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We review the force-extension behavior of polymers collapsed in poor solvent, modified to include
the effects of semiflexibility and considered for globules with “ordered” and “disordered” internal
structures. A series of ordered globules is used as a model for the unbinding of a disordered globule
beneath its glass transition and for multiple-repeat proteins such as the poly-Ig-domain titin used in
atomic force microscopy studies. These single-chain results form the foundation for the treatment of
cross-linked networks of globular polymers. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1898213g

I. INTRODUCTION

The quasistatic force-extension behavior of polymer
chains is one of the best-explored branches of polymer
theory. Beginning with the Langevin-function force-
extension response of random-walk chains,1 theorists have
gone on to provide models for the force-extension behavior
of semiflexible chains,2,3 a helices,4–6 plectonemes in twist-
storing polymers,7 and copolymers.8

Further studies of the force-extension response of free
chains have paralleled the study of the collapsed state of
polymers in poor solvent. Following the mean-field treat-
ment of flexible polymers in good and poor solvents9 of
Flory and the Green’s function description of similar
systems10 of Lifshitz, a number of scaling and mean-field
arguments have been developed with regard to the structure,
stability, and formation of polymer globules.11 The most ex-
tensive attention has been given to the “Gaussian globule” of
a collapsed chain that is densely packed, but still uncorre-
lated in its direction. These globules have been studied, and
the mechanical response of individual globules examined un-
der extension12 and various regimes of compression.13 More
recently, experimental observations of DNA in poor
solvent14–16 and an improved theoretical understanding of
semiflexible polymers3,17,18 have given rise to theories of
globules with a well-defined internal structure. The develop-
ment of these theories have also been encouraged by the
strong analogy between heteropolymers and proteins.19

In recent years, experimental work has developed tools
for the micromechanical manipulation of polymer strands,
particularly optical tweezers20–23 and atomic force
microscopy,24 that have made it possible to probe the me-
chanical response of single polymer chains and globules di-
rectly. Results from these experimental studies have largely
supported the existing theoretical results for stretching free,
single chains, and extended general polymeric properties
such as persistence length and mechanical stability to
biopolymers.

In this paper, we review existing theoretical models for
the force-extension behavior of single collapsed chains, with

novel adjustments to account for semiflexibility and the
crude effects of internal structure of globules with a native
conformation, or without a native conformation but beneath
the glass transition. In Sec. II, we briefly discuss the classical
model of semiflexible polymers used for all subsequent re-
sults. Sections III A and III B furnish descriptions of glob-
ules with and without specific native conformations, which
we refer to as “ordered” and “disordered” globules, respec-
tively. For disordered globules, we review the existing theory
for the force-extension behavior of spherical and toroidal
globules, and modify its predictions to account for the effect
of semiflexibility in the extended chain. We also incorporate
the idea of globule “bursting” predicted to occur in spherical
globules into the treatment of toroidal globules. In Sec. III B
we develop a simple, versatile model of ordered globules,
and connect this model to experimental data on protein
stretching and simulation data for spherical disordered glob-
ules stretched beneath their glass transition, effectively link-
ing the ordered and disordered models.

II. SEMIFLEXIBLE CHAINS

Before treating the globules themselves, we first must
describe the unbound, semiflexible state of the polymer
chain. A substantial literature now exists on semiflexiblesor
“wormlike” d chains. These are simply polymer chains with
an intrinsic bending energy characterized by a persistence
lengthlp, which represents the distance over which the direc-
tion of the chain becomes uncorrelated.25 Clear physical in-
stances of semiflexible chains include single-molecule DNA,
long carbon nanotubes,a-helical polypeptides, Aramid/
polyphenyleneterephtalamide, and Zylon/polybenzoxaloe,
among others. It is worth noting that biopolymers appear
particularly suited for treatment as semiflexible chains as a
result of their relatively wide, complex polymer backbones.
For the purposes of this paper, we will describe semiflexible
chains by the mean-field Hamiltonian by Ha and
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whereussd is the tangent vector of the chain,s is the contour
length along the chain,b=skTd−1, andc is a Lagrange mul-
tiplier that enforces the global average constraintku2l=1.
For L@ lp, semiflexible chains follow the force-extension
curve given by

