Books
There are many good texts on crystalline solids which

cover the defectswe will be covering here, many of
which will already be familiar to you from Solid State.

eg
Kittel

Ashcroft and Mermin
Rosenberg

More specialist texts:
Hull and Bacon — I ntroduction to Dislocations

Ashby and Jones— Engineering M aterials
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Threebasic (geometric) types:
—vacancy, inter stitial, substitutional
— didlocations
—grain boundaries

1. Vacancy or Schottky Defect
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More complicated in ionic crystals, where still need to
maintain charge neutrality in the bulk.

+ - o+ - 4 Positive and negative ions both
moveto surface, leaving a pair of

-+ -+ - )
vacancies.

_<—+—O + _ +
- + - (O)—»y Defectswill affect both optical

and electronic properties.
+ - + _ 4

In general, the dependson site
to which atom moved.

E, lower if transferred to kink site
(crystal ledge) than perfect surface.

On average E, correspondsto net
breaking of ~1/2 neighbouring
bonds

~1/2 latent heat of sublimation/atom

E,~1eV
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2) Interstitial vacancy — Frenkel defect

O 0 0O O
O O O
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lonic crystal — 2 types
+ - + - + + - + - +

oLl LT

- * + - + . o+

Morelikely ;Izince cationstend to be smaller than anions
= lower associated strain energy.



Strain energy = 1/2 elastic constant x strain® /vol

stress _ 1
strain ¥y

Define shear modulus G =

Strain energy = 1/2 G v (or equivalently 1/2 ty)
If b = lattice parameter

Volume~b®

Strain ~1

—Strain energy = 1/2 Gb®

hence Eg,aka~ 5-6€V

Much larger than Escoriky and also Egrenke™ KgT

In general not thermodynamically stable, and won't be
discussed further.
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(For complete discussion see Waldram, Theory of
Thermodynamics)

Compute F for crystal with N atoms, n vacanices on
N+n sites.

3 contributionsto toal entropy

o S determined by density of statesetc for given
configuration of atoms.

e S0 number of bulk configurations

« SJM1 number of surface arrangements

And S=kgln g.(E)
S= kBln Wy
S= kBln W

At equilibrium
dF =dF; -TdS - TdS

where dF.=dE-TdS.-TdS;, the changein free energy
when we move an atom from a particular bulk sitetoa
particular surface site, without allowing lattice

rear rangements to occur .

DF. ~ 6 nearest neighbour bond energies (since break
on average 1/2 the bondsin the surface)

(N +n)!
N!nl

Now VW =



If 1 vacancy added W, multiplied by

N+n+1~ N+n
n+1 N

1 dgszln(N:”)

For large crystals dS<<dS,

. dF~dFC—kBTIn(N:n) =0

O n~Nexp—-dFJ/ksT

Thisis generally quite small, but can become
appr eciable towar ds the melting point.

We will seelater how vacancies are important for creep
and diffusion
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Dislocations were originally invoked to explain the
discrepancy between theoretical shear stress and that
experimentally determined, long before a dislocation
was directly seen.

Astwo atom planes move past one another, the stress
must increase and then decr ease.

-

.
Assume a sinusoidal

form for the variation
of shear stress rwith
displacement x.

CEEEE




2 TIX

Shear stress I = kSin_b with k = const
Near origin, slopeis measure of elastic sheaamodulusG.
X
Hence, within thislinear regime dr = G; and
(27 27K
dr],-o ——cos\—)d ] =0 ~—dx
2nk G Gb
= p __a and therefore k—%
| 2m)

DT%\)

Maximum shear stress 1o isgiven by
Gb N G

27 271
Better models give 1, ~ G/30

Ty =
Experiment showsthisisfar too high

egCopper G=46GNmM? = 1,=0.72GN m™
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Theorigin of the discrepancy between theory and
experiment liesin the existence of dislocations.

Dislocations ar e char acterised by their
Theserepresent the 'failureclosure’ in aBurger's
circuit in imperfect (top) and perfect (bottom) crystal.

