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Crystalline Solids 
 

Books 
 

There are many good texts on crystalline solids which 
cover the defects we will be covering here, many of 
which will already be familiar to you from Solid State. 
 
e.g 
Kittel 
Ashcroft and Mermin  
Rosenberg 
 
 
 
More specialist texts: 
 
Hull and Bacon – Introduction to Dislocations 
 
Ashby and Jones – Engineering Materials 
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Defects 
 

Three basic (geometric) types: 
• Point – vacancy, interstitial, substitutional 
• Line – dislocations 
• Plane – grain boundaries 
 
 
 
Point Defects 
 
1.  Vacancy or Schottky Defect 

 
 
Perfect Crystal    Defect Crystal 
Free energy Go    Free energy G 



AM Donald  3 
Crystalline Solids 

+ + +

++

- -

-- +

+

+

--+

- - -

- - -

++

+
+

More complicated in ionic crystals, where still need to 
maintain charge neutrality in the bulk. 

Positive and negative ions both 
move to  surface, leaving a pair of 
vacancies. 
 
Defects will affect both optical 
and electronic properties. 
 

 
In general, the energy of formation Ev depends on site 
to which atom moved. 
 
 
Ev lower if transferred to kink site  
(crystal ledge) than perfect surface. 
 
On average Ev corresponds to net 
breaking of ~1/2 neighbouring 
bonds 
~1/2 latent heat of sublimation/atom 
 

Ev~1eV 
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2)  Interstitial vacancy – Frenkel defect 
 
 

 
 
Ionic crystal – 2 types 

 
More likely since cations tend to be smaller than anions  
⇒ lower associated strain energy. 
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Energy  due to strain (non-ionic case) 
 
Strain energy = 1/2 elastic constant x strain2 /vol 
 

Define shear modulus G = 
stress
strain

=
τ
γ

 

 
Strain energy = 1/2 G γ2 (or equivalently 1/2 τγ) 
 
If b = lattice parameter 
Volume ~ b3 
Strain ~1 
 
⇒Strain energy = 1/2 Gb3 
 
hence EFrenkel~ 5-6ev 
 
Much larger than ESchottky and also EFrenkel> kBT 
 
In general not thermodynamically stable, and won't be 
discussed further. 
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Equilibrium number of vacancies in monatomic crystal 
 
(For complete discussion see Waldram, Theory of 
Thermodynamics) 
 
Compute F for crystal with N atoms, n vacanices on 
N+n sites. 
 
3 contributions to toal entropy 
• Sc determined by density of states etc for given 

configuration of atoms. 
• Sb∝ number of bulk configurations 
• Ss∝ number of surface arrangements 
 
And  Sc= kB ln gc(E) 
  Sb= kB ln Wb 
  Ss= kB ln Ws 

 
At equilibrium 

 dF = dFc − TdS
b

− TdSs= 0 

where  dFc = dE-TdSc-TdSs, the change in free energy 
when we move an atom from a particular bulk site to a 
particular surface site, without allowing lattice 
rearrangements to occur. 
 
DFc ~ 6 nearest neighbour bond energies (since break 
on average 1/2 the bonds in the surface) 
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Now  Wb =
(N + n)!

N!n!  

 
If 1 vacancy added Wb multiplied by  
 

 
N + n +1

n +1
~

N + n
n  

 

∴ dSb = kB ln
N + n

n
 
 

 
   

 
For large crystals dSs<<dSb 
 

∴ dF ~ dFc − kBT ln
N + n

n
 
 

 
 = 0 

∴ n ~ N exp –dFc/kBT 
 
This is generally quite small, but can become 
appreciable towards the melting point.  
 
We will see later how vacancies are important for creep 
and diffusion 
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Dislocations – Line Defects 
 

Dislocations were originally invoked to explain the 
discrepancy between theoretical shear stress and that 
experimentally determined, lo ng before a dislocation 
was directly seen. 
 
 
Theoretical Shear Stress 

 

As two atom planes move past one another, the stress 
must increase and then decrease. 
 
 

 
  
 

Assume a sinusoidal    
form for the variation 
of shear stress τ with 
displacement x. 
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Shear stress τ = k sin
2πx

b   with k = const 
 

Near origin, slope is measure of elastic shear modulus G. 

Hence, within this linear regime    dτ = G
dx
a    and 

 

dτ ]x=0 =
2πk

b
cos

2πx
b

 
 

 
 dx]x=0 ~

2πk
b

dx  

 

⇒      2πk
b = G

a  and therefore  k =
Gb
2πa

 

 

∴τ =
Gb
2πa

sin
2πx
b

 
 

 
  

 
 

Maximum shear stress τ0 is given by 

τ o =
Gb
2πa

~
G
2π

 

Better models give τo ~ G/30 
 
Experiment shows this is far too high 
e.g Copper G=4.6 GN m-2  ⇒ τo = 0.72 GN m-2 

 
Experimentally a good single crystal gives τo 100 kN m-2
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Dislocations 
 

The origin of the discrepancy between theory and 
experiment lies in the existence of dislocations. 
 
Dislocations are characterised by their Burger's vectors.  
These represent the 'failure closure' in a Burger's 
circuit in imperfect (top) and perfect (bottom) crystal. 

 
 
Edge       Screw 
Vectors describing dislocation line and Burger's vector are 
Perpendicular     Parallel 
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Dislocation Motion 
 

Dislocations make a material softer because they permit 
crystals to deform without moving one entire crystal 
plane over the one below. 
 
e.g. movement of edge dislocations 
 

 
 

The slip (also known as glide) plane is the plane on 
which the dislocation moves. 
 
The glide plane is defined by the vectors b and l. 
 
This means edge dislocations have a unique glide plane, 
but screw dislocations do not and can move on a whole 
family of planes. 
 
 


