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We expand upon the results for the force-extension behavior of single-collapsed polymer chains to
consider the mechanical response of networks of cross-linked globular polymers in poor solvent.
Force-strain curves are obtained under the affine deformation approximation for networked globules
with both disordered and ordered globule conformations. Due to their large stored lengths, these
networks would be capable of reaching extremely large strains. They also show anomalous
nonmonotonic force-strain response, as a consequence of the nonmonotonic force-extension curves
of their constituent globules. Finally, we consider the stability of ordered and disordered globules in
these networks and propose means taken from biological and colloid science to stabilize networked
globules. ©2005 American Institute of Physics. fDOI: 10.1063/1.1898214g

I. INTRODUCTION

Despite the advances described in the preceding paper1

in understanding single chains, there has been a paucity of
work that considers polymer globules in the bulk or as net-
works. Existing literature on networks of polymers in poor
solvent seems limited to studies of grafted polymers,2–4

which form nematic melts rather than distinct globules.
However, the ability to crystallize globular proteins, and the
stable conformations of proteins in the tight confines of the
cytosol attest to the existence and stability of individual
polymer globules in poor solvent, even when densely
packed. As such, the study of dense, globular polymer sys-
tems appears worthwhile.

Here we develop theoretical models of the force-
extension behavior for various semiflexible polymer globules
and covalently cross-linked networks of these globules. Sec.
II reviews the affine assumption and “ghost network” model
used to treat networks in this paper. These models are then
applied to the free energies obtained for ordered and disor-
dered globules in related work1 and the results presented in
Sec. III. Section IV discusses the notable features of these
networks’ mechanical response. We note the capacity for
both high maximum strains and anomalous nonmonotonic
force-strain behavior in these networks, which arise from the
properties of the individual globules considered in Ref. 1 and
constitute the central results of this paper.

II. NETWORK FORMALISM

Having discussed the force-extension behavior of single
globules, we now examine cross-linked networks of such
globular chains, using the basic aspects of rubber elasticity.5

While networks of real polymers are subject to entanglement
effects and other constraints that complicate their response to
stretching, we will neglect such complexities and consider a
basic network of “phantom” chains. In this model, chains
interact only at their endpoints, which are permanently cross-

linked together. For a network of polymer globules, we can
imagine this model would hold even better than in classical
rubber elasticity theory if a small section of free chain exists
to separate the globules and attach to cross-linkers. As noted
in Sec. III below, we will neglect the influence of such link-
ers on the network’s stretching behavior, but they are neces-
sary to ensure that the phantom network conditions hold in
our hypothetical globular networks.

Following the phantom chain model, we can now calcu-
late the total free energy under stretching. For a chain having
some end-to-end vectorR in its initial s“reference”d state, a
deformation described by the tensorl= takes us to a final
s“target”d end-to-end vectorR8=l= ·R. If we have an indi-
vidual chain free-energy functionFssRd swheres denotes the
single chaind and the end-to-end probability distribution
PsRd, the quenched network average

F =E dRPsRdFssRd s1d

yields the average free energy in the reference state per
chain, while the free energy in the target state follows as:

Fsl=d =E dRPl=sRdFssl= ·Rd, s2d

wherePl=sRd is the distribution of end-to-end vectors in the
target state.

We now call upon the affine deformation assumption,
which holds that the network deforms on the microscopic
scaleshere, between connected cross-linksd exactly as it does
macroscopically. We consider this approximation to be valid
in the regime where individual chains are not stretched com-
pletely taut, i.e.,

lR0 ø L s3d

with R0= uRu for the reference stateswe use this quantity on
the assumption thatFsr ,u ,fd=Fsrd in spherical coordi-
natesd. Note that in the coming sections, we will terminate all
force-strain curves at the strainl where the equality holds.
The affine approximation appears formally asadElectronic mail: emt1000@cam.ac.uk
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Pl=sR0d = P1=sR0d, s4d

whereP1=sR0d is the end-to-end distribution in the reference
state and is given at equilibrium by the formula