P . QM
0 - N
1L
_ \\ B
P . %Q \\ B
Burgers, vector \\ L1
| | 4 :\ |1
™ |
0 N \\J P
Edge Screw

Vectorsdescribing didocation line and Burger'svector are



Dislocations make a material softer because they permit
crystalsto deform without moving one entire crystal
plane over the one below.

e.g. movement of edge dislocations

Y Yy 7

(l) (I J) I; (I1 ! J I) (I‘ } lk )] } J }

s ‘é;'?; :‘f% (1 f§5
swpane S VL AT 53

AREHET H‘p T

A T ifgf

g (i errY %i’
The Isthe plane on

which the didocation moves.
The

This means edge dislocations have a unique glide plane,
but screw dislocations do not and can move on a whole
family of planes.
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Many objects can impede dislocation maotion:
e Other didocations

* Precipitates

e Grain boundaries

Didlocation climb allows dislocationsto climb round
obstacles which are impeding their glide, thus allowing
dlip to continue.

E I

B

°

A vacancy diffusesto the position of atom B, causing the
didocation to climb one lattice vector.

Diffusion can occur either through the bulk of the
crystal - as shown ( ) - or along the
dislocation core ( ).

This non-conservative dislocation mechanism givesrise
to high temperature defor mation.

It only occurs at
because of the temper atur e dependence of the diffusion.
It isa means of unpinning sessile dislocations.



In practice, metals (and indeed semiconductors) are
and contain grain boundaries.

L attice planes are not continuous acrossagrain
boundary, and

Grain sizetherefor e affects the strength of a metal.
Larger grains mean softer material.

Grain boundaries areregions of poor packing, and
hence are easy sitesfor vacancy diffusion to occur.

Diffusion will happen here morethan in the bulk at low
temper atures.

Can thereforeidentify two regimes of creep dueto
vacancy diffusion alone.

2. ; grain boundary
diffusion.

3. - bulk
diffusion of vacancies.
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vacangy flux

Model for bulk diffusion:

| magine a cubic grain with population of vacancies
under shear stresst, or equivalently stresses P shown.
No net changein volume. Atomic volume=Q
Changein G, = PQ

At siteslabelled 1 have net increase in vacancies and at
2 have decrease

PQ/KT -PQ/KT

N = Nye N, = Ny€

fliin/, AfF viananAiAnc
IHUA Ul vauadliul o

MNuffAarcanmAance 1n nAantillatiAane lAaad +A nAt
LJITITI TIILVCO 111 IJUIJUIGI.IUI 191TAU LU |ITL
from 1to 2 toremove gradient, and equivalently net
flux of atomsfrom 2to 1.



n—n,
Concentration gradient ~ L

(n,-n,)

Flux J = Flow rate/unit area/unit time = Dv L

In unit time cubeincreasesin thickness by JQ

/=30 _DB(m-n)

. y:
[ strain rate L L2
NOW Ny - Ny~ Ngg2PQ/KT for PQ/kT<<1
2
- v D, N, 2PQ
KTL?

Now bulk diffusion coefficient D = D, X ng/N
where neg/N is probability of vacancy site and 1/N=Q

. 2PQD
Y=
H KTL2

Other models give other prefactors.
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shear stress P
Effec:tiveviscosityzShear Sran - =

&
. KTL?
) 2DQ
and is strongly grain size dependent.
e.g. for lead (M Pt ~600K)
TIK L=1cm L=107cm
(polyXtal)

(1poise= 0.1 Pas)



In practice there must always be
- flow of grain boundariesto
- accommodate shape changes.

Vol
Because grain boundaries mor e disordered than bulk

Dgo>>Dhouik
Typically Dg,~ 10°Dpyik
(although very hard to
measure).
Contribution to creep from
grain boundary will be

o
~E gb

O~ 1nm (ie few atoms layers
are disordered); so for Imm grain size d/L ~ 10°.

Contributionsfrom N-H and Coble creep similar.
Asgrain size decreases Coble creep becomes more
important.

Also true at low temperature when activation energy to
cr eate vacancies becomes an obstacle.
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These are away of pulling all theideas so far discussed
together, taking into account the different regimes of
behaviour.