bfsxd =
3x

4Llps1 − x2/L2d2 , s2d

where f and x are the force and imposed end-to-end exten-
sion, respectively.3,17The force-extension behavior of Eq.s2d
can be seen up toL, lp in both the mean-field treatment of
semiflexible chains and numerical solutions of the exact
Kratky–Porod model.26 For the regime of chain lengths and
persistence lengths discussed here, theory suggests that the
discrete nature of the chain only becomes important at defor-
mations x/L.0.95-0.99 sRef. 27d and yields a force-
extension relation of the formbfsxd~ s1−x/Ld−1 that effec-
tively makes the chain stiffer than Eq.s2d predicts. This
observation keeps with earlier experimental atomic force mi-
croscopysAFMd force-extension spectra for dextran28 that
are dominated by monomer-specific effects in this regime.
However, we will neglect discrete-chain effects, as they do
not dramatically affect the globule bursting key to this paper.
Instead, we use Eq.s2d as the simplest result which improves
on the classical Langevin force-extension relation29 by incor-
porating semiflexibility. Equations2d also has the advantage
of its simple and tractable associated free energy

bFsfsxd =
3L3

8lp

1

L2 − x2 , s3d

which we also use throughout this paper for the stretching
energy of “free chain” segments found in globules under
extension.

III. MODELS OF POLYMER GLOBULES

A. Disordered globules

We use the term “disordered”sor randomd globules to
refer to collapsed polymer states analogous to the Gaussian
globules formed when flexible polymers collapse, but gener-
alized to semiflexible chains. These globules are predicted to
be either sphericalsfor long chain lengths or extremely poor
solventd or toroidal sfor long persistence lengthsd.30 Regard-
less of their undeformed shape, when extended these glob-
ules are thought to be described by a “ball and chain”
model,12 in which the globule remains basically intact, but
releases some of the polymer as a free chainsFig. 1d.

1. Spherical globules

If we model the polymer-solvent interaction with a
simple surface-tension term, the free energy of this ball-and-
chain system can be written for a spherical globule as

Fsk,xd = Fsfsk,xd + Fssk,xd, s4d

wherek denotes the fraction of the total length in the tether.
If we have a monomer sizeb2 and a free-energy costg per
unit surface area exposed to the solvent, we can rewrite our

units in dimensionless form:F=bF , f̃ =bfb, L=L /b, f
= lp/b, G=gb2, and x=x/b. We use these dimensionless
units henceforth. For a globule with radius of gyrationRglob

given by Rglob=fs3/4pdLs1−kdg1/3, we can now write the
semiflexible contribution to Eq.s4d from the tether as

Fsfsk,xd =
sLkd3

8f

1

sLkd2 − sx − Rglobd2 . s5d

The surface-area contribution follows as

Fssk,xd = GLkp + Gs36psLs1 − kdd2d1/3, s6d

where the first term is the surface energy of the solvent-
exposed tether, and the second that of the remaining globular
surface. Here we have assumed that the polymer chain has a
roughly cylindrical form with diameterb; realistic, noncylin-
drical polymers will have slightly different numerical prefac-
tors in Fs from Eq. s6d, but the energy should scale identi-
cally in the key parametersL andk. We have also neglected
the effects of the bending energy required to form the glob-
ule, but we can imagine that the number of turnssand so as
the bending energyd scales with the surface area of the glob-
ule and would so only add another numerical prefactor to the
globule term in Eq.s6d.

The total free energy can now be found by minimizing
Eq. s4d with respect tok. As detailed in previous studies,30,31

the fraction of free chaink can suddenly jump to unity as we
extend beyond a critical valuexc. For G,Os1d, this sdimen-
sionlessd critical extension isxc<LGÎ2/3. The jump ink
marks a discontinuous first-order transition that corresponds
to the bursting of the globule, and comes about when the
surface free energy gained by keeping the polymer stored in
the spherical globule and partially out of the poor solvent is
outweighed by the stretching free energy to be gained from
releasing the entire polymer length as a free chain. The ap-

propriate force-extension curves follow from f=̄−]xFsk ,xd,
which we obtain for a range of “strains” 1øx/Rglob

øL /Rglob. Note that sinceL /Rglob,L2/3, we obtain maxi-
mum strains on the order of 102 for L=1000, a high value
that will recur throughout this paper and figure importantly

into the behavior of networked globules. We plot f¯against
x /Rglob in Fig. 2 for varying scaled persistence lengthf, and
in Fig. 3 with a varying effect of poor solventG.

