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Crystalline Solids 
 

Books 
 

There are many good texts on crystalline solids which 
cover the defects we will be covering here, many of 
which will already be familiar to you from Solid State. 
 
e.g 
Kittel 
Ashcroft and Mermin 
Rosenberg 
 
 
 
More specialist texts: 
 
Hull and Bacon – Introduction to Dislocations 
 
Ashby and Jones – Engineering Materials 



 

 

Defects 
 

Three basic (geometric) types: 
• Point – vacancy, interstitial, substitutional 
• Line – dislocations 
• Plane – grain boundaries 
 
 
 
Point Defects 
 
1.  Vacancy or Schottky Defect 

 
 
Perfect Crystal    Defect Crystal 
Free energy Go    Free energy G 
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More complicated in ionic crystals, where still need to 
maintain charge neutrality in the bulk. 

Positive and negative ions both 
move to  surface, leaving a pair of 
vacancies. 
 
Defects will affect both optical 
and electronic properties. 
 

 
In general, the energy of formation Ev depends on site 
to which atom moved. 
 
 
Ev lower if transferred to kink site  
(crystal ledge) than perfect surface. 
 
On average Ev corresponds to net 
breaking of ~1/2 neighbouring 
bonds 
~1/2 latent heat of sublimation/atom 
 

Ev~1eV 



 

 

2)  Interstitial vacancy – Frenkel defect 
 
 

 
 
Ionic crystal – 2 types 

 
More likely since cations tend to be smaller than anions 
���� lower associated strain energy. 
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Energy  due to strain (non-ionic case) 
 
Strain energy = 1/2 elastic constant x strain2 /vol 
 
Define shear modulus G = 

stress
strain

=
τ
γ

 

 
Strain energy = 1/2 G γγγγ2 (or equivalently 1/2 τγτγτγτγ) 
 
If b = lattice parameter 
Volume ~ b3 
Strain ~1 
 
����Strain energy = 1/2 Gb3 
 
hence EFrenkel~ 5-6ev 
 
Much larger than ESchottky and also EFrenkel> kBT 
 
In general not thermodynamically stable, and won't be 
discussed further. 



 

 

Equilibrium number of vacancies in monatomic crystal 
 
(For complete discussion see Waldram, Theory of 
Thermodynamics) 
 
Compute F for crystal with N atoms, n vacanices on 
N+n sites. 
 
3 contributions to toal entropy 
• Sc determined by density of states etc for given 

configuration of atoms. 
• Sb∝∝∝∝  number of bulk configurations 
• Ss∝∝∝∝  number of surface arrangements 
 
And  Sc= kBln gc(E) 
  Sb= kBln Wb 
  Ss= kBln Ws 

 
At equilibrium 

 dF = dFc −TdS
b

−TdSs= 0 

where  dFc = dE-TdSc-TdSs, the change in free energy 
when we move an atom from a particular bulk site to a 
particular surface site, without allowing lattice 
rearrangements to occur. 
 
DFc ~ 6 nearest neighbour bond energies (since break 
on average 1/2 the bonds in the surface) 
 

Now  Wb =
(N +n)!

N!n!  
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If 1 vacancy added Wb multiplied by  
 

 
N + n +1

n +1
~

N + n
n  

 

∴∴∴∴  dSb = kB ln
N +n

n
� 
� 

� 
�   

 
For large crystals dSs<<dSb 
 

∴∴∴∴  dF ~ dFc − kBT ln
N + n

n
� 
� 

� 
� = 0    

∴∴∴∴  n ~ N exp –dFc/kBT 
 
This is generally quite small, but can become 
appreciable towards the melting point.  
 
We will see later how vacancies are important for creep 
and diffusion 



 

 

Dislocations – Line Defects    
 
Dislocations were originally invoked to explain the 
discrepancy between theoretical shear stress and that 
experimentally determined, long before a dislocation 
was directly seen. 
 
 
Theoretical Shear Stress 

 
As two atom planes move past one another, the stress 
must increase and then decrease. 
 