P1=sR0d =
e−bFssRd

E dRe−bFssRd

. s5d

Thus, the distribution of chains at network formation remains
fixed upon deformation: the topological quenching of a net-
work described in here. If we now assume that the deforma-
tion is generated by a uniaxial stretch along thesarbitraryd z
axis of the system, transverse symmetry and incompressibil-
ity gives us

l= = 1l−1/2 0 0

0 l−1/2 0

0 0 l
2 . s6d

Transforming into spherical coordinates with the polar axis
along z, the reference-state vectorsR are scaled by a factorh
given by

hsu,ld = Îl−1 sin2 u + l2 cos2 u. s7d

Assuming that the angular distribution of the polymer end-
points is isotropic in the reference state, i.e.,

dNsu,fd =
1

2p
sinududf,

s8d
dNsud = sinudu,

we can use the relationdN/dh=sdN/dudsdu /dhd and Eq.s7d
to arrive at the stretching distribution

dNshd = sinu
lÎl−1sin2 u + l2 cos2 u

sinu cosusl3 − 1d
dh

= lhfsl3 − 1dslh2 − 1dg−1/2dh, s9d

which can be approximated in the large extension limit
l , h@1 as

dNshd <
1

l
dh. s10d

The limit s10d is of use in understanding the qualitative fea-
tures of the network force-strain curves, particularly the per-
sistence of the nonmonotonic and discontinuous features
found in the force-extension curves of individual globules.

III. STRETCHING NETWORKS OF GLOBULAR
CHAINS

We now can combine the free-energy functions of
single-ordered and disordered globules from1 with the full
stretching distribution given by Eq.s9d to obtain the free
energy of a network of collapsed globules. As mentioned in
Sec. II, we will assume that the globules are covalently
cross-linked together, and spaced away from the cross-links
by linker groups that neither extend appreciably as the cross-
links pull apart, nor compress the globule when the cross-
links are pushed together. Ideally these linkers should be
long enough to prevent unbound chains from sticking to each
other or intact globules, and so allow individual globules to
reform when the network relaxes. For linker lengthLlinker

and persistence lengthflinker, this situation may obtain when
flinker,OsLlinkerd, or if the linkers are in their “good sol-
vent” regime and assume an extended conformation. We
schematically illustrate this situation in Fig. 1. Even under
these conditions we expect the globules will adhere to each
other, particularly disordered globules with their generic
surface-contact term. Borisov and Halperin treat this effect in
the context of polysoaps in,6–9 and obtain a force-extension
relation for separating globules. We expect globule separa-
tion to dominate the network mechanical response for small
deformations, but as we focus our attention on the response
at high strains, we will neglect it in this paper. Interglobular
adhesion will also be discussed in Sec. IV.

We now place Eqs.s4d ands9d into Eq. s2d to obtain the
final form of the average free energy of deformation per
strand, given as

Fsld =E
0

Rmax

dR0E
1

l

dh
lhFsshR0dPsR0d

Îsl3 − 1dslh2 − 1d
, s11d

where Fssxd is the single-chain free energy for end-to-end
distancex, R0 an initial end-to-end distance in the reference
state,PsR0d the probability of finding a globule withR0 in
the network, andRmax the largest end-to-end distance in the
reference statesi.e., the size of the globuled. The total mac-
roscopic energy of a network withN strands and deformation
l is clearlyNFsld.

Several other points must be established before evaluat-
ing the free energy of deformation, particularly the reference
end-to-end distributionPsR0d. We can identify two plausible
forms of PsR0d for globules: the “on-shell” case where the
endpoint distribution is identical for all globules, and a
“floppy” case where not all of the chain is tightly bound to
the globule and the endpoint distribution is broader. In both
cases, we assume that the cross-linking between globules is

FIG. 1. Cross-linked networks of
globules in native and partially
stretched conformations.
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isotropic. In the on-shell case, we claim that the free ends of
the polymer start on the surface of the globule, which
amounts to the condition

