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Preface

How to use these notes:

Where derivations are written out extensively here, they will
probably not be reproduced in class, and vice versa. You will be
expected to have understood all of these, and to be able to re-
produce these results and variations that use the same methods.
Derivations obtained in the question sheet exercises are also part
of the course, and worked out solutions will be made available
towards the end of the course.

Dos:

• Use the notes to follow progress through the course mater-
ial. The structure of these notes is almost the same as the
lectures.

• Integrate the lecture overheads and the notes material your-
self. There is examinable material that might appear in one
place only.

• Follow suggestions and think about the questions in the
notes. These are distributed through the text to help you
spot if you are understanding the material.

Don’ts:

• Expect to study only from these notes. You will need the
other main references and attendance to lectures. Most of
all you will need to understand how to use the material and
methods presented, rather than memorising information.

• Expect these notes to be error free. They will contain a
higher density of errors than a typical book! e-mail us if
you think something is wrong or unclear, and the notes will
improve.

• Expect these notes to be even in the level of presentation.
Some paragraphs are minimal, and some section labels are
only place holders for material that will be covered in class.
Instead, use these notes to guide you through the books.



Course aims and structure

Course aims

Possible questions

Is Biological Physics well defined? Is there physics in biology?
A pragmatic answer is along the lines of what the late Sir Sam Ed-
wards (former Cavendish professor, and founder of polymer phys-
ics) was fond of saying: “Physics is what physicists do”. Sir Sam
was not the first to hold this view, and in the Cavendish there has
always been a strong tradition of applying physics to new areas, re-
gardless of traditional disciplines. Science is one, and you need to
find areas where good progress can be made and where it is worth
putting effort. In this sense, if a physicist sees an opportunity to
contribute in a unique way to biology, this can be pursued. Is is
pretty obvious that “biology” is itself very broad (consider how
many aspects there are to living systems, reflected in a mosaic
of departments and institutes that is not unique to Cambridge),
and important questions can be posed at many length-scales from
the molecular through cellular, organ tissue, up to populations
and ecology. Not to mention medicine. One also can pose ques-
tions on dynamics and evolution, and again relevant time-scales
span many orders of magnitude from molecular binding processes
through organism development and maintenance of tissues, up to
mechanisms of evolution. So clearly there will be many ways to
apply physics, and many different types of models that can be de-
ployed or invented based on physical intuition. If you think about
it, this is not so different from how we treat condensed matter
systems: despite the fact that it is easier to dig down into re-
ductionist approaches when dealing with, say, materials, we don’t
really have a unified model that we expect to give quantitative
predictions at the same time for all the material’s behaviour, say
x-ray diffraction, melting temperatures, properties of density, con-
ductivity or elasticity... We are used and ready to accept, in this
context, the idea that we can abstract the important elements
that underlie a certain phenomenon. This leads us to come up
with quite different ‘physics’ (stat mech, or continuum mechanics,
or electrodynamics, etc.). When this is done well, we are capturing
the “correct” mechanism, which entails many things, but mainly
that: (a) we have indeed captured a relevant mechanism, and
hence are able to show how modifying the ‘physically motivated’
parameters changes properties or outcomes, often in non-trivial
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ways; (b) we are able to link to a set of data and often to make un-
expected (and ideally verifiable) quantitative predictions. These
are properties that somehow identify and distinguish the way a
physicist defines ‘understanding’, as opposed to other quantitat-
ive approaches more typical of engineers or mathematicians.

Is there physics in biology?
This is a corollary to the statements above. But yes, particularly
at the present time recent data now exists in very quantitative
(and reproducible) form for a large number of biological systems
and processes. Developments in the last decade, not just in ge-
netics but also in imaging and other forms of measurement of
the concentrations, dynamics and localisations of the key biolo-
gical agents, have revolutionised many areas of biology with truly
quantitative data of unprecedented resolution (time, space) and
extensiveness (repeats, conditions). These lend themselves to ap-
plying and developing physical models, in exactly the same spirit
as in studying condensed matter systems, or other complex sys-
tems (nonlinear optics, cold atoms, etc.). There are also many
biological systems where the data is not yet in a form that a physi-
cist would find acceptable: This poses another family of challenges
that physicists might want to take on, on the experimental (and in
some cases computational) frontier, developing experiments and
techniques.

What can be achieved in a 24 hour course? The main aims of
this course are:
(a) through good examples, and with a storyline as coherent as
possible, mostly at the cell and molecular level, show how phys-
ics (particularly stat mech, soft matter, networks and nonlinear
dynamics approaches) has been developed and applied in recent
years to address both existing challenges, and even to define new
categories in biological systems.
(b) through (a), provide an exposure and an education such that
interested students will be able to make informed decisions on
fields of further study.

What is this course not? What is not in this course?
This course is not a traditional ‘biophysics’ course, the term is
usually meant to emphasise the molecular aspect (e.g. protein
folding, biochemical interactions); we touch only some aspects.
Another community (medical) defines biophysics as biomechan-
ics and issues to do with circulation, pressure, etc - this course
has none of this ‘physiological’ side. It is not an instrumentation
course, and we only describe a few interesting techniques (instru-
ments and protocols quickly improve and become obsolete - an
exception is medical instrumentation, which due to the degree of
certification involved does not change fast, but we do not cover
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that here). Closer to the spirit of this course there would also
be a lot of topics that we cannot cover due to lack of time and
personal expertise, but which could lend themselves to the same
type of thinking and modeling presented here: worth mentioning
are embryonic development (and tissue homeostasis), evolution
(which is possible in the lab, exploring influence of stresses, spe-
cies competition, etc), ecology (also amenable to lab experiments,
with suitable choice of model organisms). Interested students will
find many colleagues in Cambridge and beyond working on these
questions, and we hope this course will provide good ‘transferable
skills’.

Structure of the course

Given the preamble above, our challenge was to provide a coherent
‘story’, covering various concepts and examples that we think are
useful. Whilst not wanting to overburden with fact collections, a
minimum of context is necessary and will be useful in any future
interaction with the world of Life Sciences.

The course is structured into six modules (A-F). Modules are
3 or 4 lectures, and have a single lecturer (Dr P.Cicuta or Dr
E.Nugent). Two ‘guest lecturers’, quite prominent biologists, will
give 3 lectures (details non examinable) on their pioneering discov-
eries of quantitative aspects in cell biology, and how they pursued
physical modeling. Those guest lecturers will also explain the ex-
perimental approach in more detail than what is possible in the
rest of the course.

We are fortunate that a handful of good textbooks have been
published in the last few years. You will see that many illus-
trations and question sheet problems come from (Phillips et al.,
2013), which is a very ‘reader friendly’ source. The book does not
cover everything (and we don’t use the whole book), and in some
places we wanted to go deeper, so other sources are also used, and
referenced in appropriate places.

Module A: An overview of quantitative cell biology,
and a primer of concepts. 3 lectures

Physical biology of the cell - information processing ‘central dogma’;
Life from a Physics perspective; The stuff of life; Model building
in biology; How a cell adjusts to different growth rates; Quantit-
ative models and the power of idealisation; Special role of E.Coli
in quantitative biology; Transcription and translation numbers;
Cells and structures within them; Networks - graph representa-
tion; Random graphs; Motifs, feedback, modularity; Construction
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plans for cells.

Module B: Statistical Physics of Living systems. 3
lectures

Energy and the life of cells; Thermal and Statistical Physics of liv-
ing systems; Chemical Forces; State variable descriptions of mac-
romolecules; Two-state systems: phosphorylation, ion channels,
cooperative binding; Diffusion in living systems.

Module C: Protein production and regulation of
gene expression. 3 lectures

ODE for protein production; Biochemical (small number) noise;
Gillespie algorithm; The mechanics of transcriptional regulation:
the example of the Lac operon; Statistics of regulation: transcrip-
tional and post-transcriptional; Strategies for regulating noise in
gene expression; Case study: phage lambda, the hydrogen atom
of molecular biology.

Module D: Circuits and dynamical systems. 4
lectures

Properties of dynamical systems, and intro to methods; Feedback
circuits; Genetic circuits with switch and oscillating properties.

Module E: Molecular Motors. 4 lectures

Bioenergetics - free energy transductions in the cell; Single mo-
lecule techniques; Models of molecular motors; Cytoskeletal dy-
namics; Rotary Motors.

Module F: Sensing and Neural Biophysics. 3 lectures

The electrical status of cells and their membranes; The Hodkin-
Huxley Model for the generation of action potentials; Sensing:
vision, hearing; Information processing in neurons.

Conclusion: Outlook beyond cell biological physics -
1 lecture



Introduction to
quantitative cell biology 1
The introductory material of the first couple of lectures can be
found on the overheads. Presented here is firstly a glossary of
terms, most of which should become familiar after a few lectures
and on reading the first chapters of (Phillips et al., 2013).

1.1 Glossary

Extended and modified from p.265 of U.Alon, and p.297 of Sneppen-
Zocchi books.

Activator - A transcription factor that increases the rate of
transcription of a gene when it binds a specific site in the genes
promoter.

Activation threshold - Concentration of activator in its act-
ive state needed for half-maximal activation of a gene.

Adaptation - Decreasing response to a stimulus that is applied
continuously.

Adaptation time - Time for output to recover to 50% of pres-
timulus level following a step stimulus.

Allele - One of a set of alternative forms of a gene. In a diploid
organism, such as most animal cells, each gene has two alleles, one
on each of the two sister chromosomes.

Amino acid - A molecule that contains both an amino group
(NH2) and a carboxyl group (COOH). Amino acids are linked to-
gether by peptide bonds and serve as the constituents of proteins.

AND gate - A logic function of two inputs that outputs a one
only if both inputs are equal to one.

Anti-motif - A pattern that occurs in a network less often than
expected at random.

Antibody - A protein produced by a cell of the immune system
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that recognizes a protein present in or on invading microorgan-
isms.

Antigen - A part of a protein or other molecule that is recog-
nized by an antibody.

Arabinose - A sugar utilized by E. coli as an energy and car-
bon source, using the ara genes. Arabinose is not pumped into
the cells if glucose, a better energy source, is present.

ATP (adenosine triphosphate) - A molecule that is the main
currency in the cellular energy economy. The conversion of ATP
to ADP (adenosine diphosphate) liberates energy.

B. subtilis (Bacillus subtilis) - A bacterium commonly found
in the soil. It forms durable spores upon starvation. A model or-
ganism for study, and commonly used in synthetic biology.

Binomial distribution - A statistical distribution that de-
scribes, for example, the probability for k heads out of n throws
of a coin that has probability p to give heads and l−p to give tails.

Chemoreceptor - A receptor that responds to the presence of
a particular chemical.

Chemotaxis - Movement up spatial gradients of specific chem-
icals (attractants), or down gradients of specific chemicals (repel-
lents).

Chromosome - A strand of DNA with its associated proteins,
found in the nucleus; carries genetic information.

Circadian rhythm - A daily rhythmical cycle of cellular activ-
ity. Generated by a biochemical oscillator in many different cells
in animals, plants, and microorganisms. Ihe oscillations can be en-
trained by periodic temperature and light signals. The oscillator
runs also in the absence of entraining external signals (usually
with a period somewhat different than 24 hrs).

Codon - Three consecutive letters on an mRNA. There are 64
codons (each made of three letters, A, C, G, and U). These code
for the 20 amino acids (with most amino acids represented by
more than one codon). Three of the codons signal translational
stop (end of the protein).

Coherent feed-forward loop - A feed-forward loop in which
the sign of the direct path from X to Z is the same as the sign of
the indirect path from X through Y to Z.
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Complementary sequence Sequence of bases that can form
a double-stranded structure by matching base pairs. The comple-
mentary sequence to base pairs C-T-A-G is G-A-T-C.

Cooperativity More than the sum of its parts. Acting co-
operatively means that one part helps another to build a better
functioning system. Cooperative bindings include dimerization,
tetramerization, and binding between transcription factors on ad-
jacent DNA sites.

Cost-benefit analysis - A theory that seeks the optimal design
such that the difference between the fitness advantage gained by a
system (benefit) and fitness reduction due to the cost of its parts
is maximal.

Cytoplasm - The viscous, semiliquid substance contained in
the interior of a cell. The cytoplasm is densely picked with pro-
teins (‘crowding’).

Degree-preserving random networks - An ensemble of ran-
domized networks that have the same degree sequence (the num-
ber of incoming and outgoing edges for each node in the network)
as the real network. Despite the fact that the degree sequence
is the same, the identity of which node connects to which other
node is randomized. Such random networks can be generated on
the computer by randomly switching pairs of edges, repeating the
switching operation many times until the network is randomized.
For a given real network, many thousands of different randomized
degree-preserving networks can usually be readily generated.

Developmental transcription networks - Networks of tran-
scription interactions that guide changes in cell type. Important
examples are networks that guide the selection of cell fate as cells
in the embryo differentiate into tissues. Developmental transcrip-
tion networks work on the timescale of cell generations and of-
ten make irreversible decisions. They stand in contrast to sensory
transcription networks that govern responses to environmental sig-
nals.

Differentiation - The process in which a cell changes to a dif-
ferent type of cell (same genome).

Distributions Some common ones:
exponential

p(t) ∼ exp(−t/t).