 

 
  
 
Assume a sinusoidal    
form for the variation 
of shear stress ττττ with 
displacement x. 

st
re

ss

displacement

A B C
a

b
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Shear stress τ = ksin
2πx
b   with k = const 

 
Near origin, slope is measure of elastic shear modulus G. 

Hence, within this linear regime    dτ = G dx
a    and 

 

dτ ]x=0 =
2πk

b
cos

2πx
b

� 
� 

� 
� dx]x =0 ~

2πk
b

dx  

 

����

2πk
b

=
G
a  and therefore  k =

Gb
2πa

 

 

∴∴∴∴ τ =
Gb
2πa

sin
2πx
b

� 
� 

� 
�  

 
 

Maximum shear stress ττττ0000    is given by 

τ o =
Gb
2πa

~
G
2π  

Better models give ττττo ~ G/30 
 
Experiment shows this is far too high 
e.g Copper G=4.6 GN m-2  ���� ττττo = 0.72 GN m-2 

 
Experimentally a good single crystal gives τo 100 kN m-2



 

 

Dislocations 
 

The origin of the discrepancy between theory and 
experiment lies in the existence of dislocations. 
 
Dislocations are characterised by their Burger's vectors.  
These represent the 'failure closure' in a Burger's 
circuit in imperfect (top) and perfect (bottom) crystal. 

    
 
Edge       Screw 
Vectors describing dislocation line and Burger's vector are 
Perpendicular     Parallel 
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Dislocation Motion 
 

Dislocations make a material softer because they permit 
crystals to deform without moving one entire crystal 
plane over the one below. 
 
e.g. movement of edge dislocations 
 

 
 
The slip (also known as glide) plane is the plane on 
which the dislocation moves. 
 
The glide plane is defined by the vectors b and l. 
 
This means edge dislocations have a unique glide plane, 
but screw dislocations do not and can move on a whole 
family of planes. 



 

 

Many objects  can impede dislocation motion: 
• Other dislocations 
• Precipitates  
• Grain boundaries 
 

Climb – Diffusion-Controlled Creep 
 
Dislocation climb allows dislocations to climb round 
obstacles which are impeding their glide, thus allowing 
slip to continue. 
 

B

 
 
A vacancy diffuses to the position of atom B, causing the 
dislocation to climb one lattice vector.   
 
Diffusion can occur either through the bulk of the 
crystal - as shown ('lattice diffusion') - or along the 
dislocation core ('pipe diffusion'). 
 
This non-conservative dislocation mechanism gives rise 
to high temperature creep deformation.   
 
It only occurs at comparatively high temperatures 
because of the temperature dependence of the diffusion. 
It is a means of unpinning sessile dislocations. 
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Planar Defects – Grain Boundaries 
 

In practice, metals (and indeed semiconductors) are 
polycrystalline and contain grain boundaries. 
 
Lattice planes are not continuous across a grain 
boundary, and dislocation glide is impeded. 
 
Grain size therefore affects the strength of a metal. 
 
Larger grains mean softer material. 
 
Grain boundaries are regions of poor packing, and 
hence are easy sites for vacancy diffusion to occur. 
 
Diffusion will happen here more than in the bulk at low 
temperatures. 
 
Can therefore identify two regimes of creep due to 
vacancy diffusion alone. 
 
2. Coble creep at low temperatures; grain boundary 

diffusion. 
3. Nabarro-Herring  creep at high temperatures; bulk 

diffusion of vacancies. 
 



 

 

Diffusion and Flow in Crystals 

 
Model for bulk diffusion: 
Imagine a cubic grain with population of vacancies 
under shear stress ττττ, or equivalently stresses P shown.    
No net change in volume.  Atomic volume = ΩΩΩΩ    
Change in Gv = PΩΩΩΩ 
 
At sites labelled 1 have net increase in vacancies and at 
2 have decrease 
 

n1 = neqe
PΩ / kT

   n2 = neqe
−PΩ/ kT

     
 
Differences in populations lead to net flux of vacancies 
from 1 to 2 to remove gradient, and equivalently net 
flux of atoms from 2 to 1. 

