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Obstacles to Dislocation Motion 
 

Many objects  can impede dislocation motion: 
 
?  Other dislocations 
?  Precipitates  
?  Grain boundaries 
 
Dislocation Interactions 
When dislocations intersect, jogs  and kinks  are formed. 
 

A kink  is a step in the dislocation line in the slip plane: 
 

A kink in an edge dislocation (left) and a screw 
dislocation (right). 
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A jog  is a step in the dislocation line onto another slip 
plane: 
 
 

 
A jog in an edge dislocation (left) and a screw 
dislocation (right). 
 
A kink, lying in the slip plane provides no impediment 
to motion.   
This is the case when edge dislocations meet. 
 
But if a jog with edge character is formed in a screw 
dislocation it cannot glide since the glide plane for the 
jog is different from that for the main dislocation line. 
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In the case illustrated of a jog introduced by a screw 
intersecting with either another screw or an edge 
dislocation, the jog has edge character and a different 
glide plane. 
 
 

The jog is pinned and the dislocation is said to be 
'sessile'. 
 
In this case motion can only occur by the dislocation 
line moving out of its existing glide plane – this is known 
as non-conservative motion; the length of the 
dislocation line is not conserved. 
 
(Motion on the glide plane is known as conservative). 

b

b

glide plane 
for jog

glide plane 
for screw



  

 16 
AM Donald 
Crystalline Solids 
 

Climb – Diffusion-Controlled Creep 
 

Dislocation climb allows dislocations to climb round 
obstacles which are impeding their glide, thus allowing 
slip to continue. 
 

 

B

 
 
A vacancy diffuses to the position of atom B, causing the 
dislocation to climb one lattice vector.   
 
Diffusion can occur either through the bulk of the 
crystal - as shown ('lattice diffusion') - or along the 
dislocation core ('pipe diffusion'). 
 
This non-conservative dislocation mechanism gives rise 
to high temperature creep deformation.   
 
It only occurs at comparatively high temperatures 
because of the temperature dependence of the diffusion. 
 
It is a means of unpinning sessile dislocations. 

Rate of Climb and Stress Dependence 
 

This process also allows dislocations to climb round 
precipitate particles. 
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In this case the rate of creep is determined by the rate at 
which dislocations can climb past obstacles. 
 

 
How do dislocations respond to a stress τ? 
 
Consider this stress causing a dislocation to move right 
through a crystal of size l1 
External work done dW = τ × l1 × l2   × b 

     stress   area       displacement 
Also dW = force on dislocation/unit length  

× length ×distance travelled 
         = f × l2 × l1 

⇒ f = τ b 
 

climb

glide

b

τ

τ

l 1
l2
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Now at a precipitate particle 
In equilibrium: 
Reaction force = glide + 
climb force 
 
Climb force = τb tanθ 
Hence increases with stress 
 
As shear stress increases, 

more dislocations unlocked and more creep occurs. 
 
Situation usually described by 

ε
.

ss ∝ τ ne
−Q

RT
 

 
and known as power law creep. 
This also has strong T dependence, requiring vacancy 
diffusion. 

reaction  
force

glide 
force τb

θ
climb force 
τbtanθ
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Multiple Cross Slip 
 

Screw dislocations do not have a unique glide plane. 
 
Thus for them (but not for edge) an alternative way to get 
round obstacles is available, known as multiple cross slip. 

 

 
 

Cross-slip in a face-centred cubic crystal:  A screw 

dislocation at z can glide in either the (111) or the (1 1
−

1) 
close-packed planes.   
 
Multiple cross-slip occurs in (d), as it moves from one 
plane to the other, and then continues to move parallel 
to the first glide plane. 

Energy of a Dislocation 
 

Consider the case for a screw dislocation 



  

 20 
AM Donald 
Crystalline Solids 
 

 

σ zϑ =
Gb
2πr  

 
(stress = modulus × strain) 
 
This is the stress acting in the z direction across plane 
θ = const. 
 

∴ energy = 
1
2

∫ σεdV =
1
2

∫
Gb
2πr

b
2πr

2πrdr /unit length 

 
The upper limit of the integral, R, is given by the 
distance to nearest dislocation of opposite sign/loop 
diameter. 
 
The lower limit ro represents the inner cut-off where 
linear elasticity breaks down. 
 

Energy = 
1

4π
Gb2 ln

R
ro

 

 
  

 
   /unit length 

 
For edge dis locations, the effect of Poisson's ratio ν has to 
be taken into account. 

