parallel) cannot be linear functions of Q;;. The
paradox is safely resolved when one recognises that the
semi-soft coefficient a1 in equation (A.1) is a linear func-
tion of Q¢, the order at network formation. Therefore, in
fact, both D; and v, in nematic elastomers depend on the
bilinear combination Q;-{-f }Qij, which means ~ |Q|, and
thus no symmetry probfem arises. In an ordinary liquid
nematic there is no issue of formation order being frozen
by crosslinking, and v; ~ Q? as expected.

3.5 Balance of forces and torques

To complete the general analysis of this section, we briefly
discuss the stresses and torques that follow from the com-
bination of elastic and dissipation functions. In an over-
damped system, traditionally ignoring inertial effects at
low frequency, we have two equations of motion: the bal-
ance of forces and torques. The first condition requires
locally balancing the total symmetric stress tensor

_OF  0(T3)

g=0g +o _a_g 8§ (15)

—el —visc

The European Physical Journal E

In the case when the relaxation time scales are separated,
as in the discussion above, the viscous stress contribution
to the force balance is minor. In contrast, the balance of
torques, I' = [n x h] = 0 in the absence of external fields,
requires the full molecular field

h = he + hyise = Di[n x (2 —w)] + Dan - +

. [n x %(n - w)] +72m - €. (16)

Here both groups of terms are manifestly of the same order
of magnitude in the regime of frequencies characterising
director rotations. We shall see in the particular calcula-
tion of Section 4 that the condition of zero local torque
allows one to obtain, for instance, the rate of director vari-
ation 6.

In the limit of isotropic rubber Q — 0 the only relevant
equation is that for the stress, which in this case reduces
to

a = Cie + A4,

which is a simplest viscoelastic approximation at lowest
frequencies, or shear rates, of a general linear-response ex-
pression o(t) = [ G(t—t')é(t')dt’. Another known limiting
case is that of an uncrosslinked nematic liquid crystal. In
this case all equilibrium (zero-frequency) elastic moduli C;
and D, are zero and the only contribution to the stress and
torque balance are the Leslie-Ericksen equations (11). In
a low molecular weight nematic, this is the full description
of an anisotropic Newtonian liquid. In a polymer nematic,
again, one expects a complex viscoelastic response func-
tion, G(t—t’), with several characteristic time scales, from
the shortest Rouse time, to the entanglement and diffu-
sion times (if applicable) [21]. Equations (11) are thus the
low-frequency limit of such complex nematic viscoelastic-
ity.

The theory of elastomer nematohydrodynamics has
5 phenomenological viscous coefficients. In a simplified
single-viscosity model [7] we have found the remarkable
effects the internal director relaxation has on the macro-
scopic dynamic-mechanical response of a nematic rubber.
Here we follow the example of ordinary liquid crystals,
where both the simplified and the full Leslie-Ericksen for-
malism have been used successfully over the years. In the
practical calculation implementing the above ideas, we
now move from the one-constant analysis of [7] to a full
analysis.

4 Shear stress and its relaxation
4.1 Simple shear deformations

In a study of linear response, we shall first examine three
principal simple shear geometries, as shown in Figure 2.
These are also the geometries that one achieves in a typical
dynamic-mechanical experiment [7]. A geometry of uniax-
ial extension, more commonly found in studies of equilib-
rium stress-strain in elastomers, is less appropriate for an
oscillating regime because of possible slow relaxation [25]
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Vs

Fig. 2. The geometry of simple shear experiment with three
principal orientations of the nematic director ng, labelled G
(for no along the shear gradient), D (displacement) and V/
(vorticity). The small-amplitude shear €,, ~ %€€iwt is applied
to the elastomer and the measured stress o(w) provides the
linear-response modulus in each of the three configurations.

and incomplete sample recovery on each cycle. The sim-
ple shear ¢(t), assumed externally applied to the sample
(Fig. 2), is the single xz-component of the full Cauchy
strain, the same for each director setup G, D and V. It
also automatically satisfies the necessary incompressibil-
ity constraint. We have then the symmetric part sgz) = %5
and the antisymmetric (body rotation) part expressed by
2, = %5.