If t is a waiting time this is the distribution for a random uncor-
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related signal. In that case the expected waiting time for the next
signal does not change as time passes since the last signal.

power law

p(t) ∼ 1/tα.

For example, if t is a waiting time, then expected waiting time for
the next signal increases as time passes since the last signal.

normal or Gaussian distribution
Obtained by sum of exponentially bounded random numbers that
are uncorrelated. Distribution:

p(x) ∼ exp (−x2/σ2).

log normal
Obtained by product of exponentially bounded random numbers
that are uncorrelated. If x is normal distributed then y = exp(x)
is log normal:

q(y)dy ∼ exp(− log(y)2/σ2)dy/y and ∼ dy/y

for y within a limited interval.

stretched exponentials
These are of the form

p(x) ∼ exp(−xα).

ParetoLevi
Obtained from the sum of numbers, each drawn from a distri-
bution ∝ x−α. A ParetoLevi distribution has a typical behavior
like a Gaussian, but its tail is completely dominated by the single
largest event. Thus a ParetoLevi distribution has a power-law tail.

binomial
with parameters n and p is the discrete probability distribution of
the number of successes in a sequence of n independent yes/no ex-
periments, each of which yields success with probability p. Prob-
ability of k successes is:

p(k) =

(
n

k

)
pk(1− p)n−k,

where (
n

k

)
=

n!

k!(n− k)!
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Poisson
expresses the probability of a given number of events (i.e. k,
discrete) occurring in a fixed interval of time and/or space, if these
events occur with a known average rate λ and independently of
the time since the last event. The probability of a random variable
being X = k is:

p(X = k) =
λk

k!
e−λ.

It has the special property that λ = 〈p(X)〉 = variance(p(X)).

DNA (deoxyribonucleic acid) - A long molecule composed
of two interconnected helical strands. Contains the genetic in-
formation. Each strand in the DNA is made of four bases: A, C,
T and G. The two strands pair with each other so that A pairs
with T, and C with G. Thus DNA is made of a chain of base-pairs
and can be represented by a string of four types of letters.

Dorsal - Side of an animal closer to its back.

Drosophila Fruit fly. A model organism commonly used for
biological research.

Edge - A link between two nodes in a network. Edges de-
scribe interactions between the component described by the nodes.
Edges in most networks have a specific direction. Mutual edges
are edges that link nodes in both directions. See transcription
network for an example.

Endocytosis - Uptake of material into a cell.

Enzyme - A protein that facilitates a biochemical reaction.
The enzyme catalyzes the reaction and does not itself become
part of the end product.

ER (ErdosRenyi) random networks An ensemble of ran-
dom networks with a given number of nodes, N. and edges. E.
The edges are placed randomly between the nodes. This model
can be used for comparison to real networks. A more stringent
random model is the degree-preserving ing random network.

E. coli (Escherichia Coli) - A rodshaped bacterium nor-
mally found in the colon of humans and other mammals. It is
widely studied as a model organism.

Eukaryotic cells and organisms - Organisms made of cells
with a nucleus. Includes all forms of life except for viruses and
bacteria (prokaryotes). Yeast is a single-celled eukaryotic organ-
ism.
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Exponential phase - A phase of bacterial (possible also for
other cell types) growth in which cells double with a constant cell
generation time, resulting in exponentially increasing cell num-
bers. This occurs in a test tube when there are so few cells that
nutrients are not depleted from the medium, and waste products
do not accumulate to high levels. See also stationary phase.

Feedback - A process whereby some proportion or function of
the output signal of a system is passed (fed back) to the input.

Feedback inhibition - A common control mechanism in meta-
bolic networks, in which a product inhibits the first enzyme in the
pathway that produces that product.

Feed-forward loop (FFL) - A pattern with three nodes, X,
Y and Z, in which X has a directed edge to Y and Z, and Y has a
directed edge to Z. The FFL is a network motif in many biological
networks and can perform a variety of tasks (such as sign-sensitive
delay, sign-sensitive acceleration, and pulse generation).

Fine-tuned property - A property of a biological circuit that
depends sensitively on the biochemical parameters of the circuit
(opposite to robust property).

First-order kinetics - Mathematical description of the rate of
an enzymatic reaction in the limit where the substrate concentra-
tion is very low and is far from saturating the enzyme, such that
the rate is equal to (v/K)E S, where v is the rate per enzyme, E
is the enzyme concentration, K is the Michaelis constant, and S is
the substrate concentration. See also Michaelis-Menten kinetics,
zero-order kinetics.

Flagellum (plural flagella) - A long filament whose rotation
drives bacteria through a fluid medium. Rotated by the flagellar
motor.

Functionalism - The strategy of understanding an organism’s
structural or behavioral features by attempting to establish their
usefulness with respect to survival or reproductive success.

Gene - The functional unit of a chromosome, which directs the
synthesis of one protein (or several alternate forms of a protein).
The gene is transcribed into mRNA. which is then translated into
the protein. The gene is preceded by a regulatory DNA region
called the promoter that includes binding sites for transcription
factors that regulate the rate of transcription.
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Gene circuit - A term used here to mean a set of biomolecules
that interact to perform a dynamical function. An example is a
feed-forward loop.

Gene product - The protein encoded by a gene. Sometimes,
the RNA transcribed from the gene, when the RNA has specific
functions.

Generation time - Mean time for an organism to produce off-
spring.

Genetic code - The mapping between the 64 codons and the
20 amino acids. The genetic code is identical in nearly all organ-
isms.

Genetic drift - The statistical change over time of gene fre-
quencies in a population due to random sampling effects in the
formation of successive generations.

Genome - The total genetic information in a cell or organism.

Glucose - A simple sugar, a major source of energy in meta-
bolism.

GFP (green fluorescent protein) - GFP was originally
found in jellyfish. When irradiating the protein with some short
wavelength light, it emits light at some specific longer wavelength.
Many colors have now been developed. The GFP proteins in a
single cell can then be seen in a microscope. The fluorescent prop-
erty of GFP is preserved in virtually any organism that it is ex-
pressed in, including bacteria. It has revolutionised live biological
imaging in two broad classes of experiments: (i) By subjecting
its expression to a promoter region that one wants to monitor,
one can measure ongoing activity of the selected promoters (this
construction is called ‘reporter’); (ii) it can be genetically linked
(‘fused’) to other proteins (by a covalent bond along the peptide
backbone, then allowing to track movements or localisations of
this protein inside the living cell.

In the best cases, this linking with GFP does not influence the
properties of the particular protein, and does not perturb the
cell too much. The main worries with these experimental ap-
proaches are (a) “phototoxicity”, whereby the photon flux, and the
byproducts of the fluorescence chemistry, affect the cell; (b) the
possible metabolic cost of expressing these extra proteins; (c) in
experiments where dynamics is important, to pay attention to the
time required for transcription+translation+maturation (matur-
ation may be from a few minutes in some variants, up to some
hours).
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Hill coefficient - The number of molecules that must act sim-
ultaneously in order to make a given reaction. The higher the Hill
coefficient, the sharper the transition.

Histones - only in in eukaryotes, these are DNA binding pro-
teins that regulate the condensation of DNA, i.e. determine the
physical structure. The DNA makes two turns around each his-
tone. Histones play a major role in gene silencing in eukaryotes,
and a large fraction of transcription regulators in yeast, for ex-
ample, is associated with histone modifications.

Homeostasis - The process by which the organism’s substances
and characteristics are maintained at their steady (optimal) level.
Typically the result of a negative (stabilizing) regulative feedback.

Homologous - Similar by virtue of a common evolutionary ori-
gin. Homologous genes generally show similarity in their sequence.

Hormone - A chemical substance liberated by an endocrine
gland that has effects on target cells in other organs.

Immune system - The system by which an organism protects
itself from foreign proteins. In mammals there are an innate and
an adaptive system. The innate system triggers inflammation and
recruitment of further immune cells. In response to an infection,
the white blood cells (adaptive system) can produce antibodies
that recognize and attack invading microorganisms, and typically
some memory of this remains in the organism.

Integral feedback - Feedback on a device in which the integ-
ral over time of the error (output minus the desired output) is
negatively fed back into the input of the device. Integral feedback
can lead to robust exact adaptation.

Kinase - An enzymatic protein that transfers a phosphate group
(PO4) from a phosphate donor to an acceptor amino acid in a
substrate protein (an important example of ‘post-transcriptional
modification’, i.e. the regulation mechanisms that a cell deploys
on proteins, the final products of gene expression). Kinases have
been classified after acceptor amino acids.

Lac operon - A group of three genes in E. coli that are adjacent
on the chromosome and transcribed on the same mRNA. These
genes are lacZYA, encoding for the metabolic enzyme LacZ which
cleaves lactose into glucose and galactose; the permease (pump)
LacY, which pumps lactose into the cells; and LacA, whose func-
tion is unknown. Lactose is not pumped into the cells if glucose
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(a better energy source) is present, a phenomenon called “inducer
exclusion”. The lac operon is repressed by LacI and activated by
CRP. LacI unbinds from the DNA and the system is induced in
the presence of lactose (LacI binds a derivative of lactose called
allo-lactose) or nonmetabolizable analogs of lactose such as IPTG.
As well as having a key importance in bacteria, this switch has
been and continues to be a test-bed for quantitative work on un-
derstanding regulation of gene expression.

Lactose - A sugar utilized by E. coli as an energy and carbon
source, using the lac genes expressed from the lac operon.

Ligand - A molecule that specifically binds the binding site of
a receptor.

Mathematically controlled comparison - A comparison that
is carried out with equivalence of as many internal and external
parameters as possible between the alternative model mechan-
isms. Internal parameters include biochemical parameters, such
as the lifetime of the proteins that make up the circuit and external
parameters include desired output properties, such as steady-state
levels.

Membrane - A structure consisting principally of lipid mo-
lecules that define the outer boundaries of a cell or organelle.

Membrane potential - The difference in electrical potential
inside and outside of the cell expressed as voltage relative to the
outside voltage. Membrane potential is maintained by protein
pumps that transport ions across the membrane at the expense of
energy supplied by ATP.

Michaelis-Menten kinetics - A mathematical description of
the rate of an enzymatic reaction as a function of the concen-
tration of the substrate. The rate is equal to v E S/(K + S),
where v is the rate per enzyme, E is the enzyme concentration, S
is the substrate concentration, and K is the Michaelis constant.
When S >> K one obtains zero-order kinetics (rate = v E), and
when S << K one obtains first-order kinetics (rate = (v/K)E S).

Modularity - A property of a system which can be separated
into nearly independent sub-systems.

Morphogen - A molecule (protein) that determines spatial
patterns. Morphogens bind specific receptors to trigger signal
transduction pathways within the cells to be patterned. The sig-
naling leads the cells to assume different cell fates according to
the morphogen level.
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Morphology - Physical shape and structure.

mRNA - A macromolecule made of a sequence of four types
of bases: A, C, G and U. Transcription is the process by which
an RNApolymerase enzyme produces an mRNA molecule that
corresponds to the base sequence on the DNA (where DNA T is
mapped to RNA U). The mRNA is read by ribosomes, which pro-
duce a protein according to the mRNA sequence.

Mutation - A heritable change in the base-pair sequence of the
chromosome.

Network motif - A pattern of interactions that recurs in a
network in many contexts. Network motifs can be detected as
patterns that occur much more often than in randomized net-
works.

Neuron (nerve cell) - Cell specialized to receive, transmit
and conduct signals in the nervous system.

Nucleus - A structure enclosed by a membrane found in euka-
ryotic cells (not in bacteria) that contains the chromosomes.

Nucleoid - region within the cell of a prokaryote that contains
all or most of the genetic material, and the proteins associated to
that. Proteins that shape the chromosome in bacteria are called
Nucleoid-Associated Proteins (NAP).

Nucleosome An important structural unit of the chromosome
in eukaryotes, made up of 146 bp of DNA wrapped 1.75 times
around an octamer of histone proteins.

Operon - Only in prokaryotes. A group of contiguous genes
transcribed on the same mRNA, plus the regulatory elements that
control their transcription. Each gene is separately translated. Op-
erons are found only in prokaryotes.

Peptide - A chain of amino acids joined together by peptide
bonds. Proteins are long peptides.

Phage - Also known as a bacteriophage, this is a virus that
attacks a bacteria.

Plasmid - A piece of double-stranded DNA that encodes some
proteins (which are expressed in the host of the plasmid) and
replicates alongside the host chromosomes. It may be viewed as
an extrachromosomal DNA element, and as such it can be trans-
mitted from host to host. Plasmids are, for example, carriers
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of antibiotic resistance, and when transmitted between bacteria
thereby help these to share survival strategies. Plasmids often oc-
cur in multiple-copies in a given organism, and can thus be used
to greatly overproduce certain proteins. This is often used for in-
dustrial mass production of proteins.

Point mutation - A change of a single letter (basepair) in the
DNA.

Poisson distribution - A distribution that characterizes a ran-
dom process such as the number of heads in a coin-toss experi-
ment, with many tosses, N , and a small probability for heads,
p << 1. The mean number of heads is m = pN . The variance
in a Poisson process is equal to the mean. σ2 = m and hence the
standard deviation is the square root of the mean, σ =

√
m.