Etot = 

1
4π (1−ν )

Gb2 ln
R
ro

 

 
 

 

 
 

 / unit length 

 

z r

b
θ
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Including core energy  
Etot ~ 1/2 Gb2  -   a few eV/atom plane 

 
(of which ~10% is core). 
 
Dislocations are not usually in thermal equilibrium, so 
some means must be found to create them. 
 

Production of Dislocations 
 

Example:  Frank Read Source – dislocation pinned at 
both ends. 

 

l

 
What is the force on the curved segment causing it to 
bow out? 
 
Line tension T can be equated to energy/unit length. 
 
∴ T ~ 1/2 Gb2 

 

For curved segment 
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 Total normal force on segment 

 2T
δx
2R

=
Gb2

2R
δx  

 
 

If in equilibrium with applied stress, 

  τbδx =
Gb2

2R
δx  

 

∴  τ ~
Gb
2R      or  R ~

Gb
2τ  

 
i.e equilibrium radius of curvature is controlled by 
stress. 

T

T

F

δx

R
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The Frank Read source expands under the stress, 
pinned at both ends.  
 
When the bowed dislocation line reaches a semicircle it 
can continue to expand under a diminishing force. 
 
There are other sources of dislocation lines:  
?  single Frank-Read sources, where 

the line is pinned only at a single 
source. 

?  Intersections with other dislocations 
– jogs increase the length of the line , 
and may act as Frank Read sources. 

 
Regimes of Deformation 

 
I Easy Glide – only one slip 
system operates: single 
crystals only 
 
II Work hardening – 
multiplication and 
interaction of dislocations 
 
III Dynamic recovery, - 
multiple cross slip, climb and 
polygonisation. 

I
II

III

easy  
glide

work 
hardening

recovery

st
re

ss
 σ

strain ε
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Polygonisation allows random dislocation arrays to 
rearrange to reduce strain energy. 
 
 
 

 
Both climb and glide required: facilitated by high T and 
stress. 
 
Low angle grain boundaries tend to form as a result. 

rearrangments 
occur at hi T
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Precipitation Hardening 
 

Pure metals tend to be very soft. 
 
Second phase particles (precipitates) are often added to 
toughen them, by impeding dislocation motion. 
 
1) 

 
The dislocation line is in tension, and as it meets each 
particle will exert a force on it. 
 
2) 

 
 
The dislocation line has to bow round the particles. 
 
To progress further either A) the particles have to be 
cut through or B) the line may curve so much around 
each particle it forms a loop (Orowan looping). 
The force for each process can be calculated, so that it 
can be deduced which process will dominate. 
 
A) Cutting 
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B) Orowan looping 

 
 

 
 
In order to optimise the toughening impact of 
precipitates, their size and spacing must be controlled. 
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Cutting Force 
 
If one particle is cut through the dislocation line 
advances a distance h. 

λ is mean distance between 
particles along line. 
 
lo is average interparticle 
spacing 
 
Area swept out when one 
particle is cut through 
~hλ,  which must be approx 
equal to lo2 
 
so lo2 ~ h λ 
 
For small θ  h/λ ~ sinθ  ⇒ 

(lo/λ)2 ~ sin θ 
 
Critical cutting force Fc = 2T sin θ  
 

⇒ Fc =2T lo2/λ2   or λ ~ lo
2T
Fc

 

 
Cutting force depends on distribution of precipitate 
particles. 
Can now substitute for T 

h

θ

λ
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2Tsin θ = τbλ  (since line length λ before cutting) 
and this must equal force on each particle. 
 
∴ critical stress for cutting τc = Fc/bλ 
 

  
τ c =

Fc

blo

Fc

2T
  and T ~ 1/2 Gb2 

 

∴     
  
τ c =

Fc( )
b2lo G

3/ 2

 

 
In contrast if looping occurs 
 

   
  
τ c ~

Gb
lo

 

 
Thus cannot simply add tougher and tougher particles 
to strengthen material, since if Fc too big, will get 
looping instead. 
 
In general there is an optimum dispersion with particles 
not too big (typically cutting force ∝ particle radius (Fc 
=kr) and not too far apart. 
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Particle size Effect on Yield Stress 
 
If an alloy has a fixed volume fraction of strengthening 
particles, is it better to have fine, closely spaced 
particles, or coarser, more widely spaced particles? 
 
Consideration of the critical stresses for cutting and 
looping shows that there is an optimum particle size  for 
precipitate hardening. 
 
 

 
 

During long term service, annealing may occur leading 
to coarsening of particles. 
 
In this case strength may drop over time, and can set a 

useful working life on e.g. a turbine blade. 

Particle Radius

Yield  
Stress

cutting

Overaged

optimum 
sizelooping