FIG. 1. Spherical disordered globule with total lengthL and unbound frac-
tion k under extension.
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Though the graphs closely resemble those from Ref. 30,
there is a small difference in the near-zero initial force,
which represents an error in the numerical derivative
−dF /dx at x<1. More importantly, we have made the im-
provement of explicitly incorporating semiflexibility into the
chain response. In particular, Fig. 3 indicates that increasing
the persistence lengthlp=bf decreases the force required to
stretch a globule, since more rigid chains contain few Kuhn
lengths relative to more flexible ones and so act as weaker
entropic springs. This trend will recur throughout our treat-
ment of different polymer globules. The unbinding threshold
xc also increases with persistence length, as one might ex-
pect if relatively less free energy can be gained from releas-
ing the chain out of the globule. Though we will see that
chains with f@10 andL=1000 form toroids rather than
spherical globules, Fig. 2 does illustrate the generic effects of
increasing chain rigidity.

The simplified ball-and-chain model of the random glob-
ule produces force-extension curves that conflict with Monte
Carlo studies of random globules.32 These suggest that the
polymer winds off the globule in small sections due to con-

formational restrictions on the monomer level within the
globule. As temperatures rise these conformational restric-
tions ease, and one obtains the same smooth behavior as in
the ball-and-chain model shown above. However, we also
note that Ref. 30 qualitatively reproduces the smooth force-
extension curve shown in Figs. 2 and 3 as an average of 100
Monte Carlo runs made below the glass transition. The simu-
lated “stiff cantilever” force-extension curves of the
Lennard-Jones globules in Ref. 32 also follow the plateau-
and-rise shape of the ball-and-chain model, though confor-
mational restrictions again result in a higher plateau force at
T=0 than at other temperatures. We suggest approximating
this effect by simply introducing a temperature-dependent
resistancemsTd into the ball-and-chain model such that
Gchain=Gs1+msTdd.

2. Toroidal globules

Experimental work15,16 has shown that semiflexible
polymers with large persistence lengths, such as DNA and
actin, condense into a toroidal phase when placed into a poor
solvent, an observation since incorporated into the body of
polymer theory.14,33–35The toroidal conformation is simply
the result of havinglp so large relative to the surface contact
energyG that even though the chains are in a collapsed con-
formation, they will not fold freely as in the Gaussian glob-
ule, but will prefer to minimize the local bending energy by
stacking on top of each other in circular loops, with a
roughly hexagonal packing of the coil. The energy balance
between the packing and bending energies indicates that the
major radius of a toroidal globule is given by36

Rtor =
Rtor

b
= SLs1 − kdf2

2p2G2 D1/3

. s7d

A simple scaling argument suggests that the toroidal globule
is stable against collapse into a spherical globule when its
major radius exceeds the minor radius%=r /b
,sL / s2pRtordd1/2, i.e.,

L ø
f3

G3 . s8d

Note that our estimate for globule stability differs signifi-
cantly from that given in Ref. 14 due to differences in the
scaling relations for the major radius. Under extension, these
toroidal globules can be modeled with roughly the same
form of free energy as spherical globules, Eq.s4d, albeit with
a suitably modified surface-energy term. Assuming that the
tether pulls off the globule tangentially as shown in Fig. 4,

FIG. 2. Force-extension curve of a disordered globule with varying chain
stiffnessf svalues indicated on plotd for surface tensionG=1 and length
L=1000. The dashed line indicates the sizex=Rglob, which is the initial
chain size, the cutoff of numerical calculation.

FIG. 3. Force-extension curve of a disordered globule with varying surface
tensionG svalues indicated on plotd for chain stiffnessf=10 and length
L=1000. The dashed line indicates the sizex=Rglob, which is the initial
chain size, the cutoff of numerical calculation.