Prokaryotes - Single-celled organisms without a membrane
around the nucleus. It is estimated that there are (46) × 1030

prokaryotes on Earth. The number of prokaryote divisions per
year is ≈ 1.7× 1030. Prokaryotes are estimated to contain about
the same amount of carbon as all plants on Earth (5 × 1014 kg).
Some 5000 species have been described, but there are estimated
to be more than 106 species.

Promoter - A regulatory region of DNA that controls the tran-
scription rate of a gene. The promoter contains a binding site for
RNA polymerase (RNAp), the enzyme that transcribes the gene
to produce mRNA. Each promoter also usually contains binding
sites for transcription factor proteins. The transcription factors,
when bound, affect the probability that RNAp will initiate tran-
scription of an mRNA.

Protease - An enzyme that degrades proteins. Proteins are
often targeted for degradation in biologically regulated ways. For
example, many eukaryotic proteins are targeted for degradation in
the proteosome by enzymes that attach a chain of ubiquitin mo-
lecules to the target protein. Different proteins can have different
degradation rates.

Protein - A long chain of amino acids (a polymer, on the order
of tens to hundreds of amino acids) that can serve in a structural
capacity or as an enzyme. Each protein is encoded by a gene. Pro-
teins are produced in ribosomes, based on information encoded on
an mRNA that is transcribed from the gene.

Receptor - A protein molecule, usually situated in the mem-
brane of the cell (but sometimes in the cytoplasm of the cell) that
is sensitive to a particular chemical. When the appropriate chem-
ical (the ligand) binds to the binding site of the receptor, signal
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transduction cascades are triggered within the cell.

Repression threshold - Concentration of active repressor needed
for half-maximal repression of a gene.

Repressor - A transcription factor that decreases the rate of
transcription when it binds a specific site in the promoter of a gene.

Ribosome - A structure in the cytoplasm made of about 100
proteins and special RNA molecules that serves as the site of
production of proteins translated from mRNA. In the ribosome,
amino acids are assembled to form the protein chain according to
an order specified by the codons on the mRNA. The amino acids
are brought into the ribosome by tRNA molecules, which read the
mRNA codons. Each tRNA is released when its amino acid is
linked to the translated protein chain.

RNA Polymerase (RNAp) - A complex of several proteins
that form an enzyme that transcribes DNA into RNA. There is
also DNA polymerase, the complex used to make copies of DNA
before cell division.

Robust Property - Property X is robust with respect to para-
meter Y, if X is insensitive to changes in parameter Y.

Sensory transcription networks - Transcription networks
that respond to environmental and internal signals such as nutri-
ents and stresses, and lead to changes in gene expression. These
networks need to function rapidly, usually within less than a cell
generation time, and usual make reversible decisions. They stand
in contrast to developmental transcription networks.

Stationary phase - A state in which cells cease to divide and
grow, that occurs when growth conditions are unfavorable, such
as when the bacteria run out of an essential nutrient. See also
exponential phase.

stop codons - Triplets (UAG, UGA, and UAA) of nucleotides
in RNA that signal a ribosome to stop translating an mRNA and
release the translated polypeptide.

Terminator - Stop sign for transcription at the DNA. In E. coli
it is typically a DNA sequence that codes for an mRNA sequence
that forms a short hair-pin structure plus a sequence of subsequent
Us. For example, the RNA sequence CCCGCCUAAUGAGCGG-
GCUUUUUUUU terminates RNAp elongation in E. coli.

Transcription - The process of copying the DNA template to
an RNA.
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Transcription factor - A protein that regulates the tran-
scription rate of specific target genes. Transcription factors usu-
ally have two molecular states, active and inactive. They transit
between these states on a rapid timescale (e.g. microseconds).
When active, the transcription factor binds specific sites on the
DNA to affect the rate of transcription initiation of target genes.
Also called transcriptional regulator. See activator, repressor.

Transcription network - The set of transcription interactions
in a cell. The network is made of nodes linked by directed edges.
Each node represents a gene (or, in bacteria, an operon), Each
edge is a transcriptional interaction. X → Y means that the
protein encoded by gene X is a transcription factor that tran-
scriptionally regulates gene Y .

Translation - The process of copying RNA to protein. It is
done in the ribosome with the help of tRNA.

tRNA - This is transfer RNA small RNA molecules that are
recruited to match the triplet codons on the mRNA with the cor-
responding amino acid. This matching takes place inside the ri-
bosome. For each amino acid there is at least one tRNA.

XOR gate (exclusive OR) - A logic function of two inputs
that outputs a one if either, but not both, inputs is equal to one.

Yeast - A single-celled eukaryote, a unicellular fungus. There
are two types: budding yeast (Saccharomyces cerevisae), most
commonly used in baking and brewing, and fission yeast (Schizosac-
charomyces pombe). Both are also common research model organ-
isms.

Zero-order kinetics - Mathematical description of the rate of
an enzymatic reaction in the limit where the substrate concentra-
tion is saturating, such that the rate is equal to v E where v is
the rate per enzyme, and E is the enzyme concentration. See also
Michaelis-Menten kinetics, and first order kinetics.

1.2 Concepts in networks

full credit: MIT OpenCourseWare, Kardar/Mirny 2011

If limited to one role per protein, the roughly 30,000 Human
genes would have limited utility. The key to diversity of behavior
is: (i) the combinatorial power from many genes acting in concert;
(ii) the time profile of expressing and suppressing genes, (iii) loc-
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alization/compartmentalization of proteins in different locations,
and (iv) interactions with the resources and stimuli from the en-
vironment. Various forms of behavior can then emerge from a
palette of few elements.

The primary elements of a network are its nodes. These can be
a set of genes or proteins or metabolic products (sugars, lipids)
in the cell, or the interconnected neurons of the brain, or organ-
isms in an ecosystems. Links between nodes indicate a direct
interaction, for example between proteins that bind, neurons con-
nected by synapses, or organisms in a predator/prey relationship.
In its most basic form, the network can be represented by nodes
i = 1, 2, , N as points of a graph, and links Lij as edges between
pairs of points. Excluding self-connections, the maximal number
of possible links is N(N − 1) with directed connections (e.g. as
in a predator/prey relation), and N(N −1)/2 for undirected links
(as in binding proteins). A subgraph is a portion of the total net-
work, say with n nodes and l links. Some types of subgraphs have
specific names; e.g. a cycle is a path starting and ending at the
same node, while a tree is a branching structure without cycles.

The transcription network of E. coli (Figure 1.1), or yeast (Fig-
ure 1.2, from (Sneppen and Zocchi, 2005)), are very complex.
But buried in this information are interesting statistical proper-
ties. Particularly, one can look for patterns that appear more (or
less) often than in a random graph of equivalent number of nodes
and links. Then once can think of why from a biological function
or evolutionary perspective an organism might be “wired-up” in
these non-trivial ways. Patterns that appear more often than ex-
pected in a random network are called network motifs.

Note (following U.Alon) that a transcription network is quite
delicate to maintain against random genetic mutations: a muta-
tion changing a single letter in the DNA of a promoter can change
dramatically the affinity of a transcription factor, and result in the
loss of an edge in the network. To get an idea of the rate of these
mutations: a single bacterium in 10 ml of culture will grow in 1
day to reach 1010 cells. So 1010 DNA replications. The mutation
rate is about 10−9 per letter per replication. So the population
at the end of the day will include for each letter in the genome
10 bacteria with a mutation in that letter. So a change of a DNA
letter is achieved very rapidly in a bacteria population. Similar
mutations can of course also add an edge to the network if they
increase some affinity to bind a transcription factor. As a con-
clusion, edges in a network are under constant selection pressure
in order to survive randomisation. So if some network motifs are
found in transcription networks, there must be a selective advant-
age associated to them.

Analyzing biological data from the perspective of networks has
gained interest recently. Much is known about the interplay of
proteins that control expression of genes, the connections of the
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Fig. 1.1 Representations of data from RegulonDB, the database of
E. coli regulation data (Salgado et al. 2006). On the left, the (known
parts of) the E. coli transcriptional regulatory network. In this graphical
representation, nodes are genes, and edges represent regulatory interactions.
There is extreme complexity present in regulatory networks, but also biolo-
gically relevant organizational principles hidden in the architecture governing
these networks. On the right, functional architecture of E. coli genetics as
revealed by the natural decomposition approach. Red-labeled nodes repres-
ent global transcription factors. Genes composing modules were shrunk into
a single colored node. Black arrows indicate regulatory interactions between
global transcription factors. Red rounded-corner rectangles bound hierarchical
layers. For the sake of clarity, RpoD (the housekeeping sigma factor) inter-
actions are not shown, and the single yellow node at the bottom represents
the megamodule whose submodules are held together only by intermodular
genes. This analysis revealed that the functional architecture hierarchy ex-
hibits feedback from well-defined independent modules devoted to particular
cellular functions. The functions are globally coordinated by global transcrip-
tion factors, and the disparate responses are integrated by intermodular genes.
Images from: Freyre-Gonzalez, J. A. & Trevino-Quintanilla, L. G. (2010) Ana-
lyzing Regulatory Networks in Bacteria. Nature Education 3(9):24.

few hundred neurons in the roundworm C. elegans, and other ex-
amples. One possible route to extracting information from such
data is to look for specific motifs, subgroups of several nodes,
that can cooperate in simple functions (e.g. a feedforward loop).
A particular motif can be significant if it appears more (or less)
frequently than expected. We thus need a simple model whose ex-
pectations can be compared with biological data. Random graphs,
introduced by Erdös and Rényi, serve this purpose: The model
consists of N nodes, with any pair connected at random and in-
dependently, with probability p.

We shall explore a few features of Erdös-Rényi (ER) networks
in the following sections. For the time being, we note that you
can obtain the expected number of subgraphs of n nodes and l
links as a product of the number of ways of picking n points and
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Fig. 1.2 Networks of transcriptional regulatory proteins in yeast.
All proteins that are known to regulate at least one other protein are shown.
Arrows indicate the direction of control, which may be either positive or neg-
ative. Functionally the network is roughly divided into an upper half that
regulate metabolism, and a lower half that regulate cell growth and division.
In addition there are a few cell stress response systems at the intersection
between these two halves.

connecting them with l links, and a factor that accounts for the
number of ways of connecting the points into the desired graph:

N(n, l) =

(
N

n

)
pl × n!

(symmetry factors)
.

For example, there are n!/2 ways to string n points along a
straight line with l = (n − 1), and the expected number of such
linear pathways is:

N(n in a line) =
N !

(N − n)!

pn−1

2
,

while there are n!/(2n) ways to make a cycle of n nodes and l = n
links, such that

N(n in a cycle) =
N !

(N − n)!

pn

2n
.
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There is also a single way to make a complete graph in which any
pair of nodes is connected by a link, i.e. l = n(n− 1)/2, and

N(n in complete graph) =
N !

(N − n)!n!
pn(n−1)/2.

1.2.1 The autoregulation network motif

In E. coli transcription network there is an excess of self-edges,
the vast majority of which are repressors that implement negative
autoregulation. How can this conclusion be reached? We need
a way to compare with the expected number of self-edges in a
random network.

With N nodes, there are N(N − 1)/2 possible pairs of nodes
that can be connected by an edge. Each edge can point in one of
two directions, for a total of N(N − 1) possible places to put a
directed edge. An edge can also begin and end at the same node,
so there are a total of N possible self-edges. Total number of edges
is thus

N(N − 1) +N = N2.

In the ER model, the E edges are placed at random in the N2

possible positions, so each possible edge position is occupied with
probability p = E/N2.

Let’s calculate the probability of having k self edges in an ER
network: a self edge needs to choose its node of origin as a des-
tination, out of the possible N destinations. So

pself = 1/N.

Since the E edges are placed at random, the probability of having
k self edges is approx binomial:

P (k) =

(
E

k

)
pkself (1− pself )E−k.

The average number of self-edges is E times the probability of
being a self edge, i.e.

〈Nself 〉rand = Epself = E/N,

with a standard deviation that is approximately (because binomial
approx Poisson) the square root of the mean, so

σrand '
√
E/N.

Alon considers data where N=424, and E=519, and in which
there are 40 self edges (34 are repressors). The random graph
expectation is

〈Nself 〉rand = E/N = 1.2 with σrand '
√

1.2 = 1.1.

Obviously there is a difference of many standard deviations. We
will return later to negative autoregulation, to see some properties
of this simple network motif, and hence why it is highly selected.
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1.2.2 Percolation cluster in large networks

A network can display two types of global connectivity. With few
connections amongst nodes, there will be many disjoint clusters,
with their typical size (but not necessarily number) increasing with
the number of connections. At high connectivity there will be one
very large cluster, and potentially a number of smaller clusters. In
the limit ofN →∞, a well defined percolation transition separates
the two regimes in the random graph, as the probability p is varied
(remember from above: p is the probability that a given pair of
nodes is linked). Above the percolation transition, the number of
nodes M in the largest cluster also goes to infinity, proportionately
to the number of nodes, such that there is a finite percolation
probability P (p) = limN→∞

M
N (this is the probability for a node

to belong to the infinite cluster).
For the random graph, P (p) can be calculated from a self-

consistency argument: Take a particular site and consider the
probability that it is not connected to the infinite cluster. This is
the case if none exist of the (N−1) edges emanating from this site
potentially connecting it to the large cluster. A particular edge
connects to the infinite cluster with probability pP (p) (that the
edge exists, and that the adjoining site is on the large cluster),
and hence

1− P (p) = (prob of no connections to any edge)N−1

= (1− pP )N−1.

