Crystalline Solids
Books

There are many good texts on crystalline solids which
cover the defectswe will be covering here, many of
which will already be familiar to you from Solid State.

e.g
Kittel

Ashcroft and Mermin
Rosenberg

More specialist texts:
Hull and Bacon — Introduction to Didocations

Ashby and Jones— Engineering Materials
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Defects

Three basic (geometric) types:

- Point — vacancy, inter stitial, substitutional
- Line —diglocations

- Plane—grain boundaries

Point Defects

1. Vacancy or Schottky Defect
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More complicated in ionic crystals, where still need to
maintain charge neutrality in the bulk.

+ - o+ - o+ Positive and negative ions both
moveto surface, leaving a pair of

-+ -+ .
vacancies.

-<—I——Q+_+

-+ - () —»y4 Defectswill affect both optical

and electronic properties.
+ - + _ 4

In general, the energy of formation E, depends on site
to which atom moved.

E, lower if transferred to kink site
(crystal ledge) than perfect surface.

On average E, correspondsto net
breaking of ~1/2 neighbouring
bonds

~1/2 latent heat of sublimation/atom

E,~1eV
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2) Interstitial vacancy — Frenkel defect
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lonic crystal — 2 types
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Morelikely ane cationstend to be smaller than anions
b lower associated strain energy.
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Energy dueto strain (non-ionic case)

Strain energy = 1/2 elastic constant x strain® /vol

. r

Define shear modulus G = st_&ss;_

stran g

Strain energy = 1/2 G f (or equivalently 1/2tg)
If b = lattice parameter

Volume ~ b’

Strain ~1

b Strain energy = 1/2 Gb*

hence Er;enke~ 5-6€V

Much larger than Egg ety and also Egene™ Ks T

In general not thermodynamically stable, and won't be
discussed further.
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Equilibrium number of vacanciesin monatomic crystal

(For complete discussion see Waldram, Theory of
Thermodynamics)

Compute F for crystal with N atoms, n vacanices on
N+n sites.

3 contributionsto toal entropy

- S, determined by density of statesetc for given
configuration of atoms.

- S number of bulk configurations

- S number of surface arrangements

And S= ksln go(E)
So= ksIn W,
S= kB|n W

At equilibrium

dF =dF, - TdS - TdSg.

where dF.= dE-TdS.-TdS; the changein free energy
when we move an atom from a particular bulk siteto a
particular surface site, without allowing lattice

rear rangementsto occur.

DF. ~ 6 nearest neighbour bond energies (since break
on average 1/2 the bondsin the surface)
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_ (N +n)!
Now %% = NIl

If 1 vacancy added W, multiplied by

N+n+1~N+ﬂ
n+1 n

_ o aN+Nng

For large crystals dS<<dS,

aN+ng
\ dF dFC—kBTll’lé ——

\ n~Nexp—-dFJ/gT

0

Thisisgenerally quite small, but can become
appr eciable towar ds the melting point.

We will seelater how vacancies are important for creep
and diffusion
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Didocations— Line Defects

Dislocations were originally invoked to explain the
discrepancy between theoretical shear stress and that
experimentally determined, long before a dislocation
was directly seen.

Theoretical Shear Stress

Astwo atom planes move past one another, the stress
must increase and then decr ease.
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Assume a sinusoidal
form for thevariation
of shear stresst with
displacement x.
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2PX
Shear stresst = kSl nT with k = const

Near origin, slopeis measure of elastic shea(r:I modulus G.
X

Hence, within thislinear regime dt = G; and

dt 1,co —Ekcmﬁépxod]xc) 2Ekdx

b ebo
Ghb

and therefore k= —

2pk
)
2pa

b

»| @)

anXO

t =
\ 2pa "¢ h o

Maximum shear stresst, isgiven by
G

2pa 2p
Better modelsgive t,~ G/30

o —

Experiment showsthisis far too high
egCopper G=46GNmM? P t,=0.72GN m?

Experimentally a good single crystal gives t, 100 kN m
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Didocations

Theorigin of the discrepancy between theory and
experiment liesin the existence of didocations.

Didocations are characterised by their Burger's vectors.
These represent the 'failure closure' in aBurger's
circuit in imperfect (top) and perfect (bottom) crystal.

P M |Q

Burgers, vector
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Edge Screw
Vectorsdescribing didocation line and Burger's vector are
Perpendicular Parallel
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Dislocation Motion
Dislocations make a material softer because they per mit
crystalsto deform without moving one entire crystal
plane over the one below.

e.g. movement of edge didocations
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Thedlip (also known as glide) plane isthe planeon
which the dislocation moves.

The glide planeis defined by the vectors b and |.
This means edge dislocations have a unique glide plane,

but screw didocations do not and can move on a whole
family of planes.
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