FIG. 4. Toroidal globule under extension.
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we have the free energies

Fsfsk,xd =
sLkd3

8f

1

sLkd2 − sx − Rtord2 s9d

and

Fssk,xd =
5p

2
GÎ2Ls1 − kdRtor + Î2GLk. s10d

Note thatFs actually incorporates the bending energy
for the formation of the globule; the bending energy associ-
ated with the torus is given byFbend=Ls1−kdf / s2R2d,
which simplifies tosp /2dGÎ2Ls1−kdRtor when we apply
R=Rtor from Eq. s7d. This is in marked contrast to Eq.s4d
for spherical globules, which does not explicitly account for
the bending energy within the globule. As before, we mini-
mize with respect tok to obtain the actual free energy at
imposed deformationx. Again, we obtain a bursting of the
globule at somexc, as can be seen in Fig. 5. This bursting is
clearly implied by the fact that the surface area of the toroid
scales as,f1/5L3/5, very close to the,L2/3 scaling of the
spherical globule. Thus, the balance between surface energy
and tether tension should be similar in toroids to the same
balance in spherical globules, and hence bursting should oc-
cur. Note that increasing the chain rigidityf also increases
Rtor and so we reach full extension at lower values of the
strainx /Rtor.

B. Ordered globules

In contrast to the gradual stretching of the toroidal and
random globules with no internal structure, we now turn our
attention to globules which release the stored length discon-
tinuously when subjected to a critical forcefc. A physical
example of this case would be a globule wlth a relatively
strong bond, which we term the “lock,” between two topo-
logically distant parts of the chain and weak bonds elsewhere
along the chain. Such a globule will resist unbinding until the
lock has been overcome at forcefc, at which point it sud-
denly reverts to the coil state. Admittedly, strong, long-

ranged bonds could arise by chance in a small proportion of
the disordered globules of Sec. III A. However, we use the
term “ordered” globules since we require that long-ranged
bonds occur in the whole ensemble of these globules, which
essentially requires that the globules have a native structure.
Proteins held together at distant points by disulfide bridges or
strong hydrophobic interactions and RNA “clovers,” are
clear candidates for the ordered globule model. Highly coop-
erative structuresslike many small proteinsd can also be
modelled as ordered globules in our sense, since applyingfc

disrupts their cooperative pattern and results in the complete
unbinding of the globule. Regardless of the details of the
bonding, the essential features of ordered globules for our
purposes are presented in Fig. 6. For proteins, the critical
unfolding force is generally on the order of 100 pN. Note
that our algorithm specifies not the absolute forcef, but the

dimensionless forcef̃, the actual value of which depends on
temperatureT and chain widthb. If we assume thatb for a
peptide is,5 Å and T<300 K, we arrive at a value of

kT/b=8 pN. Under these conditions, a value off̃ =2 in Fig. 7
corresponds to an unbinding force of 16 pN, whileb,2 Å

for a thinner chain would havef̃ =2 represent 8 pN, and so
on.

If we consider an ordered globule with a cutoff force f˜
c,

lengthL, initial bound lengthLbound, and

FIG. 5. Force-extension curve of a toroidal globule with varying chain
stiffnessf svalues indicated on plotd for surface tensionG=1 and length
L=1000. The dashed line indicates the sizex=Rtor, which is the cutoff of
numerical calculation.

FIG. 6. Ordered globule under extension. The shaded area marks the region
with a bond between two topologically distant sections, the “lock.”

FIG. 7. Force-extension curve of an ordered globule withf=1 for cutoff

force f̃ c=20, bound lengthLbound=500, and lengthL=1000. The dashed
line indicates the force-extension curve of the pure semiflexible chain with
f=1 and lengthL=1000.

194901-4 A. Craig and E. M. Terentjev J. Chem. Phys. 122, 194901 ~2005!

Downloaded 24 May 2005 to 131.111.75.96. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



xc < S1 −
2Î3

Î3 + 32f̃cf
DLbound s11d

as the critical extension at which the force on the chain

equals f˜c in Eq. s2d, the free energy of the ordered globule is
just

x , xc, Fsf̃c,xd =
3sL − Lboundd3

8f

1

sL − Lboundd2 − x2 ,

s12d

x . xc, Fsf̃c,xd =
3L3

8f

1

L2 − x2 .

In effect, the ordered globule follows the force-extension
curve for a semiflexible chain of lengthsL−Lboundd until
reachingxc, at which point the chain follows the curve for a
chain with the samef and lengthL. This is illustrated by the
dashed line in Fig. 7, which represents the force-extension
curve for pure semiflexible chain.