It is possible to show that there is a phase transition, which is
a percolation transition, in this probability. If the limit N → ∞
is taken, but also at the same time p → 0 such that we keep
p(N − 1) = 〈k〉, where 〈k〉 is the (finite) average number of edges
per node, then the equation above can be expressed as

1− P (p) = e−〈k〉P

i.e. P (p) = 1− e−〈k〉P

which can be solved e.g. graphically. We see that if 〈k〉 ≤ 1, there
is only P = 0 as a solution, whereas if 〈k〉 > 1 then there can be
a P 6= 0 solution, indicating the appearance of an infinite cluster.
Close to the percolation transition at 〈k〉c, P is small and we can
expand the last expression, to get

P ≈ 2(〈k〉 − 1)

〈k〉2
≈ 2(〈k〉 − 1).

Distance, Diameter, & Degree Distribution

There are typically several ways to traverse from a node i to a
node j. The distance between any pair of nodes is defined as the
number of edges along the shortest path between the nodes. For
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the entire network, we can define a diameter as the largest of all
distances between pairs of nodes.

Distances to a particular node can be obtained efficiently by the
following simple (burn and move) algorithm. In the first step, label
the nodes connected to the starting point (d = 1), and then remove
it from the network. Consider a random graph with 〈k〉 � 1,
such that P ≈ 1. (Distances cannot be defined to disconnected
clusters.) In the random graph, the number of sites with d = 1
will be around p(N−1) = 〈k〉. In the second step identify all sites
connected to the set labeled before (and thus at d = 2), and then
remove all sites with d = 1 from the network. From each site with
d = 1, there are of the order of p(N − 〈k〉 − 1) ≈ 〈k〉 accessible
sites, since 〈k〉 � N . There are thus around 〈k〉2 sites labeled with
d = 2. This burn and move process can be repeated, with Np /
〈k〉p sites tagged at distance d = p. (Note that each step we have
overestimated the number of sites by ignoring connections leading
to sites already removed.) The procedure has to be stopped when
all sites belonging to the cluster have been removed, i.e. for

〈k〉D / N, ⇒ D /
lnN

ln〈k〉
,

where D is a rough measure of the diameter of the network. Note
that the diameter of a random network is quite small, justifying
the popular lore of “six degrees of separation”. In a population of
a few billion, with each individual knowing a few thousand, the
last equation in fact predicts a distance of three or four between
any two. Clearly segregation by geographical and social barriers
increases this distance. The model of “small world networks” con-
siders mostly segregated communities, but shows that even a small
fraction of random links is sufficient to reintroduce a logarithmic
behavior like in the expression above.

For 〈k〉 < 1, the typical situation is of disjoint clusters. We can
then inquire about the probability pk that there are exactly k links
emanating from a site. Since there are a total of (N −1) potential
connections from a site, in a random graph the probability that k
such links are active is given by the binomial probability

pk =

(
N − 1

k

)
pk(1− p)N−1−k.

Taking the limits N →∞ and p→ 0 with pN = 〈k〉 as before, we
obtain

pk =
Nk

k!

pk

(1− p)k
(1− p)N−1 =

〈k〉k

k!
e−〈k〉,

i.e. a Poisson distribution with mean 〈k〉.
Looking at information across organisms, as exemplified in the

data gathered in (Sneppen and Zocchi, 2005) for Figure 1.3, can
also be very informative: here, it is shown that there is strong
regularity (a linear dependence) between the fraction of proteins



24 Introduction to quantitative cell biology

Fig. 1.3 Fraction of proteins that regulate other proteins, as a func-
tion of size of the organisms’ gene pool. These data are for prokaryotes:
smallest genome is M. Genitalium (480 genes); the largest genome is P. Aer-
uginosa (5570 genes). The linear relation demonstrates that each added gene
should be regulated with respect to all previously added genes. Eukaryotes
scale differently.

that regulate other proteins, and the size of the genome. One
notices that those with a very small genome hardly use transcrip-
tional regulation. More strikingly, it appears that the number of
regulators, Nreg, grows much faster than the number of genes, N ,
it regulates. If life was just a bunch of independent switches, this
would not be the case. That is, if living cells could be understood
as composed of a number of modules (genes regulated together)
each, for example, associated with a response to a corresponding
external situation, then the fraction of regulators would be inde-
pendent of the number of genes N . Networks are not just modular,
they show strong features of an integrated circuitry, even on the
largest scale. A question sheet exercise explores further the im-
plications of these data on the connectivity of these regulatory
networks.

Beyond the completely random network

A common feature of molecular networks is the wide distribution
of directed links from individual proteins. There are many pro-
teins that control only a few other proteins, but also there exist
some proteins that control the expression level of many other pro-
teins. It is not only proteins in the regulatory networks, but also
metabolic networks and protein signaling networks. The distribu-
tion of proteins with a given number of neighbors (connectivity)
K can often ( if very crudely) be approximated by a power law

N(K) ∼ 1/Kγ
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with exponent γ ' 2.5± 0.5 for proteinprotein binding networks,
and exponent γ ' 1.5± 0.5 for “out-degree” distribution of tran-
scription regulators. (Note that the broad distribution of the num-
ber of proteins regulated by a given protein, the “out-degree”, dif-
fers from the much narrower distribution of “in-degrees”.)

Models and results for random graphs built with various ‘rules’
are useful because they can be used as potential models for assess-
ing significance of putative anomalies in the degree distributions
biological and social networks.
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Physics of regulation:
Reactions and Stat Mech
of promoters 3
3.1 Modeling protein production with

ODE

Ordinary differential equations can be used to describe chemical
reactions inside the cell.1 Molecular interactions between protein

1full credit for this section: Dr
Rosalind Allen, Univ. Edinburgh,
through IoP Biological Physics on-
line teaching material

molecules, other small molecules, and DNA binding sites can turn
on and off the activities of proteins and genes. These regulat-
ory interactions combine into complex regulatory networks that
ultimately control how cells behave. Here, we will use ordinary
differential equations (ODEs) to describe how these regulatory
networks work. ODEs provide a powerful tool for predicting how
a regulatory network that is wired in a particular way will be-
have inside the cell. We will consider in this section two rather
simple but very important examples (an unregulated gene and a
negatively autoregulated gene), but the same methods are used to
analyse much more complicated networks with many tens of genes
and proteins.

The interior of cells is complicated: eukaryotic cells contain
different cell compartments (e.g. the nucleus), and the contents
of these compartments can also be organised in complicated ways.
Prokaryotic cells, such as bacteria, don’t have compartments but
they are highly packed with proteins and DNA, and some proteins
tend to occupy specific regions of the cell.

Although this spatial structure probably plays an important
role in the ways in which cells function, we can understand many
aspects of cell regulation without taking it into account. Here, we
will make the important assumption that the interior of the cell
(or a particular cellular compartment) is “well mixed” (this will
not always be the case!)

3.1.1 General intro to reaction ODE

Suppose that when an A molecule collides with a B molecule, the
two can react to produce a molecule of type C. Starting from a
mixture of A and B, we would like to know how many C molecules
will have been produced at time t. We suppose that in a small
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Fig. 3.1 Simulations of simple chemical reaction.

interval of time dt, the probability of a C molecule being produced
is qNANB/V , where V is the volume of the system, NA is the
number of A molecules and NB is the number of B molecules (the
probability scales with 1/V since a pair of A and B molecules will
be less likely to meet each other in a larger volume). We can then
write
source

q−−→ P
The constant q is called the rate constant.2

2The usual symbol for a rate con-
stant is k, but there are several rate
constants in this lecture, so we are
using q for this one to avoid having
several different constants all called
k.

Figure 3.1 shows the output of a numerical simulation of the
reaction
A + B −−→ C
In these simulations, we have assumed that the volume, V , is
set to 1. In the left-hand plot, we can see that the number of
C molecules (NC) increases over time, and that the C molecules
are produced at random points in time, whenever an A and a B
molecule happen to collide. This randomness can be important
if there are only a small number of A and B molecules, and we
will return to this later. The right-hand plot shows the same
reaction, but with many more A and B molecules. In this case,
many collisions happen in a small time interval and the plot for
the number of C molecules versus time is much smoother. In fact,
we can assume that the number of A, B and C molecules (per
unit volume) change continuously with time. This is an important
assumption because it allows us to write ODEs to describe how the
system changes with time. The variables in these ODEs are the
concentrations (number per unit volume) of the chemical species,
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in this case A, B and C, which we denote cA, cB and cC (e.g.
cA = NA/V ). For example, the set of ODEs that represents the
reaction of A and B to produce C
A + B

q−−→ C
is

dcA
dt

=
dcB
dt

= −qcacB
dcC
dt

= qcacB.

It’s important to note that because this is a second order or
bimolecular reaction (it involves two reacting molecules), the di-
mensions of the rate constant are (concentration−1)(time−1). We
also need to specify initial conditions, e.g. cA(0) = cB(0) = c0

and cC(0) = 0.

3.1.2 Application to protein production

We can use the same ordinary differential equation methods to
understand how cells control the production of protein molecules
from their genes. Here, we are interested in how the concentration,
cP, of a specific protein molecule, P, changes with time inside the
cell. Protein P is produced from its gene, gP, by transcription
(to make messenger RNA) followed by translation (to make an
amino-acid chain) and protein folding. We could model all of
these processes in detail but for now let’s just suppose that protein
P is produced at a constant rate, k, as long as the gene, gP, is
active. This reaction is zeroth order: the protein P is created at a
constant rate that does not depend on any other variables in the
model. The dimensions of the rate constant for this reaction are
therefore (concentration)(time−1).

We write this as a chemical reaction,

source
k−−→ P

In this reaction, the “source” is actually the gene, gP, plus the
whole machinery of transcription and translation. Here we just
put this into a ‘black box’ and assume that protein P is produced
at a constant rate.

Protein molecules are also removed from the cell; This could
be because another protein molecule actively degrades them or
because the cell is growing and dividing into daughter cells (and
every time the cell divides, a given protein molecule has a chance
of being lost). For now, let’s just assume that there is a fixed
probability per unit time, µ, that any given molecule of P is re-
moved. We can also write this as a chemical reaction,
P

µ−−→ sink
This is a first-order or unimolecular reaction: a single molecule of
P reacts. For unimolecular reactions, the dimensions of the rate
constant are (time)−1. The “sink” here is another black box; P
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might have been removed into a daughter cell or it might have
degraded into unspecified products.

Combining the constant rate of production, k, and the constant
rate, per molecule, of loss, µ, we can write a differential equation
for the rate of change of the concentration cP of P molecules:

dcP (t)

dt
= k − µcP (t). (3.1)

Fig. 3.2 Rate of change of pro-
tein concentration.

We can tell a lot about the system without actually solving this
equation. Figure 3.2 shows the rate of change, dcP/dt, plotted for
different concentrations of protein, cP, for parameter values k = 2
and µ = 1. When the concentration of protein is small (cP < k/µ),
the rate is positive. This means that there will be net protein
production (cP will increase). However, when the concentration of
protein is large (cP > k/µ), dcP/dt is negative. This means there
will be a net loss of protein. We can also see that for cP = k/µ,
dcP/dt is zero. When the protein concentration reaches this value,
there will be no net change: production balances removal. This is

the steady-state protein concentration, c
(ss)
P .

Steady-state concentrations are a very important property of
regulatory networks, and quite often this is all that people focus
on when they study a model for a particular regulatory network.

The value of c
(ss)
P depends on both k and µ. If protein removal

is due to cell division and if the average time between cell divisions
(the cell cycle time) is τ , then

µ =
ln 2

τ
. (3.2)

For the bacterium E. coli on a good food source, τ is about 30 min,
so µ is about 0.02/min. Protein production rates, k ,vary greatly,
from virtually zero to about 50/min. So the number of protein
molecules in a cell (assuming that there is only one copy of the
gene) can vary from zero to several thousand.

For the simple model discussed here, we also solve the model for
the time-dependent protein concentration, cP(t). This is import-
ant because genes can be turned on or off in response to signals,
and we’d like to know how fast the cell can respond to a given
signal. The time-dependent solution for protein concentration in
this model can be found by simple integration,

cP(t) =
k

µ
(1− e−µt) + cP(0)e−µt. (3.3)

To work out how fast the cell can respond to a signal, let’s sup-
pose that protein P is an enzyme that allows the cell to metabolise
lactose. Initially, the gene, gP, is repressed because a repressor
protein is bound to its promoter. We assume that initially no
protein P is present: cP(0) = 0. At time zero, the cell detects
some lactose and the repressor leaves the promoter, so the gene
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becomes activated. How quickly can the cell produce protein P
and start metabolising lactose? If cP(0) = 0, then the dynamics
is given by

cP(t) =
k

µ
(1− e−µt). (3.4)

We define the rise time, trise, as the time it takes for protein P

to reach half of its steady-state value. Setting cP(t) to c
(ss)
P /2 and

solving for trise, we obtain

trise = − 1

µ
ln

[
1−

µc
(ss)
P

2k

]
. (3.5)

which becomes, when we substitute in c
(ss)
P = k/µ,

trise = ln(2)/µ. (3.6)

This result tells us that the response time of this simple network is
determined only by the protein-removal rate. For bacteria, protein
removal is usually due to cell growth and division. As we saw
earlier, the removal rate, µ, is typically ln(2)/τ , where τ is the
cell cycle time. So the response time for bacterial gene networks
is typically of the order of the cell cycle time, which is at least
30 min.

