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Rubber Elasticity 
 
Rubber bands are made from polymers, but the chains 
are crosslinked to provide a network. 
 
The amorphous phase in PE is also said to be rubbery – 
it is above its Tg but is constrained by the surrounding 
crystals and so cannot be said to be liquid-like. 
 
For the rubber bands, it is the crosslinks which 
determine the properties.   
 
[We will see later what the analogy is in amorphous 
regions of uncrosslinked materials.] 
 
The crosslinks provide a 'memory'.    
 
When the network is stretched, entropic forces come 
into play which favour retraction, returning the 
network to its original unstretched/equilibrium state. 
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Changes to the Rubber Network upon stretching 
 
 

 
 

Loss of entropy upon stretching, means that there is a 
retractive force for recovery when external stress 
removed. 
 
This is why a rubber band returns to its original shape. 
 
Use statistical mechanics to provide equations for the 
force on the chains. 

stretch

retract
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Consider a 1D random walk: 
 Step length p 
 Total distance travelled x 
 N steps of which A are forward and B back 
 
Then A+B = N  and (A-B)p = x 
 
Total distance travelled can be achieved in W ways 

where  W = 
N!

A!B!
 

 
Can use Stirling's approximation and solve for A and B 
in terms of N, p and x. 
 

Then ln W = N ln 2 - 
x2

2Np 2

 

 
  

 
  

And therefore S = Nkln2 - 
kx2

2Np2

 

 
  

 
  

 
This can be generalised to the 3d case 
 

S = 3Nkln2 - 
3kr2

2Na 2

 

 
  

 
  

 
where r is total distance and a is step length in 3d 
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Can now use thermodynamics to relate change of 
entropy to tension on a single chain when deformation 
applied 
 
Change in free energy when external force f applied 
 

fdx = d(U – TS) 
 

⇒ f = 
∂U
dx

− T
∂S
∂x

 

 
 
bond distortion term: 
usually negligible 
 

f = −T
∂S
∂x

= −
2kTx
2Np2  

 

f = − kTx
Np2     for 1D case 

 
 
i.e behaves as a classical spring of zero unstrained 
length – Hookeian elasticity. 
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Network Elasticity 
However each chain does not deform individually but is 
part of a network. 
 

lx λ  lxx

ly λ  l yy

 
 
Initial (3D) vector  ro = ( x, y, z)  between two crosslink 
points deforms to  r   = (λ xx, λyy, λ zz) 
 
i.e  r2 = λ x

2x2 + λy
2y2 + λz

2z2 
 
and   ∆r2 = (λ x

2-1)x2 + (λy
2-1)y2 + (λ z

2-1)z2 
 
so the change in entropy of this unit of the network is 
 
 

∆S =
−3k

2Na2 [(λx
2 −1)x2 + (λ y

2 −1)y2 + (λz
2 −1)z2] 

 
This needs to be summed over chains – n/unit vol 
For an initially isotropic network 

<x2> = <y2> = <z2> = 1/3 Na2 
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Then  ∆Snetwork = −
nk
2

[λx
2 + λy

2 + λz
2 − 3] 

 
i.e depends on chain ('strand') density, but not on 
contour length √N a 
 
Consider special case of extension in x direction 
i.e λx = λ      and λy = λz by symmetry 
 
Since rubber is essentially incompressible 
   λy = λz = (λ)-1/2 
 

∴∆Snetwork = −
nk
2

[λ2 +
2
λ

− 3] 

 
Now ignoring bond distortion 
 

F(λ) =
nkT

2
[λ2 +

2
λ

− 3] 

 
From this equation can obtain the stress-strain (or 
equivalently force-extension) relationship. 
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f =
∂F
∂λ

=
nkT

2
[2λ −

2
λ2 ] = nkT[λ −

1
λ2 ] 

 
For small deformations, strain e = λ-1 and 1/λ ~(1+e)-1 
 
∴ f  = nkT [1 + e - (1+e)-2] = 3nkTe 
 
Since n is number of chains/unit area, this is also equal to 
force/unit area = stress σ 
 