Note that the three principal shear geometries in Fig-
ure 2 are the same as in the classical setting for Miesovicz
viscosity experiments. That is, if the director is kept im-
mobile (e.g., by a strong external field, which incidentally
would be hardly possible in elastomeric network under
strain), then the orientations V', D and G correspond to
the Miesovicz viscosities 7,, n, and 7., respectively. Of
course, the whole point of the present paper is to examine
the effect the director freedom to rotate is having on the
viscoelastic response.

We have argued above that Frank effects are subordi-
nate in the overall balance of torques. Perhaps, this ap-
proximation needs to be reconsidered if a sheared sample
is very thin in the z-direction: if the director is anchored
on top and bottom surfaces (which are the plates in a
shear-sandwich experiment), one expects a Frank energy
density of the order K/d?. The elastic energy density is
set by © and the two scales take on equal importance when
d = & = \/K/u, the nematic penetration depth. Taking
typical values K ~ 10~1J/m? and p ~ 10° J/m?, one has
¢ ~ 107%m. Thus in practical situations with a sheared
sample thickness d ~ 100 pm and more, the neglect of the
effect of nematic director gradients seems to be a safe first
approximation.

The remaining free energy density, equation (2), takes
the form, in the three cases of Figure 2:

FG = (C5 + é[Dl - 2D2D 62 - %(Dl - D2)59 + %Dlez,
Fp = (Cs + Dy +2D5]) € — L(D1 + D3)e 0 + $ D162,

FV 204527 (17)
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where the small change in director orientation, dn, is taken
equal to the angle 6. Clearly, one does not expect director
rotation to occur in the “log-rolling” geometry V.

The bilinear term ~ €6 clearly reduces the energy: if
a strain ¢ is imposed then the director responds by ad-
justing 6 to lower energy. Given sufficient time to reach
equilibrium, # adopts its optimal value for a given defor-
mation €. Returning this minimised value 6g p in (18) to
(17), the free energy at a given strain is also optimal:

_Di¥ D, D3\
GG,D = 2D1 e, FG,D — <C5 8D1 (AN (18)

Notice that if the nematic elastomer is ideal, then the free
energies in the cases G and D vanish (C5 — D3/8D; = 0)
because their geometry allows the director to respond to
the shear and internally relax. Case V remains elastically
hard. In fact, because of the chosen restricted strain ge-
ometry, Figure 2, the response of even ideal elastomers is
actually quartic, rather than completely soft (true softness
requires some unconstrained extension as well as shear).
The molecular model [11,22] yields the quartic penalty
F = % W ﬁ ¢*, which we are neglecting in the present
linear-response analysis.

The generalised force driving the director rotation an-
gle 6(¢) to equilibrium is in fact a torque, 0F/90. In F' it is
the externally imposed shear €(t), with its time variation,
that is the ultimate driving agent. The flatness (softness)
of the free energy F'(e) will make the resulting dynamical
response characteristically slow in the geometries where
director rotation is possible [26]. Alternatively, if the im-
posed dynamics, e.g. £(t), is fast compared with that of
0(t), then one will not attain the ideal states (18) and the
moduli will become frequency dependent and deviate, for
dynamic reasons, away from softness. It is this rheological
subtlety that we now wish to examine.

4.2 Viscoelastic response

Driving a nematic elastomer by imposing a component of
strain, in general, leaves open the possibility of dynam-
ical response of not only the director but also the other
components of strain (and thus involving, for instance, the
translational viscosities A;, As and As). Then there will
be several coupled dynamical equations for the system,
see, for instance, [26] where the response of a nematic elas-
tomer to a step-extensional strain is calculated. Here we
confine ourselves to the dynamical response to imposed
simple shear with other components of strain clamped.
An elastic torque acting on the nematic director n in cer-
tain deformation geometries is resisted by a linear viscous
torque. Describing the director rotation by a small angle
0, cf. Figure 2, and continuing to ignore inertial effects,
the balance of torques and forces is expressed by

OF  6(Ts)

- 4+ §

o6 50
The dynamical equation describing the evolution of the
director approaching its equilibrium is given, for the two

—0. (19)
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geometries where director rotation is present:

(G:) 70=-D10+L(D;— Ds)e(t)
+3 (11 —12)E(t), (20)
(D:) 70=-Di0+ (D1 +Ds)e(t)

+3 (1 +72) €.

