Thisisamean field theory, in which the energy of a
molecule does not depend on its particular
environment.

Energy isafunction of the orientation distribution of
the molecules, described by the order parameter S.

It isassumed that this can be described simply by the
first P, term (L egendre polynomial) of an expansion,
but in reality therewill be higher order moments of
thedistribution which areignored in thisapproach.

Energy of jth molecule
1 2
u; =—-CS_(3cos™ 6, -1)
2

where C isa constant, assumed independent of T.

Thustheinteraction of a given rod dependson its

particular orientation 6;, and how it interacts with the
average orientation expressed by S.

Thisisa purely geometric argument, and ignores, for
instance, any particular dipolar interactions.
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1
<u; >= _CS(E <3cos’ § >-1)

=< UJ >= _CSZ

or per mole
(thefactor of 1/2 arisesto avoid double counting.)

The energy decreases asthe alignment increasesi.e.
asS- 1.

Thus alignment decreasesthe contribution of U tothe
internal energy.

However thisis offset by the entropic term: entropy
decreases as orientation improves.

Partition function Zj for thejth molecule given by

1
Zj =  [exp(-uj/kT) d(cos 6j)
0

substituting for u;yields

1
cCS C S 3c0s26j
Zi= exp-(q7) + J'exp (TL) dcosbj
0
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But S=kln Z,

Thusthe entropy per mole compared with the
isotropic stateis

1 CS3cos? 81
S = NAk[(—) -log{ jexp( S )dcosd, 1

Combining the entropy and internal energy terms,
(and assuming the volume is essentially independent
of S) yields

C S 3c0s26);

1
SEChE Iog{J exp (o ) dcosh; }]
0

2KT

AG = - NAkT[

Plots of how AG/NAKT vary with S show how the
phase equilibrium shifts with temperature.
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Thereisonetemperature at which therearetwo
minima with the same energy: onefor S=0 (i.e
isotropic) and onefor finite S.

This correspondsto theliquid crystal to isotropic
phasetransition temperature, T c_,.

Occursfor C/kT =4.55and S = 0.43.
Thustheory saysthat asyou warm an LC phase up

thereisacritical valueof S at which system
transforms (in a universal way) to an isotropic fluid.
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Aswith all mean field theories, thisonly worksup to
a point.

Liableto bewrong in thevicinity of the phase
transition, where critical exponentsin particular will
beincorrectly predicted; theory isignoring
fluctuations which will be very important here.

Also the theory takes no account of specific shape of
the moleculesinvolved, e.g. axial ratio.

Thisisparticularly important for polymers.

Other approaches suit polymers better for this
reason, when both length and stiffness can be
properly accounted for.

One of the most successful modelsisthe
, which builds on the mor e gener al

Thisis gpecifically a steric theory and takes no
account of specific intermolecular attractions, so has
a different range of limitations.
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The Onsager theory is essentially the rod-equivalent
of a hard spherefluid: therod-rod interaction energy
IS zer 0 except when they overlap in space—whenitis
infinite.

Thisleadsto areduction in translational entropy, as
there isless spacefor therodsto explore.

This excluded volume decreases astherods align, and
thisfactor providesthedriving forcefor the
formation of the nematic phase.

When orientation isreduced thereis a loss of
orientational entropy Syient.

In general, for adistribution of rodsf(6), the
Boltzmann formula (S=Y p Inp;) gives

Sorient = _kBIf(Q)In f(@)dQ

In the isotropic state f(6) = 1/41t
So the change in orientational entropy in going from
theisotropic to nematic stateis

AS = kg [ F(8)In[47£ (8)]dQ

But an additional term for the loss of trandational
entropy must also beincluded dueto the excluded
volume effect.

Lsin
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Excluded volumeis 2L “Dsiny[hereyisthe angle
the rods make with each other.

Let p[f(B)] = <lsiny}> then

pLf(6)] =<|siny >= [[f(6)f(8)sinyddey

and hencethe contribution to the free energy
dueto the excluded volume effect on the entropy
can be calculated.
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Aside on the free energy of a hard spherefluid:
For an ideal gas, N atomsin volumeV

Seesl :kBIn(a—l\\l/) whereaisa

constant.

|f the gas atoms have finite volume b, then the volume
accessibleto other atomsisreduced to (V-Nb) so that

S=kg In(a(v _NNb)) = Sea ke |n(1—b7N)
~ S —e| 1y b

and a corresponding free energy

F = F g +kBT(g)b: F, +kgTlogc +kgTch

wher e c=N/V the concentr ation.
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Equivalently for the hard rod fluid the free energy
can bewritten

F=F, +ksT (ogc+ [ (6) In[47F (6)]dQ + > Depl £ (6)])

orientat‘ion excluded V(Jlume

Put g=ctil. D4, the volume fraction of rodsthen
L 4 L |
F=F/' +kBT£qu(— goj + [£(6)In[47H (8)]dQ +——= gp[ (6)]
D D Y

The free energy depends only on ¢@L/D, the product of
the volume fraction and the aspect ratio (L/D) of the
rods.

Because thisinvolves a functional (a function of a
function) it ismessy to solve.

Schematically can see how the different terms
contributeto the free energy, and consequences for
the phase diagram.
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excluded |oss of

VO orierftational
Free : -
ener gy interaction entyopy
terms

0 Order Parameter 1

Therelative importance of the two terms dependson
@L/D: higher concentrations or higher aspect ratio
rods leads to enhancement of thisterm.

¢(L/D=45
Free

ener gy

@/W

0 Order Parameter 1
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