PsR0d = dsR0 − Rglobd, s12d

whereRglob=s3Lb2/4pd1/3.
By comparison, the floppy case assumes that we begin

with some unbound lengthL0 with the same persistence
length as the polymer in the globulesnote that this length is
not that of the linkerd. Provided that the presence of the
globule does not unduly affect the endpoint distribution of
this unbound length, we use the free-end semiflexible propa-
gator forf<L0 given in Ref. 10 as ourPsR0d. We so arrive
at

PsR0d = S 3

2pkR2lD
3/2

expF−
3

2kR2l
sR0 − ÎkR2ld2G , s13d

where

kR2l =
3

2j
HL0 −

3

2j
F1 +

3

2Î3fj
cothSL0Î j

3fj
DG−1J ,

s14d

j =
3

4f
F1 −S x

L0
D2G−2

. s15d

While one cannot necessarily speak of aRglob for this
case, we will useRmax=L0 in calculating the free energy in
Eq. s11d and the maximum strain on the network in Eq.s3d.

We will use the terms on-shell to refer to the networks
with the initial end-to-end distribution of Eq.s12d and floppy
to refer to networks with the initial distribution of Eq.s13d
through the rest of the paper.

A final assumption is that those globules withh,1 in
Eq. s7d are not actually compressed by contact forces and do
not contribute to changes in the free energy. This is the situ-
ation one might expect if the molecules linking globules are
fairly flexible, and long enough to space the incompressible
globules well apart from each other.

While all of these conditions do simplify computation of
the free energy, it is still necessary to use numerical tech-
niques to fully calculate the free energy and its derivatives.
We obtain the actual force-strain curves by an approximation
to the actual derivative; we fit a linear function to a sample
of five free-energy points separated byDl=10−5 and take the
resulting least-squares slope as the value of the derivative.

In general, we will refer to force-strain rather than stress-
strain behavior in this paper, since the extremely high strains
that were attained in deforming individual globules are a
property of networked globules as well. As stress is defined
as s=force/area=fl /A0 for initial sample areaA0, salient
features of the curves can become difficult to see at largel,
hence our choice to present force-strain curves over stress-
strain curves for these materials. Note that the force-strain

curves are given in the dimensionless force unit f˜ as an av-
erage per chain; the actual mechanical response should sim-
ply be proportional to the average number of chains in the
network.

A. Networks of random globules

Using the formalism of Eq.s11d and the free energy
found in Ref. 1 for random globules, we now examine the
stretching behavior of networks of random globules. For an
on-shell treatment, we obtain force-strain curves dominated
by force plateaus that extend over long strains. For condi-
tions with G,Osfd, we obtain nonmonotonic behavior in
the force-strain curves much as we did in the force-extension
curves of individual chains. This can be seen in Figs. 2 and
3. One will notice that the average force per chain is inevi-
tably lower than that of a single chain at the same “strain”
x/Rglob, as globules with initial end-to-end vectors nearly
perpendicular to the direction of the stretch will remain un-
extended at all strains.

In light of the results1 for single toroidal globules, we
expect networks of toroidal globules to exhibit force-strain
behavior akin to that of networked random globules, since
both types of globules possess essentially similar force pla-
teaus and discontinuous unbinding transitions. The on-shell
curve of a network of toroidal globules is plotted in Fig. 4,
and clearly displays nonmonotonic behavior as well.

B. Networks of ordered globules

We now turn our attention to networks of ordered glob-
ules, both in series and taken singly as in.1 Since we have

FIG. 2. Force-strain curves for networked random globules with varying
surface tensionG svalues indicated on plotd, for chain stiffnessf=1, and
lengthL=1000. The dashed line indicates the reference strainl=1.

FIG. 3. Force-strain curves for networked random globules with varying
chain stiffnessf svalues indicated on plotd, for surface tensionG=10, and
lengthL=1000. The dashed line indicates the reference strainl=1.
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explicitly given these globules some initial unbound length,
it seems natural to use the floppy approximation for the case
L−Lboundùf. The floppy approximation is also suited to a
series of ordered globules that is already in a partially ex-
tended conformation, like the “necklaces” conjectured for
partially stretched random copolymers.11,12However, we can
also justify the use of the on-shell approximation under some
circumstances. In particular, the on-shell approximation
would be suitable for single-ordered globules with free
lengthL−Lbound!f or for a series of globules with a weak
interglobular adhesion causes the globules to form a cluster
with a well-defined radius. Note, however, that we neglect
any presumed interglobular adhesive force in the actual cal-
culation of the force-strain curve. We present results for both
approximations below, with Fig. 5 being the on-shell case
and Fig. 6 the floppy cross-linking case.