3.1.3 ODE for negatively autoregulated gene

Genes can be turned on and off by the binding of specific pro-
teins to the DNA in the promoter region. In many cases, proteins
actually turn off their own production (i.e. the protein product
of a gene is a repressor that binds to its own gene and turns off
protein production). This is an example of negative feedback and
is called negative autoregulation. It turns out that for E.coli, and
probably for other organisms too, negative autoregulation hap-
pens much more often than one would expect if the regulatory
“connections” between genes were chosen at random. Why has
negative autoregulation been selected by evolution as a favoured
regulatory motif? To try to understand this, let’s write down the
equivalent differential equation model for a protein that represses
its own production. We recall that for a protein binding to a DNA
binding site, the probability that the binding site is occupied is:

pbound =

(
c
c0

)
exp−β∆ε

1 +
(
c
c0

)
exp−β∆ε

, (3.7)

where c/c0 is the concentration of protein (relative to some stand-
ard value, c0) and ∆ε is the change in energy when the protein
binds. We can define a dissociation constant, Kd, as

Kd = c0eβ∆ε. (3.8)
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For low concentrations (where c/c0 is very small), we can see
that the probability pbound that the binding site is bound be-
comes proportional to the inverse of the dissociation constant:
pbound → c/Kd. This shows us that Kd is actually just the equi-
librium constant for the dissociation of the protein from its bind-
ing site. The reason why this proportionality does not hold at
higher concentrations is that the binding site becomes saturated
with protein.

The more strongly the protein binds to its DNA binding site, the
more negative ∆ε will be. Strong negative autoregulation (large
negative ∆ε therefore corresponds to a small value of Kd.

Combining the equations above, we get

pbound =

(
cP
Kd

)
1 +

(
cP
Kd

) , (3.9)

and the probability that the binding site is unoccupied is given by

punbound = 1− pbound =
1

1 +
(
cP
Kd

) . (3.10)

Returning to our differential equation for the production and
degradation of protein, the production rate is now proportional to
the probability that the promoter binding site is not occupied by
protein:

dcP(t)

dt
= kpunbound − µcP =

k

1 +
(
cP
Kd

) − µcP. (3.11)

Fig. 3.3 Rate of change of pro-
tein concentration with negat-
ive autoregulation. The solid
lines are for k = 2 and m = 1, and
the dotted lines are for k = 4 and
m = 1. The blue lines show the res-
ult without negative feedback (for
the same k and m).

We now have a nonlinear differential equation for the concentra-
tion of protein, cP(t). Let’s find out what the steady-state protein
concentration is. Figure 3.3 shows a plot of the rate of change of
cP versus cP, for two values of the production rate k. Also plotted
are the results for a gene without negative autoregulation. We see
that as in the non-regulated case, when the protein concentration
cP is low production dominates, while when the protein concen-
tration is high protein degradation dominates over production.
Again for one particular value of protein concentration produc-
tion and degradation are balanced (dcP/dt = 0), and this is the
steady-state protein concentration.

We can see from Figure 3.3 that negative autoregulation affects
the steady-state protein concentration in two important ways.
First, the steady-state protein concentration is lower for the neg-
atively autoregulated gene (shown in red) than for the unregulated
gene (shown in blue). Second, when we compare the results for
two different values of the production rate, k (solid and dotted
lines), we can see that for the unregulated gene the steady-state
protein concentration depends strongly on k (in fact, we know
from our calculations above that it is proportional to k); while for
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the negatively autoregulated gene, c
(ss)
P changes only a little when

k is changed by a factor of two. Both of these effects have im-
portant implications for the performance of the gene, as we shall
see.

To get an expression for the steady-state protein concentra-

tion c
(ss)
P for the negatively autoregulated gene, we set the rate of

change of cP(t) to zero:

dcP(t)

dt
=

k

1 +
(
cP
Kd

) − µcP = 0, (3.12)

obtaining

c
(ss)
P =

Kd

2

[
−1 +

√
1 +

k

µKd

]
. (3.13)

For very strong autoregulation (where Kd is very small), the result
reduces to:

c
(ss)
P =

Kd

2

[
−1 + 2

√
k

µKd

]
'

√
kKd

µ
. (3.14)

Fig. 3.4 Steady-state protein
concentration for a negatively
autoregulated gene.

Figure 3.4 shows c
(ss)
P as a function of the protein production

rate, k, for several values of the dissociation constant, Kd. As the
negative autoregulation gets stronger (asKd decreases), the curves
become flatter: the steady-state protein concentration becomes
less dependent on the protein production rate.

In the cell, the protein production rate depends on the con-
centration of RNA polymerase, as well as the concentration of
ribosomes, mRNA degradation enzymes, etc. All of these factors
vary from cell to cell and over time inside any given cell. We
therefore expect the protein production rate to fluctuate within
and between cells. For a gene without negative autoregulation,

this will cause the protein concentration to fluctuate, since c
(ss)
P is

proportional to the production rate k. This fluctuation prob-
lem can be avoided using negative autoregulation. Because

the curve of c
(ss)
P versus k is much flatter in the case of negative

autoregulation, the steady-state protein concentration will remain
stable even if the intracellular environment (i.e. the protein pro-
duction rate) fluctuates. In other words, negative autoregulation
can make the performance of a gene robust to changes in protein
production rate.

You may have noticed that for negative autoregulation c
(ss)
P does

depend on the dissociation constant, Kd. Is this a problem for
robustness? Probably not: we expect Kd to fluctuate much less
than k because Kd depends only on how strongly the protein binds
to its DNA binding site, which is determined by the structure of
the protein and the sequence of the binding site.

Negative autoregulation also has an important effect on the
rise time, trise: the time the cell needs to turn the gene on (to the
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half-maximal protein level). We saw that for the unregulated gene
this time was fixed by the protein-removal rate, trise = ln(2)/µ.
What happens for a negatively autoregulated gene? To calculate
trise, in principle, we should solve the full version of eq. 3.12, but
this is tricky analytically. If we look at early times, when cP is
small, we can approximate cP(t)/Kd < 1 then

trise = − 1

µ
ln

[
1−

µc
(ss)
P

2k

]
, (3.15)

and if we also assume that autoregulation is strong we can substi-

tute the previous result for c
(ss)
P , obtaining

trise = − 1

µ
ln

[
1− µ

2k

√
kKd

µ

]
=

1

µ
ln

 2

2−
√

kKd
µ

 . (3.16)

Fig. 3.5 Negatively autoregula-
tion has strong effect on dy-
namics.

This result is plotted in Figure 3.5: As Kd decreases (i.e. as the
negative autoregulation becomes stronger), trise decreases. This
important result shows that negative autoregulation can help cells
to respond more rapidly to changes in their environmental condi-
tions than they would be able to without regulation. The units
chosen in Figure 3.5 are rather arbitrary. To get a feeling for some
real numbers, we have already seen that a typical protein-removal
rate µ in a bacterial cell would be 0.02/min, so the rise time
for a typical protein without negative autoregulation would be
ln(2)/µ (∼ 35 min). While protein production rates and protein-
DNA dissociation constants can vary enormously, a realistic value
for k might be 0.2 molecules/min per cell volume and Kd might
be 0.02 molecules per cell volume (for a protein that binds very
strongly to its DNA binding site). The value of trise for a negat-
ively autoregulated gene, assuming these parameter values, would
then be 12.7 min: almost a factor of three faster than the gene
without negative autoregulation.

3.1.4 How are these measurements done, at
population level?

Aside from noise and fluctuations, which we address below, how is
the type of mRNA present in a sample (a population) of cells meas-
ured? DNA microarray chips can be used. These are large arrays
(tens of thousands) of pixels (dots). Each pixel represents part of
a gene, by having of the order of 106 − 109 single-stranded DNA-
mers, that are identical copies from the DNA of the gene. The
chip size is of the order of 1 cm2. The analysis consists of taking a
cell sample, extracting all mRNA in this (hopefully) homogeneous
sample, and translating it to cDNA (DNA that is complementary
to the RNA, and thus identical to one of the strands on the original
DNA). The cDNA is labeled with a fluorescent marker. The solu-
tion of many cDNAs is now flushed over the DNA chip, and the
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Fig. 3.6 Noise from low number of molecules can lead to different
outcomes. Computer simulation results for reaction A + B → C, starting
with different numbers of A and B molecules.

cDNAs that are complementary to the attached single-stranded
DNA-mers will bind to them. The DNA chip is washed and im-
ages (with pixel resolution) and the fluorescent light intensity thus
measures the effective mRNA concentration. In its basic imple-
mentation, this technique gives one “snapshot” in time, and an
average over many cells.

3.2 Biochemical noise

Cells with identical genes and environmental factors can differ
chemically: we will see one way in which this can come about,
using ideas about probability to model the processes mathemat-
ically.

Consider as before the reaction A + B → C. Figure 3.6 shows
how the number of C molecules increases in time, if we start with
a 50:50 mixture of A and B. These results were obtained via com-
puter simulations. Simulations were carried out, starting with
1000 molecules each of A and B, then with 20, 10 and 5 molecules
each, with the rate constant, q, set numerically equal to 1 (to
keep things simple). In each case, the simulation was repeated
five times. When the total number of molecules is large, the num-
ber of C molecules rises smoothly and the repeat runs all give the
same results. In this case, we can model the system with determ-
inistic ordinary differential equations, as discussed in the previous
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section.
However, if the total number of molecules is small, the system

becomes very “noisy”: the number of C molecules does not rise
smoothly and repeat simulation runs give different results. Using
standard methods from statistics, we can quantify what we mean
by the number of molecules, N , being “small”. It is convenient to
define s as the ratio of the standard deviation in the mean to the
standard deviation itself, s = 1/

√
N ; this tends to unity for small

N , and equivalently N '
√
N . It turns out that “small molecule

number” effects become important when the number of molecules
becomes small enough that it is similar to its own square root.

Putting in the starting numbers of molecules for the simula-
tions in Figure 3.6, when N = 2000, s = 0.022, but when N = 5,
s = 0.44. Although Figure 3.6 shows computer simulation res-
ults, the same effect would happen in an experiment, if we could
build an experimental system so small that it contained only a
few molecules each of types A and B.

What is going on here? Why is our chemical reaction “noisy”
when the number of molecules is small? The reason is that chem-
ical reactions are stochastic, or random. That is, the outcome is
governed by probabilities, and there are sufficiently few molecules
that there is no single overwhelmingly favoured outcome. In our
box of A and B molecules (the cell), we do not know the exact
positions and velocities of all of the molecules and so we do not
know the exact time when a pair of A and B molecules will meet
and react. The exact times when reactions happen and the ex-
act sequence of reactions that happen can be different in repeat
runs of the same experiment. This may all be very interesting
but why is it relevant? Even in something as small as a bacterial
cell, there are many billions of molecules, so why would these
stochastic effects be important? In fact, stochastic effects can be
very important in cells, because even though the total number
of molecules in a cell is large, the number of molecules involved
in a particular biochemical reaction network can be very small.
For example, in slow-growing cells, there is only one copy of the
DNA (so the number of molecules of a particular gene may actu-
ally be only one). The number of messenger RNA molecules in
the cell corresponding to a particular gene can also be very small
for weakly expressed genes, and some proteins are only present
in small numbers. Biochemical reaction networks involving genes,
mRNA or proteins that are present in small numbers per cell are
likely to be dramatically affected by small-molecule number fluctu-
ations. We call these stochastic fluctuations “biochemical noise”.

Fig. 3.7 Cells with identical
genes in identical environments
can behave differently. This can
be explained in terms of biochem-
ical noise. Cover image from Science
Vol.297 issue 5584 (2002).

3.2.1 Individual cells are not identical

The fact that biochemical noise really is significant for biological
cells was illustrated in an important experiment by Michael Elow-
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itz et al. in 2002. They engineered Escherichia coli bacteria carry-
ing two different-coloured fluorescent reporter genes. These genes
encode proteins that do not interfere with any cellular functions
but when excited by UV light of the right wavelength they fluor-
esce (i.e. they emit light of a longer wavelength). This can be
detected in an epifluorescence microscope. Elowitz et al. were
therefore able to measure the relative amounts of the two fluores-
cent proteins in individual bacterial cells. The question that they
wanted to answer was: if two cells are genetically identical and
experience the same environmental conditions, will they produce
the same amount of the two fluorescent proteins?