  ∴ σ = 3nkTe  i.e. Hookeian spring behaviour 
 
Can write this as σ = Ee   where E is Young's modulus 
 

E= 3nkT 
 

For incompressible materials, Young's modulus E= 3G 
(shear modulus) 
 

  G = nkT 
 

Note this means that for entropic elasticity (unlike 
enthalpic) the modulus increases with temperature and 
the material gets stiffer rather than softer. 
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Since n = no of strands/unit vol, can also write this in 
terms of the average MW between crosslinks Mx. 
 

n =
NAρ
Mx

   where ρ is the density 

 

∴     G =
ρRT
Mx

 

 
This is useful for other purposes as we will see later. 
 
Note as cross link density goes up, (n, or equivalently Mx 
decreases), modulus goes up : a highly crosslinked 
rubber is stiffer than a lightly crosslinked one. 
 
Limitations of model: only works for small strains - 
recall Stirling's approximation was used; bond distortion 
ignored. 
 
Network has limited extensibility. Can improve on model 
using Langevin function as in the case of magnetism. 
 
At large strains may have crystallisation occurring : 
strain induced crystallisation.  This can occur as chains 
line up during extension. 
 

Orientation 
 

We have seen for rubbers how the presence of 
crosslinks leads to a memory effect.  A similar sort of 
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effect can be seen for glassy amorphous polymers, only 
now the polymer must be warmed up to allow 
retraction. 
 
• What is the memory effect here (no crosslinks)? 
• Why is orientation useful? 
 
In glassy polymers such as PS, there are no chemical 
crosslinks. 
 
However the chains are long and get all tangled up. 
 
They behave as if there are local topological constraints 
– known as entanglements. 
 
Entanglements are not permanent, and can be broken 
by deformation, but they do act to form a temporary 
network. 
 
Chains can be stretched between entanglement points, 
just as with crosslinks in a rubber. 
 
Imagine taking a glassy polymer above Tg, and then 
cooling down while chains still stretched. 
 
Recall rubber stress-strain curve with the modulus 
greater at higher strains, as orientation of the chains 
occurs. 
 
This is true for glassy polymers too. 
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Oriented polymers will be stiffer along the chain 
direction than unoriented, and much stiffer than in 
transverse direction.  This is because there is little 
additional slack to pull out in the chain. 
 
There is strong commercial drive to produce high 
modulus fibres which are essentially stretched out 
chains of PE etc. 
 
For crystalline polymers, 
orientation will obviously change 
the type of crystals present – 
chain folding no longer likely.  
 
During processing, orientation 
often introduced, thereby 
destroying existing spherulites 
etc. 

Polymer Fracture 
 

Glassy polymer fracture is typically brittle, but differs 
substantially from other fractures, by virtue of the long 
polymer chains. 
 
Cracks do form, but prior to that a unique kind of 
deformation called crazing also occurs. 
 
Crazes form by drawing out chains from undeformed 
polymer until they are essentially stretched taut 
between entanglement points. 
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At this extension – which will be a characteristic for 
each polymer depending on the density of 
entanglements – further extension is difficult ('strain 
hardening') and the craze is stabilised. 
 

Easy to stretch until an extension ratio 
 

λ = le/d is reached. 
 

This can lead to extensions of up to ~4 in the craze. 
 
The craze runs ahead of a crack, and resembles it but 
consists of load bearing fibrils which span the 
interfaces. 
 
 

 

stretch

le

d

le

crack

craze
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The craze is therefore load bearing, but is a source of 
weakness. 
 
Crazes can be seen in the 'stress whitening' of flexed 
perspex rulers. 
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Since each polymer has a different λ (based on chain 
dimensions), we expect this to be reflected in craze 
structure. 
 
λ in the craze can be determined by electron 
microscopy. 
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Good correlation is found. 
 
In fact, the idea of entanglements was originally 
conceived for polymer melts, and the fact that these ideas 
could be extended to glasses – where chain motion is not 
expected to occur –  was originally not accepted by 
theorists. 