1. Ordered globules in series

The logical extension of a single ordered globule is a
series of ordered globules, as one might obtain in a repeat
polyprotein such as the titin strands used in atomic force
microscopy experiments,21,37 or the “necklaces” of small
globulesssee Fig. 8d hypothesized to exist in unfolded ran-
dom heteropolymers.8,38 If we assume that our series hasn

globules, each with bound lengthLi and bond strengthf̃ c
i

swith index i arranged in increasing order of the bond
strengthd, the free energy follows as

F =
sL − L j+1d3

8f

1

sL − L j+1d2 − x2 , s13d

where the remaining bound lengthL j+1=oi=j+1
n L; the xc

i are

those values of the extension where −dF/dx= f̃ c
i , and x c

j

,x,xc
j+1.

The free energy of a series of ordered globules found in
Eq. s13d is the free energy implicit in the piecewise fits of
force-extension curves with semiflexible force-extension re-
lations, as AFM experimenters have long used to assess the
protein unfolding data.37,39–42 As such, we match the
ordered-globule-series model against the force-extension
measurements of the immunoglobulin domain of titin, re-
ported in Ref. 37, in Fig. 9. An approximate fit can be found
in a series of ordered globules withn=5, lp=1.6 nm, and
f c

i <300 pN∀ i. One finds a relatively poor fit to the first
globule unbinding, though this may be a result of the initially
noisy force data obtained for this small extension; the fits

also suffer from the fact that the measured force-extension
curve cannot drop instantaneously to lower values of the
force after a globule unbinds, but slopes down gradually in-
stead. One must also concede that as it is, this model is itself
incomplete, as the exact values of thef c

i must be predicted
from molecular-dynamics simulations or the known proper-
ties of the bonds holding the protein together. However, the
lack of detail in the ordered globule model lends it the ad-
vantage of being generalizable to all cooperative proteins
that do not deform gradually under extension.

We also use the ordered-globule-series free energy as a
model for the discontinuous unbinding of a random globule
in the glassy phase, as alluded to in Sec. III A. Beginning
with Lbound,L, that is, with nearly all the polymer length
locked into the globules, we then averaged the force-
extension curves over 50 members of an ensemble randomly

distributed inLi and Gaussian-distributed inf̃ c
i with mean

k f̃ c
i l and standard deviationr as shown in Fig. 10. Intrigu-

ingly, the resulting averaged curve qualitatively reproduces
an averaged force-extension curve taken from explicit Monte
Carlo simulations of a globular Lennard-Jones chain.30 Aver-

FIG. 8. Ordered globules in series.

FIG. 9. Ordered globules in seriesscirclesd fit to experimental titin unfold-
ing datassolid lined, sRef. 37d with n=5, lp=1.6 nm, andf c

i <300 pN. We
thank D.A. Smith for the data.

FIG. 10. Force-extension curve of series of ordered globules with Gaussian-

distributed cutoff forcef̃ c
i sk f̃ c

i l=3,r=0.1d for random bound lengthsLi ,
n=20.
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aging over the individual responses of the globules yields a
curve that rises as the initial unbound length stretches out,
reaching a force plateau like that of the disordered globule
model, with a final rise where the last globule unbinds and
the system stretches as a pure semiflexible chain.

We note that this crude model does not reproduce the
discontinuity in the force-extension curve that corresponds to
the unbinding of the disordered globule. Nevertheless, one
can reproduce this dip if theLi are not distributed evenly
across all length scales, but have some minimum lengthLmin.
In this case, each single globulesand so as the averaged
should have a minimum in its force-extension curve atx
−L=Lmin, but the average force-extension curve will display
a force plateau forx−L=Lmin, producing a discontinuity.

IV. CONCLUSION

Unfortunately, single-globule experiments have not yet
assessed the stretching behavior of random globules, restrict-
ing our discussion to a theoretical level. Rather than dealing
with homopolymer globules, AFM single-globule experi-
ments have focused on protein unfolding,37,40 polymer ad-
sorption in poor solvent,43,44 or the mechanical properties of
a helices.45 Empirical confirmation of the force-extension
behavior of the disordered globules is a key piece of support
needed to justify the conclusions of this paper.

In this context, we have provided a partial review of the
literature on the force-extension response of globular poly-
mer chains. We have modified existing models to include
semiflexibility explicitly, and have distinguished between or-
dered and disordered globules as limiting cases of globules
with and without internal structure. Further, we have shown
how one may reproduce the force-extension results for dis-
ordered globules as an average over chains of ordered glob-
ules. Despite their differences, both classes of globules dis-
play force-extension curves which have discontinuities and
remain well-bounded for fairly high extensions, two results
which will be central to our discussion of networks of glob-
ules in the next paper.
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