Figure 3.7 shows the results of one of their experiments. This
is an overlay of micrographs of a group of E. coli cells growing
on a semi-solid gel under the microscope. These cells all grew
from a single “ancestor” at the start of the experiment so they are
genetically identical. The colours show the relative amounts of
the two fluorescent proteins present in each cell: green represents
protein 1 and red represents protein 2. Cells that are coloured
yellow contain approximately equal amounts of proteins 1 and 2.
It is clear from this image that these “identical” cells are different
colours, showing that they are very far from identical in their
levels of production of the fluorescent proteins. Elowitz et al.
also showed that cells that produce the reporter proteins at low
levels (small number of molecules) have much more “noisy” levels
of expression than cells that produce the proteins at high levels
(a large number of molecules). This is what we would expect
if differences between cells are caused by small molecule number
noise since s = 1/

√
N is larger for small N .

Concept of intrinsic and extrinsic noise

Are the differences between cells shown in Figure 3.7 really caused
by small molecule number noise in the chemical reactions involved
in protein production (transcription and translation)? Or are the
different colours caused by differences between the cells? For ex-
ample, we can see in Figure 3.7 that some cells are short be-
cause they have just been generated, while others are much longer
and are about to divide. Perhaps this affects the level of protein
expression? Cells could also contain different concentrations of
RNA polymerase or ribosomes, which would cause them to pro-
duce more or less fluorescent protein.

To explore the origins of the different amounts of the proteins,
Elowitz et al. used two fluorescent proteins (in different colours)
instead of just one. Within each cell, the genes encoding the
two proteins should experience the same cell volume, RNA poly-
merase, ribosome concentration, etc. So if the differences in pro-
tein expression are caused by differences between cells, the levels
of the two colours should be correlated cells with a lot of protein 1
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Fig. 3.8 Use of two “reporters” allows to distinguish intrinsic versus
extrinsic noise. Protein levels vary because of fluctuations in the intracel-
lular environment and of biochemical noise in transcription and translation.

should also have a lot of protein 2. However, if chemical reaction
stochasticity is responsible for the differences in protein expres-
sion, we would not expect the levels of protein 1 and protein 2 in
individual cells to be correlated. This is illustrated in Figure 3.8.

In fact, by measuring the amount of correlation between the
levels of proteins 1 and 2 in individual cells in their experiments,
Elowitz et al. could measure how much of the cell-to-cell variation
is caused by differences between cells (which they called extrinsic
noise) and how much is caused by chemical reaction stochasticity
(which they called intrinsic noise). In their experiments, both
sources of noise played a significant role.

Why does it matter that genetically identical cells can have dif-
ferent levels of protein expression? One reason is that biochemical
noise limits how precisely cells can control their own behaviour.
If a cell needs to control precisely the concentration of a partic-
ular protein, either it must produce a large number of molecules
(which is expensive) or it must use a biochemical control circuit
(such as a negative feedback loop) to reduce the noise.

On a more positive note, biochemical noise may actually be
useful for cells in some cases. For example, bacterial populations
are often exposed to environmental stress (attack by antibiotics,
changes in food availability, etc). If all of the cells in the popu-
lation are identical in their protein composition, the stress may
wipe them all out; but if there is large variability in protein com-
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position among cells, it is possible that a few cells will happen to
have the right protein levels to survive the stress. The population
can then regrow from these cells once the stress is over.

3.2.2 Theory of noise

For stochastic chemical reactions, we cannot predict exactly which
reaction will happen when, or which cell in a population will con-
tain which exact numbers of molecules of proteins, mRNA, etc.
However, we can make predictions about probability distributions.
For example, we might predict the probability that a randomly se-
lected cell in a population will have 100 molecules of a particular
protein, even though we cannot predict which cell this will be.
The quantity we are interested in is therefore p(N, t): the prob-
ability that our system contains N molecules of protein P at time
t.

“Birth-death” model for gene expression

We can write down an equation for p(N, t) for the simple “one-step
model” of gene expression that we discussed above, in which we
include chemical reactions for protein production and degradation:

source
k−−→ P

P
µ−−→ sink

We assume that these reactions are “Poisson processes”. This
means that if we observe the system for a very short time interval
from time t to time t + dt, the probability that the first reaction
(production) happens will be

Prob(produce) = kdt,

while the probability that the second reaction (degradation) hap-
pens in this same time interval will be

Prob(degrade) = µNdt,

where N is the number of molecules of protein P, since the more
P molecules there are, the more likely it is that this reaction will
happen somewhere in the system during the time interval t →
t+ dt.

How does the probability, p(N), of having N molecules change
during the time interval t → t+ dt? To determine this, we need
to think about how the system can enter and leave the state of
‘having N molecules’. To get N molecules, the system could have
(a) previously had (N − 1) molecules and gained one more in a
production reaction, or (b) previously had (N + 1) and lost one
in a degradation reaction. These are the only ways in which the
system can enter the ‘state of having N molecules’. However, it
can also leave this state if it already has N molecules and either
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Fig. 3.9 Considering individual steps in a chemical reaction. Here,
the vertical bars represent the probability of having a particular number of
molecules and the arrows represent how the number of molecules is changed
by the protein production and degradation reactions. In a very small time
interval, t → t+ dt, the probability p(N, t) increases due to the possibility of
reactions happening from states (N −1) or (N +1) to N , and it decreases due
to the possibility of reactions from state N to (N − 1) or (N + 1).

(a) another one is produced (then it will have N + 1 ), or (b) one
is degraded (then it will have N − 1), see Figure 3.9.

By summing all of the probabilities we can generate an equation
called the chemical master equation:

dp(N, t)

dt
= kp(N − 1) + µ(N + 1)p(N + 1) − kp(N) − µNp(N)

(3.17)
Let us suppose that we are only interested in the probability dis-
tribution p(N) after a long time, once the system has reached its
steady state. In that case, we have

dp(N, t)

dt
= 0. (3.18)

Solution to this is:

p(N) =
1

N !

(
k

µ

)N
e
− k
µ . (3.19)

as you can check by substitution, noting that p(N−1) = N(µ/k)p(N)
and that p(N + 1) = (k/µ)(1/(N + 1))p(N).
Equation 3.19 is the well known Poisson distribution.
Figure 3.10 shows the probability distribution p(N) plotted for
different values of (k/µ). We can see that as (k/µ) increases, the
average number of molecules increases. The mean and standard
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deviation σN of the distribution p(N) are given by:

〈N〉 =
k

µ

σN =
√
〈N2〉 − 〈N〉2 =

√
k

µ
,

We can estimate the importance of stochastic effects looking at
the ratio of the standard deviation to the mean:

σN
〈N〉

=

√
µ

k
=

1√
〈N〉

, (3.20)

this explains why earlier we stated that small molecule number
noise becomes important when the inverse square root of the num-
ber of molecules is close to one.

Fig. 3.10 Solution of chemical
master equation for the simple
one-step model of protein ex-
pression.

3.2.3 A two-step model for protein production

The model that we have just been considering may be too simple.
In reality, the production of protein from a gene does not happen
in a single step. We can make our model slightly more realistic
by making a two-step model that includes both transcription and
translation. The reaction scheme for this model would be
source −−→ M
M −−→ sink
M −−→ M + P
P

µ−−→ sink
Here, M represents mRNA and P represents protein. It is possible
to write down a chemical master equation also for this model, and
to solve it for the steady state probability distribution. In this
case, there is a probability distribution for the number of messen-
ger RNA molecules as well as for the number of protein molecules.
For mRNA we only need to consider the top two reactions (since
the bottom two reactions do not change the number of mRNA
molecules), which are identical to our previous simpler model. So
we expect the probability distribution for the number of mRNA
molecules to be a Poisson distribution. However the bottom two
reactions, which control the production and degradation of pro-
tein, are now different from our simple model. This means that
the probability distribution of protein may be different from a
Poisson distribution in this model.

Average number of protein molecules =5

Average number of protein molecules =100

Fig. 3.11 Chemical master
equation solutions for the one-
and two-step models of protein
expression. For the two-step
process we assume that on average
an mRNA produces five proteins,
and we fix the transcription rate
to get the same average number of
proteins as in the one-step model.

Figure 3.11 shows the protein number probability distribution
for this model. We set the parameters (translation rate/mRNA
decay rate) so that five proteins are made on average per mRNA
molecule (although some mRNA molecules will produce more and
some less). We can compare this with the previous one-step model
by fixing the transcription rate so that the average protein num-
ber is the same in both models. The results are shown in Fig-
ure 3.11: we can see immediately that the distribution is broader
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Fig. 3.12 Direct imaging of noise in gene expression. This experi-
mental system was constructed by Yu et al. in 2006 to visualise in real time
the production of a single protein molecule in a cell. From Yu et al. 2006,
‘Probing gene expression in live cells, one protein molecule at a time’, Science
311 1600.

in the two-step model. This model predicts more noisy protein
expression than the one-step model. The reason for this is that
the extra chemical reaction step amplifies the noise: the number
of mRNA molecules is itself noisy, and then on top of this each
mRNA molecule can produce a variable number of proteins.

3.2.4 Visualising noise in gene expression

How can we test whether these are good models for noisy gene
expression in real cells? One way to do this is actually to carry
out single molecule experiments, in other words to watch, under
the microscope, the production of single protein molecules in indi-
vidual cells. Since protein molecules are very small, this is a very
challenging task. However, in 2006, Yu et al. managed to design
an appropriate experiment (Figure 3.12). They made a strain of
E. coli that produced a yellow fluorescent protein attached to a
polypeptide (a chain of amino acid molecules), which could anchor
this complex in the cell’s lipid membrane. When the fluorescent
protein is anchored in the membrane, it diffuses around much less,
making it easier to see single molecules under the microscope. In
this system, using advanced fluorescent microscopy, it is possible
to see individual fluorescent protein molecules as dots within the
cell membrane. Yu et al. could then grow cells under the mi-
croscope and track the moments when individual dots appeared
in the membrane. In this way, they could see the production of
individual protein molecules in real time. To keep the protein
numbers low, the researchers included a binding site for the Lac
repressor protein (see Section 3.3.4) When this repressor protein
is bound to the operator site in front of the gene that encodes the
fluorescent protein, no protein will be produced.
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Fig. 3.13 Experiments can identify production of individual proteins.
Some of Yu et al.’s results, showing the moment when individual protein mo-
lecules are produced in growing bacterial cells. From Yu et al. 2006.

Figure 3.13 shows some of Yu et al.’s results. The bacterial
cells in the series of images grow from a single cell during the
experiment. The yellow dots show individual protein molecules
bound to the cell membrane. By tracking the appearance of these
dots, Yu et al. were able to monitor the moments when protein
molecules appeared in the membrane. This was done for different
cell lineages, as shown in the plot, which indicates the number
of protein molecules that were produced in a 3 min interval. The
dotted vertical lines show the moments when the cell divided into
two daughter cells.

What’s really striking about Yu et al.’s results is that for most
of the time, no protein molecules are being produced. Protein pro-
duction occurs in short bursts, with long intervals where noth-
ing happens. This is probably because most of the time the Lac
repressor protein is bound to the DNA, thereby preventing pro-
tein expression. The bursts of expression take place during the
rare moments when a stochastic fluctuation causes the repressor
to fall off its DNA binding site. Yu et al.’s setup therefore allows
us to see stochastic chemical reactions happening inside biological
cells, in real time and at single-molecule resolution.

We have focused here on noise in gene expression, but the
stochasticity of chemical reactions is also important in many other
cell functions. Single-molecule experiments have revealed the ef-
fects of biochemical noise in the molecular machines that drive
the flagellar motor that allows cells to swim and in the bacterial
membrane receptors that sense environmental gradients. Other
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experiments have found important effects of biochemical noise in
the development of fruit-fly embryos and the mechanisms that
control whether or not cells proliferate. It seems that noise is
everywhere.

3.3 From a molecular to a stat mech
description of regulation

We develop here a physics-based view of how gene expression is
regulated, following closely the text of (Phillips et al., 2013).

3.3.1 RNA polymerase binding to a specific site

Following from page 242 (Phillips et al., 2013).
L ligands. Prob that 1 ligand is bound to receptor:

weight when receptor occupied = e−βεb ×
∑

solution

e−β(L−1)εsol ,

where the summation is the sum over all ways of arranging the
L − 1 ligands in solution. Imagine Ω ‘lattice sites’ in solution.
Then ∑

solution

e−β(L−1)εsol =
Ω!

(L− 1)![Ω− (L− 1)]!
.

The partition function is

Z(L,Ω) =
∑

solution

e−βLεsol + e−βεb
∑
solutione−β(L−1)εsol .

The sum in the second term has already been evaluated. The first
term is ∑

solution

e−βLεsol = e−βLεsol
Ω!

L!(Ω− L)!
.

Bringing both together,

Z(L,Ω) = e−βLεsol
Ω!

L!(Ω− L)!
+ e−βεbe−β(L−1)εsol

Ω!

(L− 1)![Ω− (L− 1)]!
.

If we simplify considering

Ω!

L!(Ω− L)!
' ΩL,

which is ok provided Ω >> L, then we can write the probability
of being bound as:

pbound =
e−βεb ΩL−1

(L−1)!e
−β(L−1)εsol

ΩL

L! e−βLεsol + e−βεb ΩL−1

(L−1)!e
−β(L−1)εsol

.