As one would expect, the average force per chain is
generally below the force one would obtain at a similar strain
for a single series of linked ordered globules. Unlike the
on-shell case, all of the curves for the floppy case appear to

have their maxima at roughly the same force, despite cover-
ing two decades of the rigidityf. This is likely the result of
the way in which the radial distribution function of Eq.s13d
changes as a function off. For largef, the distributions13d
is so narrow as to resemble the on-shell case, while at
smaller f, it resembles a Gaussian centered nearR0=0.
Though decreasingf raises the maximum force on the net-
work, as Fig. 5 demonstrates, a low chain rigidityf also
means that many of the globules will not be significantly
deformed due to their low initialR0. We also do not observe
a significant rise in the force near the full extensionl
=L /Rglob for the floppy case, as even globules withR0 par-
allel to the direction of stretching may not be fully extended
if they haveR0,Rmax.

IV. DISCUSSION

While a full evaluation of the network free energy is
necessarily numerical, especially for the floppy case with a
nontrivial endpoint distribution, we can still analytically ap-
proximate the force-strain behavior of networks of globules.
Perhaps the easiest case to treat is that of ordered globules
and series of ordered globules in the on-shell case. If we
assume that the free energy remains relatively constant with
strain except when the chain is nearly tautsi.e., we are about
to break open a globuled, we can model the free energy as a
series of step functions

Fshd < o
i

DFiush − hid, s16d

whereusxd is a step function, andDFi and hi are the free-
energy cost and microscopic chain extension associated with
the ith globule unbinding, respectively. This approximation
should apply to the first paper’s model of chained ordered
globules forf,L. Let us now invoke the further assump-
tion that all the globules are identical, that is,DFi =DF and
hi+1−hi =Dh for all i, which appears to be a suitable ap-
proximation to experimentsRefs. 1,13d. We then take the

FIG. 4. Force-strain curves for networked toroidal globules with varying
chain stiffnessf svalues indicated on plotd, for surface tensionG=1, and
lengthL=1000. The dashed line indicates the reference strainl=1.

FIG. 5. On-shell approximation of force-strain curves for networked series
of ordered globules with varying chain stiffnessf svalues indicated on plotd,
for surface tensionG=1, total length L=1000, cutoff forces f˜

i /kT
=h10,10,10,10j, and bound lengthsLi /kT=h145,145,145,145j. The
dashed line indicates the reference strainl=1.

FIG. 6. Floppy approximation of force-strain curves for networked series of
ordered globules with varying chain stiffnessf svalues indicated on plotd,
for surface tensionG=1, total length L=1000, cutoff forces f˜

i /kT
=h10,10,10,10j, and bound lengthsLi /kT=h145,145,145,145j. The
dashed line indicates the reference strainl=1.
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constant distributiondN/dh=l−1 of Eq. s10d to arrive at the
averaged free energy

Fsld = l−1E
1

l

o
j

DFush − jDhd,

=DF/lhnusl − Dhnud + 1
2Dhfsnu − 1dnugj , s17d

wherenu=h div Dh , a div b being defined as the integer part

of a/b. Taking f̃=−dF /dl, we get

f̃sld = DFF Dh

2l2snu
2 + nud + dz,0G , s18d

wherez is defined ash modDh. The force is positive but
decreasing at all strains save whenz=0, where the force
jumps before decaying away again. Thus, networks of or-
dered globules in series or single random globules should
display nonmonotonic force-strain curves, assuming that
their initial distributionsPsR0d are on-shell and the step-
function approximation to the free energy is accuratefi.e.,
L /f,Os1dg.

