
 

AM Donald 
Liquid Crystals 

12

Maier-Saupe Theory for LC Phase Formation 
 

This is a mean field theory, in which the energy of a 
molecule does not depend on its particular 
environment. 
 
Energy is a function of the orientation distribution of 
the molecules, described by the order parameter S. 
 
It is assumed that this can be described simply by the 
first P2 term (Legendre polynomial) of an expansion, 
but in reality there will be higher order moments of 
the distribution which are ignored in this approach. 
 
Energy of jth molecule 
 
 uj = −CS

1
2

(3cos2 θ j −1) 

 
where C is a constant, assumed independent of T. 
 
Thus the interaction of a given rod depends on its 
particular orientation θθθθj, and how it interacts with the 
average orientation expressed by S. 
 
This is a purely geometric argument, and ignores, for 
instance, any particular dipolar interactions. 
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< uj >= −CS(
1
2

< 3cos2 θj > −1)  
�< uj >= −CS2  
 

or   U = -1/2 NACS2 per mole 
(the factor of 1/2 arises to avoid double counting.) 
 
The energy decreases as the alignment increases i.e. 
as S→→→→1. 
 
Thus alignment decreases the contribution of U to the 
internal energy. 
 
However this is offset by the entropic term: entropy 
decreases as orientation improves. 
 
Partition function  Zj  for the jth molecule given by 
 

 Zj  =       ��
0

1
exp(-uj/kT) d(cos θθθθj)  

 
substituting for uj yields 
 

 Zj =  exp -(
C S 
2kT )  +    

�
�
��

0

1

 exp (C S 3cos2θθθθj
2kT ) dcosθθθθj  
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But S = kln Z, 
 
Thus the entropy per mole compared with the 
isotropic state is 

 S  =  NAk[(
CS
2kT

)  - log { exp(
CS3cos2 θ j

2kT
)d cosθ j

0

1
� }] 

 
Combining the entropy and internal energy terms, 
(and assuming the volume is essentially independent 
of S) yields  

 
∆∆∆∆G  =  - NAkT[CS(S +1)

2kT
 - log{

�
�
�
�

0

1

  exp (C S 3cos2θθθθj
2kT ) dcosθθθθj }] 

 
 
 
 
Plots of how ∆∆∆∆G/NAkT vary with S show how the 
phase equilibrium shifts with temperature. 
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There is one temperature at which there are two 
minima with the same energy: one for S = 0 (i.e 
isotropic) and one for finite S. 
 
This corresponds to the liquid crystal to isotropic 
phase transition temperature, TLC→→→→I. 

 
Occurs for C/kT = 4.55 and S = 0.43. 
 
 
Thus theory says that as you warm an LC phase up 
there is a critical value of S at which system 
transforms (in a universal way) to an isotropic fluid. 
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As with all mean field theories, this only works up to 
a point. 
 
Liable to be wrong in the vicinity of the phase 
transition, where critical exponents in particular will 
be incorrectly predicted; theory is ignoring 
fluctuations which will be very important here. 
 
Also the theory takes no account of specific shape of 
the molecules involved, e.g. axial ratio. 
 
This is particularly important for polymers. 
 
Other approaches suit polymers better for this 
reason, when both length and stiffness can be 
properly accounted for. 
 
One of the most successful models is the Flory Lattice 
Model, which builds on the more general Onsager 
theory. 
 
This is specifically a steric theory and takes no 
account of specific intermolecular attractions, so has 
a different range of limitations. 
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The Onsager theory is essentially the rod-equivalent 
of a hard sphere fluid: the rod-rod interaction energy 
is zero except when they overlap in space – when it is 
infinite. 
 
This leads to a reduction in translational entropy, as 
there  is less space for the rods to explore. 
 
This excluded volume decreases as the rods align, and 
this factor provides the driving force for the 
formation of the nematic phase. 

 
 

Onsager Theory 
 

When orientation is reduced there is a loss of 
orientational entropy Sorient. 
 
In general, for a distribution of rods f(θθθθ), the 
Boltzmann formula (S= pi� ln pi) gives 
  Sorient = −kB f (θ) ln f (θ)dΩ�  
 
In the isotropic state f(θθθθ) = 1/4ππππ 
So the change in orientational entropy in going from 
the isotropic to nematic state is 
 

∆S = −kB f (θ )ln[4πf (θ)]dΩ�  
 
 

But an additional term for the loss of translational 
entropy must also be included due to the excluded 
volume effect. 

L
D

γγγγ
Lsinγγγγ
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Excluded volume is 2L2D sinγγγγ where γγγγ is the angle 
the rods make with each other. 
 
Let p[f(θθθθ)] = <||||sinγγγγ||||> then 
 
p[ f (θ)] =<| sinγ |>= f(θ)f(θ' )sinγdΩdΩ'��  
 
and hence the contribution to the free energy 
due to the excluded volume effect on the entropy 
can be calculated.    
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Aside on the free energy of a hard sphere fluid: 
For an ideal gas, N atoms in volume V 
 

Sideal = kB ln
aV
N

� 
� 

� 
�    where a is a 

constant. 
 

If the gas atoms have finite volume b, then the volume 
accessible to other atoms is reduced to (V-Nb) so that 
 

S = kB ln a (V − Nb)
N

� 
� 

� 
� = Sideal + kB ln 1−

bN
V

� 
� 

� 
�  

~ Sideal − kB
N
V

� 
� 

� 
� b 

 
and a corresponding free energy 
 

F = Fideal + kBT
N
V

� 
� 

� 
� b = Fo + kBT logc + kBTcb  

 
where c=N/V the concentration. 
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Equivalently for the hard rod fluid the free energy 
can be written 
 
F = Fo + kBT logc + f (θ) ln[4πf (θ )]dΩ + L2 Dcp[ f (θ)]�( ) 
 
  
    orientation excluded volume 
 
Put φφφφ=cππππLD2/4, the volume fraction of rods then 
 

F = Fo' +kBT log
L
D

φ
� 
� � 

� 
� � + f (θ )ln[4πf (θ)]dΩ+

4
π�

L
D

φp[ f (θ)]
� 
� 
� 

�

�
 
The free energy depends only on φφφφL/D, the product of 
the volume fraction and the aspect ratio (L/D) of the 
rods. 
 
Because this involves a functional (a function of a 
function) it is messy to solve. 
 
Schematically can see how the different terms 
contribute to the free energy, and consequences for 
the phase diagram. 
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The relative importance of the two terms depends on 
φφφφL/D: higher concentrations or higher aspect ratio 
rods leads to enhancement of this term. 
 

 

Free 
energy 

Order Parameter0 1

φL/D=4.5

φL/D=3.3

loss of 
orientational 
entropy

excluded 
volume 
interactionFree 

energy 
terms

Order Parameter0 1
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The free energy shows: 
 
an isotropic phase for φφφφL/D<3.34  (only minimum at S=0) 
an anisotropic phase for φφφφL/D> 4.49  
and a biphasic region for intermediate values (S=0.84 
in the anisotropic phase). 