Now defining ∆ε = εb − εsol, we can simplify to:

pbound =
(L/Ω)e−β∆ε

1 + (L/Ω)e−β∆ε
,
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which we can write in terms of a concentration c:

pbound =
(c/c0)e−β∆ε

1 + (c/c0)e−β∆ε
,

where c0 is a reference state of full occupation. For example, if we
assume our molecules to be of volume 1 nm3, then c0 = 0.6M

This, obtained here in the language of ligand/receptor binding,
is a classical result known as ‘Hill function’, or also as a ‘Langmuir
adsorption isotherm’ from the Part II Stat Phys course.

3.3.2 RNA polymerase binding: competition
between specific and non specific site

This extends the calculation above. Let’s assume the non-specific
sites on the DNA are NNS ‘boxes’. Then the partition function
associated with these states is:

ZNS(P,NNS) =
NNS !

P !(NNS − P )!
× e−βPε

NS
pd ,

where εNSpd is the energy of binding the polymerase to a non-specific

site (and εSpd will be later the energy of binding the polymerase to
the specific site ).

Now we can write the total partition function. We need to
sum over the states in which the promoter is occupied (hence P-1
polymerase molecules in the non-specific sites), and those where
it is not:

Z(P,NNS) = ZNS(P,NNS) + ZNS(P − 1, NNS)e−βε
S
pd .

Hence the ratio of configuration weights where promoter is bound,
to all weights, is:

pbound =

NNS !
(P−1)![NNS−(P−1)]!e

−βεSpde−β(P−1)εNSpd

NNS !
P !(NNS−P )!e

−βPεNSpd + NNS !
(P−1)![NNS−(P−1)]!e

−βεSpde−β(P−1)εNSpd

As in the previous subsection, the factorials can be simplified,
and we can write the result to show that only the energy difference
matters:

pbound =
1

1 + NNS
P e−β∆εpd

,

this is the familiar result for two-state models, with the unoccu-
pied state of the promoter having weight =1, and the occupied
having weight P/NNSe−β∆εpd .
The energy differences ∆εpd are negative, and can range between
minus a few to ∼ −10 kBT .
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3.3.3 Activation and repression of promoter regions

Now that the ‘combinatorics’ is fresh from above, we can make
another construction along this line, and tackle the more complex
cases of promoter regulation by transcription factors.

Activators

Activators are proteins that bind to a specific site, and promote
the recruitment of RNA polymerase to a nearby promoter site.
We now have 4 classes of outcome to sum over to make the total
partition function: the activator and promoter site can each be
occupied or unoccupied. So:

Ztot(P,A,NNS) = Z(P,A,NNS) (empty)

+Z(P − 1, A,NNS)e−βε
S
pd (only RNAP on promoter)

+Z(P,A− 1, NNS)e−βε
S
ad (only activator bound)

+Z(P − 1, A− 1, NNS)e−β(εSpd+εSad+εpa). (both RNAP and activator bound)

(Here A, a are the activator, P, p the polymerase, d the DNA). εap
is the energy that favors the activator and the RNA polymerase
being close.

The algebra is more lengthy but follows the exact steps as pre-
viously. To get promoter occupancy, we can take the ratios of
the weights of the two ‘favorable’ states, against the sum of all
weights, and we get:

pbound(P,A,NNS) =
1

1 + NNS
P Freg(A)e−β∆εpd

,

where the function Freg(A) is:

Freg(A) =
1 + (A/NNS)e−β∆ade−βεap

1 + (A/NNS)e−β∆εad
,

and the ∆ε are the energy differences between specifically and non
specifically bound conditions.

This is a neat result, because it shows that activating molecules
make an F > 1, i.e. have an effect that is mathematically equi-
valent to increasing the number of polymerases. Given realistic
values of the other energies, a few −kBT for εap is enough to sig-
nificantly change the bound probability, see (and reproduce your
own?) Figs.19.10 and 19.11 in (Phillips et al., 2013).

If the approx (NNS/PFreg)e
β∆εpd >> 1 holds, i.e. the promoter

is not too strong, then you can obtain (exercise) that the fold
increase is approximately Freg(A) itself.
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Repressors

Repressor proteins occupy the promoter region, and prevent the
PRNA binding there. The statistical mechanics approach is a vari-
ant of the above. The partition function associated with binding
of repressors to the non-specific sites is:

Z(P,R,NNS) =
NNS !

P !R!(NNS − P −R)!
eβPε

NS
pd eβRε

NS
rd .

Now the total partition function is:

Ztot(P,R,NNS) = Z(P,R,NNS) (empty promoter)

+Z(P − 1, R,NNS)e−βε
S
pd (RNAP on promoter)

+Z(P,R− 1, NNS)e−βε
S
rd . (repressor on promoter)

With the same algebra steps and approximations as previously,
we obtain

pbound(P,R,NNS) =
1

1 + NNS
P eβ(εSpd−ε

NS
pd )[1 + R

NNS
e−β(εSrd−ε

NS
rd )]

.

To obtain a compact expression of the same form as for activators,
a regulating function Freg(A) can be defined as:

Freg(R) =

(
1 +

R

NNS
e−β∆εrd

)−1

,

with ∆εrd = εSrd − εNSrd . Here, Freg < 1, which means that the
systems behaves as if fewer polymerases were present.

Towards the real case: activation and repression!

In a real regulatory system, both mechanisms can interplay. Again
we can build on the same lines as before, and there are now six
distinct possible outcomes:

Ztot(P,A,R,NNS) = Z(P,A,R,NNS) (empty promoter)

+ Z(P − 1, A,R,NNS)e−βε
S
pd (RNAP on promoter)

+ Z(P,A− 1, R,NNS)e−βε
S
ad (activator on promoter)

+ Z(P − 1, A− 1, R,NNS)e−β(εSad+εSpd+εpa) (RNAP and activator on)

+ Z(P,A,R− 1, NNS)e−βε
S
rd (repressor on promoter)

+ Z(P,A− 1, R− 1, NNS)e−β(εSad+εSrd). (activator and repressor on)

As before the RNA polymerase binding probability can be cal-
culated and has the form:

pbound(P,A,R,NNS) =
1

1 + NNS
P Freg(A,R)eβ(εSpd−ε

NS
pd )

,
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where the regulating function Freg(A,R) is richer:

Freg(A,R) =
[
1 + (A/NNS)e−β(∆εad+εap)

]
/[

1 + (A/NNS)e−β∆εad + (R/NNS)e−β∆εrd +

(A/NNS)(R/NNS)e−β(∆εad+∆εpd)
]
.

Fig. 3.14 Idealised (logic) lac
network. A convenient way to il-
lustrate the molecular interactions
that make up the lac regulatory net-
work. Here, positive molecular in-
teractions (activation) are shown by
arrows and negative molecular in-
teractions (repression) are shown by
“blocker” bars. The input to the
network are the concentrations of
lactose and glucose, the output is
the activation of gene transcription
for the machinery required to meta-
bolise lactose. This type of diagram
is often used to represent regulatory
networks and is convenient when the
networks are complicated, involving
a lot of interactions.

3.3.4 The lac Operon

The lac Operon has played a key role historically in understand-
ing physical and biological aspects of gene regulation. In the lac
Operon there is an activator, the protein CAP: in order to recruit
RNAP, CAP has to be bound to a molecule called cyclic AMP
(cAMP), whose concentration goes up when amount of glucose
decreases. There is also a repressor, the Lac repressor, which
decreases the amount of transcription unless it is abound to al-
lolactose, a byproduct of lactose metabolism.
Keep in mind that this regulation is just to ensure that the en-
zymes to digest lactose are produced only when glucose is not
present, and lactose is present. It seems an apparent simple ob-
jective, but selecting reliably for one of four situations requires a
mechanism of both activation and repression as outlined here.

Our thermodynamical model is in fact still too simple to de-
scribe quantitatively the lac Operon. There is another important
detail which is worth mentioning, because it brings in the nature of
the DNA double-helix as a polymer, with all the ‘polymer physics’
concepts that have been studied in other contexts. What we have
not considered in the models above is the fact that (a) each lac
repressor molecule has two binding sites, combined with (b) that
there are three operator regions on the DNA for lac to bind (with
slightly different binding energies, and situated 92 and 401bp on
each side of the main operator). This fact corresponds to the pos-
sibility for the lac repressor to form a loop of DNA. Bending of
double-stranded DNA carries of course a free energy cost, and this
cost can in principle be regulated by the cell through associations
of proteins, or physical chemistry changes, that lead to changes in
DNA persistence length.

Fig. 3.15 Idealised (logic) and
simplified diagram of the phage
lambda genetic switch. The cro
gene results in cell lysis; the cI gene
promotes lysogeny.

On one hand this lac Operon, is a classic system of study, and
considered understood well enough to be used in an ‘engineering’
building-block spirit in synthetic biology constructions. On the
other hand, it is still the study of refined experiments and models,
aiming to understand it fully quantitatively. That systems open
up new refined questions as we understand more of them is a
familiar theme in various areas of physics.

Regulating gene expression by DNA conformation, with loops
or compact regions stabilised by protein adhesion, is a very general
mechanism heavily exploited in eukaryotic cells.
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3.3.5 Case study: lambda phage

This is another very well studied “hydrogen atom” situation in
biology. A virus called bacteriophage lambda infects E. coli. Once
a bacterial cell is infected, the virus has two options: it can either
hijack the cell machinery to replicate itself and then kill the cell
(known as lysis), resulting in its release, or it can add its DNA
to the DNA sequence of the bacterium and lie dormant inside the
host cell (known as lysogeny) until conditions are more favourable
for lysis. Which of these developmental pathways is adopted is
determined by (a more complex version of) the regulatory network
shown in Figure 3.15. This network contains two genes, cI and
cro. When the cro gene is activated, cell lysis results; when the cI
gene is activated, lysogeny follows. What prevents both pathways
from being activated simultaneously?

As shown in Figure 3.15, the cI gene encodes a protein, CI,
which acts as a repressor of the cro gene and an activator of its
own gene. Thus, when cI is active, cro is repressed and remains
inactive, while cI remains active. Likewise, the cro gene encodes
a protein, Cro, which acts as a repressor of the cI gene. Thus,
when the cro pathway to lysis has been adopted, the cI pathway
to lysogeny is automatically shut down. In this way, the virus
ensures that a binary all-or-nothing “decision” is made between
lysis and lysogeny. This is an example of a bistable switch: a
regulatory network with two distinct outcomes. Bistable switches
are important not just for bacteriophage lambda but also in de-
velopmental and cell-fate decisions in many other cells, including
human ones. (Bistable switches are also used in electronic con-
trol networks, where they maintain a circuit in one of two stable
states until some external trigger is applied very similar to their
biological analogue.)

3.4 Simulating chemical reaction dynamics

Gene expression in a living organism is not a steady state pro-
cess: at the embryo development level, regulation evolves within
a cell cycle, and very significantly at cell division; the cell cycle
also defines genes that are only expressed at certain times; ‘zoom-
ing in’ at even shorter times, the gene expression can often be
seen to be happening in bursts. A dynamical description of con-
centrations can be important. Careful experiments, and models,
can highlight the various sources of ‘noise’ (stochasticity) in ex-
pression, which can be quite different in origin: for example from
the molecular binding event, to fluctuations in concentrations, to
noise that comes from the coupling of the dynamical process.

Other processes in the cell for example the translation of pro-
teins, or reaction networks of proteins, also can exhibit transients
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in time, and noise. How can we model this? Except in the simplest
cases, there is not much that can be one analytically. Given a set
of coupled differential equations, one can solve numerically. In a
brute-force approach, a constant timestep for integration could be
chosen: this would have to be much smaller than any reaction or
decay timescales, and can be very wasteful of simulation time. A
very elegant way to address these problems computationally was
proposed by Gillespie in 1977, and his algorithm is still in current
use.

3.4.1 the Gillespie algorithm

The Gillespie algorithm instead of working with a constant ∆t
provides a strategy for adapting the timestep to the problem,
by choosing it at random from a particular probability distribu-
tion. A second (biased) random number then determines which
of the reactions take place at the simulation step. Running this
algorithm is equivalent to following one particular realisation of
the stochastic dynamics of a system. It is powerful because it has
‘real time’, and because by running it with several iterations one
can build up distributions.

Let’s see how the algorithm works (what is the correct probab-
ility distribution for ∆t, and how to choose the reaction) with the
example of the unregulated promoter. There are two reactions:
(1) an mRNA can be can be produced, with probability k per unit
time;
(2) an mRNA can decay, with probability γ per unit time and per
unit molecule.
Let’s call m(t) the number of mRNA molecules at time t.
Once we have a timestep ∆t , we want to determine P (i,∆t)dt, the
probability that reaction i takes place in the interval ∆t,∆t+ dt.
First, we note that we also want to impose no reaction to have
occurred before ∆t. We call this probability P0(∆t). Thus the
probability that reaction i takes place in the interval ∆t,∆t+ dt
is

P (i,∆t)dt = P0(∆t)kidt.

How do we calculate P0(∆t)? We can write

P0(∆t+ dt) = P0(∆t)

(
1−

∑
i

kidt

)
,

i.e. the product of the probability of no reaction having occurred
up to ∆t, time the probability of no reaction taking place in dt.
The first term can be Taylor expanded around ∆t, and we obtain

dP0(∆t)

d∆t
= −P0(∆t)

∑
i

ki,

which has solution

P0(∆t) = e−
∑
i ki∆t = e−k0∆t,
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where we have used P0(∆t = 0) = 1 and defined k0 =
∑

i ki.
Substituting back, we get

P (i,∆t)dt = e−k0∆tkidt.