However, if we assume thatPsR0d is nonzero for a range
of R0 rather than a single value, as in the floppy cross-linking
case, then monotonic force-strain curves may reeinerge. If
PsR0d is, in fact, Gaussian distributed about someR08 with
standard deviationr, we obtain adNshd approximated by the
convolution

dNshd =E
0

`

dh8
h8

rÎ2p
ush − h8de−sh8R08 − R08d2/2r2

. s19d

For r!R0, the results of Eq.s19d can be approximated as

dNshd < tanhShR08 − R08

r
D . s20d

When applied to the free energy of Eq.s16d, we expect this
dNshd to yield a nonmonotonic force-strain curve only so
long asr /R08,Dh; for larger ratio ofr /R08, we will gain free
energy at a nearly constant rate as we cross the “steps” in Eq.
s16d, and so should obtain a flat or monotonically increasing
force-strain curve. Similarly, we would expect that a free-
energyFshd which has a force plateau followed by a drop
across the intervalhhc,hc+Dj would display a nonmono-
tonic force-strain curve forr /R08,D and a flat or increasing
curve otherwise.

Unfortunately, we anticipate significant practical diffi-
culties in creating the networks of distinct globules we dis-
cuss here. While we claim interglobular adhesion can be ig-
nored, it is an open question whether densely packed
polymers will form individual, separate globulessas our
model requiresd instead of a dense interpenetrating melt. A
naive means of guaranteeing stability would be to form the
network in good solvent and reduce solvent quality while
keeping it under tension, thus keeping the globules sepa-
rated.

More sophisticated are strategies for preventing a melt
even if we cross-link the globules after they are already in
the collapsed state. One expects particular difficulties with
disordered globules, which may gradually merge into one
another as a result of thermal excitations. However, we ex-

pect that the energetic cost of unwinding an entire loop of
chain will make the toroidal globules relatively stable against
merging, and even spherical globules may prove stable if
cross-linked beneath their glass transition temperature. One
might improve the disordered globules’ stability by decorat-
ing the main chain with solvophilic side groups, which
would separate the globules much like emulsifiers space
droplets in a colloid.

By comparison, the existence of a preferred set of con-
tacts within each ordered globule should help stabilize them
against the tendency to form an interpenetrating melt. Globu-
lar proteinsssuch as lactoglobulin and albumind can remain
stable as dense solutions and even solids, though it is ex-
pected that high concentrations may result in aggregation of
amyloidogenic proteins. Regardless, proteinaceous or small-
molecule chaperones could be incorporated into the network
to stabilize the globules,14 provides a review of the crowded
macromolecular environments’ influence in biology and
natural stabilization mechanisms.

The tendency to form a melt or an aggregate phase also
becomes a concern in the regime where the globules have
been extended and released their length as free chains. Re-
calling our poor solvent environment, these free chains will
stick together if allowed to touch. Contacts between ex-
tended chains could well prevent them from reforming sepa-
rate globules upon relaxation, introducing a significant hys-
teresis effect potentially destroying the nonmonotonic force-
strain curves we expect for globular networks. One might
hope to avoid such difficulties by separating strands by large
distances, though is is questionable if the maximum load on
such a disperse network would be adequate for real applica-
tions. Again, the addition of solvophilic side chains to physi-
cally separate free chains or chaperones to assist in reform-
ing ordered globules may be viable means of preventing a
melt.

Less dramatic, but still significant, are the potential the-
oretical concerns about the networks described in this paper.
One might imagine that nonaffine deformation would be pro-
nounced in a network in which chains can release length
quickly, as would occur when a globule unbinds. Indeed,
nonaffine models have long been part of the theory of more
conventional polymer networks,15,16 though their results are
generally akin to those of affine deformation theory in the
regime where few of the chains are pulled completely taut in
the affine approximation. One might also object to the ne-
glect of linkers in our paper’s treatment, given their likely
nonnegligible contribution to the free energy. However, the
floppy case can be regarded as an analog to a network having
linkers with flinker=fchain, but as noted previously, non-
monotonic force-strain behavior persists for sufficiently high
f and narrow initial distributionPsR0d. As such, we do not
believe the neglect of linkers critically undermines our con-
clusions.
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