AXxesare normalised

Boundaries between different regimeswill depend on
strain rateand grain size.

o/G

10-4

10

Conventional plastic flow

Elastic
defor mation
only

boundary
diffusion

1.0



Book e.g JF Knott Fundamentals of Fracture
M echanics

All materials show some elasticity.

M etals and many polymer s also exhibit significant
plasticity.

Fracture may occur with or without plasticity.

fractureisusually associated with rapid crack
propagation

behaviour does
Argumentssimilar to those used to arrive at the concept
of dislocations, show that thetheoretical failure stressis

much higher than that experimentally observed.

Asbeforethisisattributed to the presence of flaws: pre-
existing cracks and stress concentrations.
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Inglis (1913) and K olosoff (1914)
| magine lines of force around a crack

Since crack cannot bear load, the lines of for ce become
concentrated around thetipsof the crack leadingto a

Stress _
concentration




Consider dliptical holein plate under uniform tension
c.

Crack tip radius
p =b%/c

204

-

2C

Stress concentration a
maximum at A, and can be

2
shown to be oy=0(1+ FC) =o(1+ 2\/%)

Usually have c>>p; then
Op~20
For circular hole b=cand ga = 3c acting tangentially.

As p decreases (ie crack gets sharper), stress
concentration increases.
eg c=10um, p = 0.5nm (ie atomically sharp)

oa/o ~ 300
Stressfalls off very fast ahead of crack tip within
distance ~c.
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Crack can be surface notch or step (in which casecis
thetotal notch length).

Thiscriterion expresses when a pre-existing crack is
likely to lead to crack propagation and hence fracture.

It isan argument based on ener gy balance.

A
' crack
load & length c
«<Cp
unit ¢
thickness e CTACK
O length
c+dc
(A -
elongation
Energy released = area of
AOAC
1 o) 2
..EJX E X T for unit thickness

(approx for sphere)

M or e accur ate calculations lead to



nio’c?

Energy U = =

) dU 2no’c
A p—
SCrack grows dC E

Griffith criterion saysthe crack will advance
catastrophically if more energy isreleased than that
absor bed by crack growth (W) dueto creation of new
surface

W = 2c 2y = 4cy

| 2 110°C
1.e E

>4y

2Ey

=0 = e Griffith criterion

Can also be expressed in terms of

G = elasticenergy releaserate, or crack driving force
(wherethe use of theword rate means per increment of
crack length not time)

G hasdimensions of energy/unit plate thickness/unit
crack extension
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Two crack tips

2G = dU/dc = dW/dc = 4y

Strong materials have high E and y, and small c.
But strong is not the same astough.

Tough materialsimply large ener gy absor ption as crack
advancesi.e. large G or dW/dcor y.

Noteenergy released [0 ¢
But energy absorbed [c

Critical condition must always be met for large enough
crack, but may not be for small specimen with small
cracks.



When a block containing a crack isstressed, thereisa
stress concentration at the crack tip which falls off with
distance.

Thestressat any point (away from the actual crack tip
where a singularity would be implied) can be writtne

ot :L fi; (6) 0 = azimuthal angle

N2

r=distance ahead of tip
— it dependson crack
length, applied stress and specimen geometry.

K =Yovc

specimen geometry dependent term

K isalink between detailed stressfield around crack and
‘macr oscopic' quantities such as applied stress and crack
length.
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For the ssimple case of mode | loading of crack of length 2c

K =0gv7c i.eY =+/7

Recalling o, = 2_7I7:_Cy

K. =+2Ey =VEG

(,Iritical stressintensity factor
For mode | loading

Notethisprovidesa way to measurey for brittle material,
by finding the value of K. ieintroduce notch of known
length c, and find critical stress.

However many materials do not smply show brittlefailure,
and there may be extensive crack tip plasticity.

Existence of this plasticity removesthe stress singularity at
the crack tip.



Energy absor ption isthen much greater, and appropriate

y will not ssimply be surface energy.
Simplest model assumes deformed zone of radiusr, ahead
0

of crack tip within which stress=yield stress oy

K K,?
O=——==0 =>r,=7—— and K, =gV
2711, 2770
. co’
P 2
20,

In fact thisisunderestimate, since load indicated by
shaded area must still be supported and hence stress
beyond circular zone pushed up so more deforms.
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