These linear, inhomogeneous differential equations are
easily solved. After the transient relaxation 6 =~
Ope~(P1/7)t associated with starting the strain oscilla-
tions, has completely relaxed, the steady-state response is
given by the particular solutions with ¢ ~ e™*:

t
onlt)= [ at e Parni=t)
<D1:FD2
>< —_—

D240 F /) ) 21)

where the signs — or + correspond to the G or D geome-
try, respectively. The solutions depend on a characteristic
time for director relaxation, 71 = v1/Dj, or equivalently,
the characteristic frequency of the response scales like
D1 /v1. We can now give a more concrete expression for
the new dimensionless number Ne = 7, Vv/(D16), since
0 ~ ¢ and Vv ~ € ~ we, whence

Ne :71w/D1 =T1W. (22)
Below we shall see that all depends on 7w — when it
is small, we have soft or semi-soft equilibrium elastic re-
sponse, when it is large, we have hardening because direc-
tor relaxation does not keep pace with changing strain.
The linear “nominal stress” in response to the imposed
simple shear deformation &(t) is given by the sum of elastic

and viscous stress functions o = g1 + 0., that is
_OF 3(Ts)
23
B (23)

In the principal shear geometries, the stress expressions at
a given frequency of imposed strain take the form

Uc;( )_2(C5+ [D1—2D2]) ( )—l(Dl—Dg)G(w)

+2 (A5 + gln1 —272]) € — 3(m — 12)0, (24)
op(w) =2(C5 + L D1+2D2) e(w) — 1(Dy + Dy) O(w)
+2 (As 4+ 371+ 272]) € — % (m+72)0, (25
oy (w) =201 e(w) + 244 €. (26)

One finds two kinds of viscous stress terms, of different
orders of magnitude. The contribution v8 ~ 7€ is of the
same order as the elastic terms, as indicated by the torque
balance equation (20). In contrast, the terms ~ Ay 5¢ are
of the order A¢ ~ C(wrr)e <« Ce at frequencies below
Rouse values. The linear viscoelastic theory we are con-
sidering is applicable at much lower frequencies, where the
most interesting physics is due to director relaxation and
mechanical softness.
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The effective response modulus in the “log-rolling” ge-
ometry V is unchanged by the nematic director dynam-
ics, G(w) = 2Cy + 2iwA4 (the loss modulus negligible, as
discussed above). In two other geometries, where the di-
rector rotation does take place, the dynamic modulus is
modified by the internal director relaxation. Substituting
the Fourier transforms of equations (21) into the expres-
sions (24) and (25), we obtain the nominal stress in the
form o(w) = G(w)e(w). Remarkably, although perhaps
predictably, the response in these two geometries is exactly
the same: 0 = op, despite the difference in the rotations
0c and Op. The corresponding storage and loss moduli
are given by the real and imaginary parts of the effective
complex modulus G(w). It has a single-relaxation time be-
haviour with a characteristic frequency wy = D1 /77 or the
corresponding relaxation time 71 = 1/wj. The dynamic
moduli, in both G and D geometries, can then be written
in a universal form:

G'(w) = 2(C5 — D3/8Dy) (27)
(wr1)®  (Dayi — Diyo)?
1+ (wn)?  4D1d
Doy — Dyv2)?
G(w) = —2m (D2 28
(@) 1+ (w71)2 4D17? (28)

+wTy (%Dl(’yg/’yl)Q — 2A5/’7’1) .

Figure 3 shows the example of frequency dependence
of equations (27) and (28). In order to plot these functions,
we need to make several numerical assumptions about the
parameters. We thus take, arbitrarily for illustration pur-
poses, r = 14 1.5Q at a fixed temperature with values of
the nematic order parameter corresponding to deep in a
nematic phase, = 0.58 (so that the chains are weakly
prolate, r &~ 1.87), or corresponding to near a transition
point, @ = 0.35. The ratio 72/y1 =~ 1 and the viscous
constant As ~ 0.17;C5. Finally, the semi-soft addition to
the coupling constant D; (see the Appendix) is taken as
a1 = 0.1. For these values, plots of G’ and G” reveal the
expected single-relaxation behaviour. At zero frequency of
imposed strain oscillations the real (storage) modulus in
both shear geometries G and D is equal to

0 =2C5 =2(C5 — D3/8Dy).