P P

P

P

vacancy flux

atom flux

1

1

2

2

L
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Concentration gradient ~ 
n1 −n2

L  

 

Flux J = Flow rate/unit area/unit time = Dv
n1 − n2( )

L  

 
In  unit time cube increases in thickness by JΩΩΩΩ    
    

∴∴∴∴    strain rate Ý ε = JΩ
L

=
Dv n1 − n2( )

L2 Ω  

 
Now n1 - n2 ~ neq2PΩ/Ω/Ω/Ω/kT   for PΩ/Ω/Ω/Ω/kT<<1 
 

∴∴∴∴                Ý ε =
Dvneq2PΩ2

kTL2     

    
    
Now bulk diffusion coefficient D = Dv ×××× neq/N     
where neq/N is probability of vacancy site and 1/N=ΩΩΩΩ    
 
 

∴∴∴∴                    Ý ε = 2PΩD
kTL2     

    
    
Other models give other prefactors. 



 

 

 
 
 
 

Effective viscosity = 
shear stress
shear strain    =  

P
Ýε  

 

•     η =
kTL2

2DΩ     

    
and is strongly grain size dependent. 
 
 
e.g. for lead  (M Pt ~600K) 

Viscosity ηηηη in poises 
T/K L=1cm L=10-3cm 

(polyXtal) 
300 1010101023232323 1017 

595 1017 1011 

(1poise = 0.1 Pa s) 
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Grain Boundary or Coble Creep 
 

In practice there must always be 
flow of grain boundaries to 
accommodate shape changes. 

 
 
 
Because grain boundaries more disordered than bulk 

Dgb>>Dbulk 
Typically Dgb~ 106Dbulk 
(although very hard to 
measure). 
Contribution to creep from  
grain boundary will be  

~ 
δ
L

Dgb  

    
δδδδ~ 1nm (ie few atoms layers 

are disordered); so for 1mm grain size δδδδ/L ~ 10-6. 
 
Contributions from N-H and Coble creep similar. 
As grain size decreases Coble creep becomes more 
important.   
Also true at low temperature when activation energy to 
create vacancies becomes an obstacle. 

δδδδ

L



 

 

Ashby Deformation Map 
 
 

These are a way of pulling all the ideas so far discussed 
together, taking into account the different regimes of 
behaviour. 
 
Axes are normalised 
 
Boundaries between different regimes will depend on 
strain rate and grain size. 

 
 

 
 
 

0.5

σσ σσ/
G

10-2

10-1

10-3

10-4

10-5
0 1.0

Conventional plastic flow

Elastic 
deformation 
only

boundary 
diffusion

T/Tm
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Fracture 
 

Book   e.g JF Knott Fundamentals of Fracture 
Mechanics 

 
All materials show some elasticity. 
 
Metals and many polymers also exhibit significant 
plasticity. 
 
Fracture may occur with or without plasticity. 
 
Brittle fracture is usually associated with rapid crack 
propagation without plastic deformation. 
 
Ductile behaviour does have associated plastic 
deformation. 
 
Arguments similar to those used to arrive at the concept 
of dislocations, show that the theoretical failure stress is 
much higher than that experimentally observed. 
 
As before this is attributed to the presence of flaws: pre-
existing cracks and stress concentrations. 



 

 

Stress Concentrations at Notches and Cracks 
 

Inglis (1913) and Kolosoff (1914) 
 
Imagine lines of force around a crack 
 
Since crack cannot bear load, the lines of force become 
concentrated around the tips of the crack leading to a 
stress concentration. 
 
 

 

       stress 
concentration

crack

stress σσσσ
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Consider elliptical hole in plate under uniform tension 
σσσσ.    
 
Crack tip radius  

ρρρρ =b2/c  
 
 
 
 
 
 
 

Stress concentration a 
maximum at A, and can be 

shown to be  σ A =σ (1+
2c
b

) = σ (1+ 2
c
ρ

) 

 
Usually have c>>ρρρρ; then 

σ A ~ 2σ c
ρ     

For circular hole b=c and σσσσA = 3σσσσ acting tangentially. 
 