The measure of non-vanishing renormalised shear modu-
lus Cf # 0 is the characteristic parameter of semi-softness
in non-ideal nematic elastomers. The high-frequency re-
sponse for wr; > 1 is

Gl =2C5 — $Da(v2 /1) + iDl(VZ/%)Q'

The characteristic single-relaxation time behaviour seen in
Figure 3 is due to our assumption about separation of time
scales, 71 > Tr. For that reason, we are able to distinguish
the plateau in G’, the maximum and the “high-frequency”
drop in G” and a semicircular shape of Cole-Cole plot
[27]. For the chosen value of A5, one can begin to see the
next rise in G, when the frequency approaches the next
characteristic point, the Rouse frequency, leading towards

(29)
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Fig. 3. (a) The frequency dependence of storage (G’, circles)
and loss (G”, squares) moduli in the two shear geometries G
and D in units of rubber modulus p. There is no loss in the
V geometry and, since G, = p, the plot represents the varia-
tion of the ratios G /G% and G'p/GYy. At w — 0 G’ — 2CH.
(b) The Cole-Cole plot, a variation of G with G'. A semicir-
cular shape indicates a single relaxation time response. In both
plots, solid lines are for Q = 0.58, dashed lines for Q@ = 0.35.

the glass plateau value G’ ~ 10'! Pa at high frequency.
That transition would correspond to another semi-circular
Cole-Cole plot at much higher values of G’; we can see the
beginning of that graph segment in Figure 3(b). With the
assumed separation of nematic and rubber relaxation time
scales (and the assumed ideal polymer network, with no
entanglements and free dangling ends, which are known
to lead to slow relaxation), the mechanical losses at low
frequencies are only through the lag in director rotation.

The initial expressions, equations (24) and (25), differ
in sign of terms with Dy and =9 constants. This reflects
the tendency to align or repel the director by these terms,
the roles being reversed when we interchange prolate and
oblate symmetry (r > 1 and r < 1, the sign of both Dy
and 7, reversing on this exchange). However, when the
director relaxation (21) is substituted back into the stress
expressions, one only finds the products Dy72, and a corre-
sponding unique effective complex modulus. Another fea-
ture of G*(w) is the non-dimensional ratio /71, which
is a familiar parameter in the dynamics of ordinary liquid
crystals [8] in the context of director flow alignment or
tumbling. As the brief discussion of modified torque bal-
ance in Section 3 indicates, one does not expect a steady-
state tumbling in elastomers, where there is memory of the
original director through the elastic energy. Tumbling and

. Terentjev and M. Warner: Viscoelasticity of nematic elastomers
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Fig. 4. (a) Plot of reduced storage moduli G’/; against re-
duced temperature for a number of increasing reduced frequen-
cies: @ = 0.1 (circles), 0.5 (squares), 1 (triangles), 2 (diamonds)
and 10 (stars). Moduli approach the semi-soft constant G
at zero frequency and low temperature, cf. Figure 3(a). An
apparent critical behaviour near the transition point T, is
due to the nematic order parameter variation Q(7") appear-
ing in the elastic and viscous coefficients. (b) Plot of loss fac-
tor tand = G” /G’ against reduced temperature for a number
of increasing frequencies. The curves are labeled the same as
in (a).

analogous effects may only be found in transient regimes
or in non-linear elasticity, to which we return elsewhere.
Variation of dynamic complex moduli with tempera-
ture is very interesting to examine graphically, as well as
analytically. Figure 4(a) shows the dependence of storage
modulus G’ on the reduced temperature T/T,,;, for a se-
quence of increasing frequency values. In order to produce
these plots, we must take a further assumption about the
variation of the order parameter Q(T). We take, rather
arbitrarily, Q ~ (1 — T/T,;)%3® simply because this was
an approximate fit to the experimental measurement of
Q(T) in [7]. We also take, following classical nematics,
11 = 91Q*% and v2 = ¢2@Q and further fix go/g; = % to have
Yo &= 71 at @ ~ 0.5. These rather limiting assumptions
nevertheless usefully illustrate the qualitative behaviour
of the linear elastic response functions both deep in the
nematic phase and near the assumed “critical point” T,;.
The characteristic time of director relaxation 71 =
~v1/D7 is a function of temperature through its dependence
on nematic order parameter. Both the coupling constant
D, and the rotational viscous coefficient v, are functions
of Q(T), as discussed in Section 3. Hence the relaxation
time 7, should have a weak () dependence in the nematic
phase, which should change to 71 ~ |Q| in the vicinity of
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the nematic-isotropic transition point. We discuss subtle
limit problems and the form of G(T,w) as a function of T
for various fixed w in the Appendix. The combination wm;

can be rewritten as
o(%) e
n) a|Q+ (r—1)2/r’

where we recall that r ~ 1+ 8Q (in practice, the linear
relation holds to high values of @ [7,28]). We shall continue
taking 8 = 1.5 in our illustration. One can also scale w
by u/g1 to give a dimensionless frequency @; thus wr =
@ f(Q) where the non-dimensional function f(Q) is clearly
f~1Qlas @ —o.

The cusps near T,; seen in Figure 4(a) are a conse-
quence of our assumption of the critical form Q(T) ~
(1-T/T,;)%33. For a real, non-ideal monodomain nematic
elastomer with of necessity a high-temperature parane-
matic state and a residual small QQ above T),;, the cusps are
rounded off but the general form survives, including the
non-monotonic variation G’(T") at high frequencies. We
note in passing, that the experimental result for G'(T')
[7] is very close to these predictions: although the very
high frequency was not achieved, the gradual departure
of G'(T')/u from the universal low-frequency curve was
clearly registered.

Figure 4(b) also shows the unusually high loss tangent
arising from the real and imaginary parts of complex mod-
ulus. The new loss mechanism, due to internal director
relaxation, is additional to all classical losses occurring in
polymer systems — in particular, those occurring near the
glass transition. The information about the latter is, as be-
fore, contained in the essential frequency and temperature
dependence of rubber-elastic constant p, of which the ex-
pressions for F' and T's are the low-frequency limit. There
is a striking contrast between Figure 4(b) with unusually
high values of tand over a broad temperature range and
the traditional distinct loss peaks in classical polymers
and rubbers. Physically, the maximal loss occurs where
the imposed strain frequency, w, matches the director re-
laxation rate 1/7,. We have a crossover from the director
keeping up with strain and therefore allowing the the sys-
tem to be very soft, to where the director fails to respond
quickly enough and the system becomes hard. The large
change of modulus when one crosses this frequency inter-
val is manifested, by the Kramers-Kronig relations, in a
very high loss peak.

W =S w— =

71
D,

5 Conclusions

We have developed a model of time-dependent response
and rheology of nematic elastomers by coupling nematic
rubber elasticity with nematohydrodynamics. The theory
represents the low-frequency limit of general viscoelastic
description of nematic polymer networks (which is not
known). By making use of significant separation between
the natural nematic relaxation time scale and that of a
rubber network, we examine the dissipation at relatively
low frequencies due to internal director relaxation in a
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deformed elastomer. Because of the lagging of director ro-
tation in response to time-dependent imposed shears, soft
or semi-soft response can only be partially achieved, the
hardening depending on frequency and on temperature.
The nemato-elastic-hydrodynamic equations are derived
in generality and solved for the rheology of a particular,
important example, that of simple oscillating shear, giv-
ing rise to unusual temperature dependence of response
moduli and loss tangents (tand ~ 1.5-2). Thus these re-
sults will be important for a wide variety of applications in
damping, acoustics, frequency and directional dependent
materials, and so on.

We have already reported on rheological experiments
[7] that show the qualitative features of our theory. These
and light scattering experiments [29,30] give values of
Frank constants, rubber constants Cs, Dy, D> and the
rotational viscosity coefficient v, for nematic elastomers
(and the 7 also for the corresponding polymer melts).
The C’s and D’s can also be deduced from several static
measurements, in all cases giving typical rubber values
~ 103-10° Pa, modulated by the discussed Q-dependence.
Frank constants take values typical of classical nematic
liquids, K ~ 10~*' N. But the 7 values are enhanced by
polymerisation. This is not surprising since on reorienting
a chain one must translate it bodily. An extended object
sweeps through space and the dynamics are complex. In a
network this is even less straightforward because the chain
is mechanically tied to a matrix and must resolve its mo-
tions with those of other chains. It turns out that the «’s
are further enhanced, reaching values of order ~ 103 Pas
and more, leading to the mentioned separation of charac-
teristic time scales.