As ρρρρ decreases (ie crack gets sharper), stress 
concentration increases. 
eg c=10µm, ρρρρ = 0.5nm (ie atomically sharp) 

σσσσA/σ σ σ σ ~ 300 
Stress falls off very fast ahead of crack tip within 
distance ~c. 

 

2c
2b

σσσσ

ΑΑΑΑ



 

 

Crack can be surface notch or step (in which case c is 
the total notch length). 
 

Griffith Criterion 
 

This criterion expresses when a pre-existing crack is 
likely to lead to crack propagation and hence fracture. 
 
It is an argument based on energy balance. 

  
 

Energy released  = area of 
∆∆∆∆OAC 
 

    ~
1
2

σ ×
σ
E

×πc2
  for unit thickness  

        (approx for sphere) 
       strain 
 
More accurate calculations lead to 

unit 
thickness

2c

σσσσ

load

elongation

A

C

O

crack 
length c

crack 
length 
c+dc
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   Energy U =
πσ 2c2

E  

    

As crack grows      
dU
dc

=
2πσ 2c

E  

 
Griffith criterion says the crack will advance 
catastrophically if more energy is released than that 
absorbed by crack growth (W) due to creation of new 
surface 
   W = 2c 2γγγγ = 4cγγγγ    
    

i.e   
2πσ 2c

E
> 4γ   

 
 

�σ c =
2Eγ
πc   Griffith criterion 

 
Can also be expressed in terms of 
 G = elastic energy release rate, or crack driving force 
(where the use of the word rate means per increment of 
crack length not time) 
 
G has dimensions of energy/unit plate thickness/unit 
crack extension 
 



 

 

Two crack tips 
 

2G = dU/dc = dW/dc = 4γγγγ    
 

�σ c =
EG
πc     

 
Strong materials have high E and γγγγ, and small c. 
But strong is not the same as tough. 
 
Tough materials imply large energy absorption as crack 
advances i.e. large G  or dW/dc or γ.γ.γ.γ.    
    
Note energy released    ∝∝∝∝  c2 
But  energy absorbed   ∝∝∝∝  c 
 
Critical condition must always be met for large enough 
crack, but may not be for small specimen with small 
cracks.  
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Fracture Mechanics 
 

When a block containing a crack is stressed, there is a 
stress concentration at the crack tip which falls off with 
distance. 
 
The stress at any point (away from the actual crack tip 
where a singularity would be implied) can be writtne 
 

σ ij =
K
2πr

fij (θ)  θθθθ = azimuthal angle 

    r= distance ahead of tip 
 

K is the stress intensity factor – it depends on crack 
length, applied stress and specimen geometry. 
 
 
  K = Yσ c  
 
 
 specimen geometry dependent term 
 
K is a link between detailed stress field around crack and 
'macroscopic' quantities such as applied stress and crack 
length. 
 



 

 

Modes of Loading 
 

I II III

 
 
For the simple case of mode I loading of crack of length 2c 
 
  K = σ πc   i.eY = π  
 

Recalling   σ c =
2Eγ
πc

 

 
KIc = 2Eγ = EG  
 
Critical stress intensity factor 
For mode I loading 
 

Note this provides a way to measure γγγγ for brittle material, 
by finding the value of KIc ie introduce notch of known 
length c, and find critical stress. 
However many materials do not simply show brittle failure, 
and there may be extensive crack tip plasticity. 
Existence of this plasticity removes the stress singularity at 
the crack tip. 
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Energy absorption is then much greater, and appropriate 
γγγγ will not simply be surface energy. 
Simplest model assumes deformed zone of radius rp ahead 

of crack tip within which stress = yield stress σσσσys 
 

σ =
KI

2πrp
= σ ys   � rp =

KI
2

2πσys
2      and KI = σ πc  

 

rp =
cσ 2

2σ ys
2  

 
In fact this is underestimate, since load indicated by 
shaded area must still be supported and hence stress 
beyond circular zone pushed up so more deforms. 

σσσσ

σσσσys

rp
crack
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