‘We appreciate valuable discussions with S.M Clarke, H. Finkel-
mann, T.C. Lubensky, R.B. Meyer, P.D. Olmsted and W.
Stille.

Appendix A. Semi-softness and rheology

At fixed temperature in the nematic state, Figure 3 shows
the rheological consequences of nematohydrodynamics in
elastomers — as frequency drops and director relaxation
keeps pace with imposed strains, the response gets ever
softer. In the limit wm — 0 it either vanishes (ideal soft-
ness) or becomes very small (semi-softness) as has been
confirmed by many quasi-static experiments. We wish to
comment on the mechanisms for softness and non-ideality
and then how, at various fixed frequencies, one can see
how G’ tends to conventional rubber elastic response as T'
increases and @@ — 0.

Soft shear response occurs because anisotropic network
chains accommodate a macroscopic shape change by ro-
tating their distribution of shapes at constant entropy.
When chains tend to isotropy, @ — 0 and » — 1, shape
change can only be accommodated by chains distorting
their distribution, thereby decreasing their entropy and
increasing their free energy. The modulus is then p. We
must see how this classical limit is achieved; after all the
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cancellation C} = C5 — D3/8D; = 0 appears to hold for
all 7 including » — 1.

Semi-softness is expected when there are fluctuations
of composition, rod-like crosslinks, sources of random ne-
matic field, and any other form of non-ideality that pro-
hibits the finding of an isotropic reference state [22,31].
Then there are additions to the Trace formula (1) which
are of the form asin®@ for simple shears, see, for in-
stance, [32]. The degree of semi-softness, a, can be cal-
culated directly from various models of non-ideality, or
measured. For continuum theory such additions appear in
equations (3) for the C; and D;, and upset the cancella-
tions in (4), yielding a C& # 0, which is the non-zero limit
at wr — 0 in Figure 3 for G'. However, the additions in-
spired by a clearly must vanish as @ — 0 and r — 1
and the delicate limit question must still be resolved. In
particular in (4) CF — C5 — Lpasr — 1.

In the ideal case there is no high-temperature order,
softness is perfect and for T < T,; the modulus C’? is
identically zero. Several systems, depending on their ther-
momechanical history, are close to this [22]. Since ideally
Q@ jumps to zero at T' = T,,;, there is no limit problem. D,
and Do cease to exist, the analysis (18) is invalid and Cj
is not renormalised.

In the semi-soft case, (4) places bounds on the form
the non-ideal additions to D; can take. Since D; ~ Q2
and Dy ~ @Q, in the ideal case the limit D3/D; is finite
as @ — 0. If however D; has additions Dy ~ (Q? + a1Q),
then the limit of D2/D; vanishes as Q — 0, eliminating
any renormalisation. Explicit calculations agree with sym-
metry arguments that the additions to D; are indeed ~ @
and reflect the thermomechanical history of the material.
For instance, fluctuations (due to compositional fluctua-
tions in the polymers that make up the network) in the ef-
fective order felt by a chain, Qeg = (1496)Q (with (J) = 0),
yield for the modulus:

Dy =4 {@ + alQ} , (A1)

, det {f
where p' = ( detz) w and

Qs(3 +2Qk)
(14+2Q:)(1 —Qx)°

Here formation conditions for the network are denoted by
a subscript f: the step length tensor at formation is £, with
order parameter Q. The determinant factors reflect spon-
taneous shape changes since formation which can be very
large (up to several hundred %). The sign of the coeffi-
cient aq is that of Qs. It is the order at network formation
that induces the residual order @) at high temperatures
and the sign of that order follows that of the formation
order. Thus the combination a;@Q is always positive and
thus the non-ideal additions to Dy in (A.1) are really of
the form |@|, which we have used in Section 3.4.

Thus at sufficiently low frequencies one observes a
rather small modulus G’ = C > 0, which rises with
increasing temperature to reach the classical value u at

ay = 3<52>
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Q — 0 at T},;. If, at fixed frequency, on dropping the tem-
perature the combination w7 becomes appreciable (due
to increasing 71), the modulus G'(T") will depart from the

universal low-frequency form G/, g, see Figure 4.
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