If we sum this over all i, we get the probability that any of the
possible reactions happens in the interval ∆t,∆t+ dt:

P (∆t)dt = e−k0∆tk0dt.

This is the distribution from which one needs to pick ∆t.

Now we need to work out how to make a distribution from
which to pick the random choice of which reaction takes place.
The probability that reaction i happens at some time is:

P (i) =

∫ ∞
0

P (i,∆t)dt =
ki
k0
.

This tells us that the probability of a reaction to take place is just
the ratio of its rate, and the sum of all the possible rates. This
gives us the criterion to choose (randomly, but with the right bias)
which reaction will take place at the simulation timestep.

In algorithm form, the steps in this example are:
1. given m(t), calculate the rates. In this case only k2 depends on
m(t).
2. draw a uniform random number x between [0, 1]. Compute k0.
∆t = (1/k0) ln(1/x). This last formula is a way (you can check)
to turn the uniform random number in a random number from
the exponential distribution we want, calculated above. Advance
simulation clock by ∆t.
3. draw a uniform random number between [0, 1]. If the number is
between [0, k1/k0[, increase the mRNA molecule number by one. If
it is between [k1/k0, 1] then decrease the mRNA molecule number
by one.
4. loop back to step (1).

Check that the distribution ofm at steady state is well described
by a Poisson distribution. This is a result that could have been
obtained analytically, in this simple example.





Dynamical Systems:
Systems and Circuits 4
4.1 Elements of non-linear dynamical

systems

We will focus on concrete examples in the context of gene expres-
sion, but let us first introduce some of the general framework and
useful tools that have been developed in general for the study of
non-linear dynamics. We follow here the monograph by Strog-
atz (Strogatz, 2014).

The dynamics of a general non-linear system can be described
by a set of coupled differential equations

ẋ1 = f1(x1, ...xn)
...

ẋn = fn(x1, ...xn).

For example, damped harmonic motion with the second order (lin-
ear) DE

mẍ + bẋ + kx = 0

can be written a set of coupled first-order equations as

ẋ1 = x2

ẋ2 = − k
m
x1 −

b

m
x2.

We examine, in turn, the one-variable system (“flow on the line”),
the two-variable system (“flow on the plane”) and the three-variable
system (“3-D flow”). In general, an n-variable system requires n
equations to represent it.

4.1.1 Flows on the line

We start with an examination of the possible trajectories of a sys-
tem. That is, we plot the path in a 2n-dimensional space, where
the dimensions are the n independent coordinates and their cor-
responding momenta. Here, we take a fairly loose view of this
definition, and we will generally just use the independent coordin-
ates and their time- derivatives. We begin by examining the one-
dimensional flow, that is, the dynamics of a single first-order DE,

ẋ = f(x).
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Fixed points of a 1-D flow

The function f is single-valued for all x. The dynamics therefore
take place along a line (the x axis). In the notation of Strogatz, the
phase-plane plot represents a vector field on the line: the velocity
vector ẋ is shown for every x. The trajectory is a plot of ẋ as a
function of x. The time coordinate is thus implicit we could, for
example, mark off time ticks along the curve given any starting
value of x, and hence ẋ, but the main properties of the system are
apparent directly from the phase-plane plot.

Half stable

Fig. 4.1 Illustrations of the
types of fixed points in 1-D sys-
tems. Note the notation: stable
fixed points are denoted by filled
circles; unstable fixed points by
open circles, and half-stable points
by half- filled circles, as shown in the
examples. Note the notation: stable
fixed points are denoted by filled
circles; unstable fixed points by
open circles, and half-stable points
by half- filled circles, as shown in the
examples.

We can immediately identify two types of fixed point. These are
values of x for which x is zero, so that the system is, momentarily
at least, at rest.

• A stable fixed point results whenever ẋ is zero and the slope
of the ẋ vs x curve dẋ/dx is negative. This ensures that
for small fluctuations away from the fixed point, as shown in
green arrows on the plot, the velocity ẋ is in a sense to bring
the system back to the fixed point. A stable fixed point is
also known as a sink or an attractor.

• An unstable fixed point, on the other hand, has dẋ/dx > 0,
so that small fluctuations result in a motion directed away
from the fixed point. Other names for an unstable fixed
point include source or repeller.

• One other type of fixed point is possible, and is known as a
half-stable point.

Example of Autocatalytic chemical reaction

Consider the reaction

A + X
k1−−⇀↽−−
k2

2X

which is a non-linear dynamical system. The presence of X stim-
ulates further production of X hence the term “autocatalytic”.
(This is one model for the growth of amyloid plaques in the brain
in diseases such as BSE and CJD: the presence of a small amount
of plaque, X, catalyses the conversion of normal protein, A, to
plaque.) There are two variables in the process: a, the concen-
tration of reactant A, and x, the concentration of reactant X. If
the concentration of A is always large, then it will be effectively
constant. The problem then reduces to dynamics in one variable.

Fig. 4.2 Fixed points of the
autocatalytic system.

Given the rate constants for forward and reverse reactions, k1

and k2, the equation governing the dynamics is

ẋ = k1ax − k2x
2.

We can sketch the trajectory in the phase-plane, as shown. It
is also straightforward to sketch the concentration vs time, as in
the right hand panel. Since ẋ is linearly proportional to x in the
vicinity of the fixed points, the approach to equilibrium must be
exponential.
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Dynamic variables and control variables

In the example above, x and a are dynamical variables: that is,
they are the variables which change with time. The two other
variables, k1 and k2, are control variables. In that particular case,
varying the control variables did not change the general character
of the dynamics, but only the details.

Fig. 4.3 In this example, a is
control variable. Its value de-
termines the stability of the system.

Consider now the system described by

ẋ = x2 + a.

As a is increased from a negative value, the two equilibria one
stable, and one unstable first approach each other, then merge to
form a half-stable fixed point, and finally annihilate. The control
parameter, or variable, a, thus determines the stability of the
system.

In general, complex dynamical systems have fewer control para-
meters than dynamical variables. We are interested in situations,
such as that shown above, where a change in one or more of the
control parameters leads to discontinuities i.e., qualitatively dif-
ferent dynamics, such as a change from stable to unstable beha-
viour. This is the basis of Catastrophe Theory. The key result
from catastrophe theory is that the number of configurations of
discontinuities depends on the number of control variables, and
not on the number of dynamical variables.

In particular, if there are four or fewer control variables, there
are only seven distinct types of catastrophe, and in none of these
is more than two dynamical variables involved. In the next section
we consider all cases up to two control parameters. For simplicity
we restrict ourselves to a single dynamical variable, x, with little
loss of generality.

Potential methods

The existence of stable, unstable and half-stable fixed points (i.e.
equilibria) suggests another way of looking at the dynamics, in
terms of an underlying potential, which we shall here denote by
V (x). Stable equilibria are local minima in V (x), unstable equi-
libria are local maxima and half-stable fixed points are points of
inflection.

In this course we are dealing with the evolution of arbitrary
dynamical systems (as loosely interpreted), and hence there may
not actually be a true potential energy. In mechanical systems
there often is one. In terms of the equation ẋ = f(x), we can
define the potential to be

f(x) = −dV
dx

.

For a first-order system (and hence one-dimensional motion) we
have to imagine a particle with an inertia which is negligible in
comparison with the damping force.
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The negative sign implies that the force on a particle is always
“downhill”, towards lower potential. This can be shown simply
by applying the chain rule to the time-derivative of the potential
and applying the definition of the potential:

dV

dt
=

dV

dx

dx

dt

= −
(
dV

dx

)2

≤ 0.

Thus V (t) decreases along trajectories, and the particle always
moves towards lower potential.

In summary, the potential has the following properties:

(1) −dV/dx is force-like (i.e., is in the direction of motion).

(2) Equilibrium positions, x∗ (fixed points) are given by−dV/dx =
0.

(3) The stability of the fixed point is determined by the sign of
−d2V/dx2|x∗ .

Forms of the potential curve

The potential function can always be approximated by a Taylor
series, so that

V (x) = a+ bx+ cx2 + ...

We can ignore a, since it is just a constant and does not affect the
dynamics. In the vicinity of a single fixed point (i.e. equilibrium)
we can also eliminate b by shifting the coordinate system to put
the fixed point at the origin (although b cannot be ignored for
multiple fixed points). This leaves us with

V (x) = cx2 + dx3 + ex4 + ...

We can now enumerate the possibilities.

(1) Harmonic Potential. This is the simplest possible form,
and the only one possible for purely linear systems:

V (x) = αx2.

There is a single fixed point, x∗ = 0, for all α. If α > 0 then
the fixed point is stable; if α < 0 then it is unstable.

(2) Asymmetric cubic potential: The saddle-node bi-
furcation. The potential has the form

V (x) = αx+ x3.

For α > 0, no equilibrium position is possible. For α < 0,
then there is always one stable and one unstable equilibrium.
Here we introduce the idea of control space. We can plot the
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location of the fixed point, x∗ , as a function of the control
parameter, α, as shown in the figure.
On the control space plot, the solid line denotes the location
of the stable equilibrium, while the dashed line indicates the
locus of the unstable equilibrium, both as a function of α.
The form of the instability shown here is what Strogatz calls
a saddle-node bifurcation, and sometimes known as a limit
point instability or a fold.
The phase-plane trajectories for this system were shown
earlier, for the system with ẋ = x2 + a. This is the ori-
gin of the term “saddle-node bifurcation” as a is decreased
through zero the fixed point is first created, and then bifurc-
ates into two: one stable and one unstable. 1

1A mechanical example, the
Weighted Pulley. The gravita-
tional potential is given by V =
mRθ − Mr sin θ, we can simplify
notation V = Aθ − B sin θ. For
small θ we can approximate this as
V ' (A−B)θ + B

6
θ3. That has the

same behavior as V = αθ+ θ3, with
α = 6(A − B)/B. The system will
thus be stable as long as α < 0, i.e.
B > A, i.e. Mr > mR.

(3) Cubic potential with quadratic term: The transcrit-
ical bifurcation. The potential this time includes a term
in x rather than a linear term as in the previous section.

V (x) = x3 + αx2

The effect of this is to give a double root, and hence a fixed
point, at the origin, regardless of the location of the third
root.
The bifurcation diagram is shown in the figure. This is gen-
erally known as the transcritical bifurcation. One physical
example of such a system is the laser.

(4) Symmetric quartic potential: The pitchfork bifurc-
ation. The potential is:

V (x) = x4 + αx2.

Two cases:

• For α ≥ 0 there is just one stable equilibrium;

• For α < 0 there is one unstable equilibrium and two
stable equilibrium points.

Plotted on the side here is the case of positive term on the 4th

power. In this case we refer to the Stable Symmetric Trans-
ition. It is also known as a Pitchfork Bifurcation (see Strog-
atz) from the shape of the bifurcation diagram, as shown
at right. One example of this sort of potential is the Euler
strut.
If we take the negative sign on the 4th power, the additional
quartic term may also act to destabilize the system, and the
locus of the fixed points changes qualitatively (exercise).

(5) Asymmetric quartic potential with two control para-
meters: the Cusp catastrophe. We now consider an
asymmetric potential, of the form

V (x) = αx2 + x4 + βx



60 Dynamical Systems: Systems and Circuits

where the βx term introduces asymmetry to the symmetric
quartic form of the previous case. We now have two control
parameters, α and β. Depending on the sign of α, then, we
get two different sorts of behaviour.

If α > 0 then the linear term merely shifts the position of the
fixed point, but does not qualitatively change the dynamics
from that of a simple harmonic potential. If α < 0 however,
the linear term can eliminate the unstable fixed points and
one of the stable fixed points as well.

The control space diagram the bifurcation set is now two
dimensional. Consider the equilibrium surface, or a plot of
the location of x∗ against α and β. The bifurcation set is
the set of points in the (α, β) plane dividing the plane into
different regions of stability, and has a characteristic cusp
shape.

As we move from the shaded to the non-shaded region (i.e.
across the bifurcation set), there is a sudden change in be-
haviour, with marked hysteresis when the path is reversed.

4.2 Gene regulation switches

Following section 19.3.5 of (Phillips et al., 2013). Let’s consider a
synthetic switch that was created in E.coli as a simple construc-
tion to understand possibly more complex biological switches. The
construction consists of two repressor proteins, whose transcrip-
tion is mutually regulated. This arrangement gives rise to feed-
back, and we will see that it allows for a very non-trivial switch
between steady states, depending on the initial conditions of the
system.

The concentrations of the two proteins are c1 and c2, and we
want to write equations for the time derivatives of concentration.
Each protein is subject to two processes:
(1) degradation at a rate γ, and
(2) its expression, but regulated via the concentration of the other
protein. Let’s assume that there is a basal (un-repressed) rate r,
and that the actual rate of expression is r(1− pbound). If we take
the rate of binding to be a Hill function of some order n,

pbound(c1) =
Kbc

n
1

1 +Kbc
n
1

,

with Kb the binding constant for the repressor. The expression of
protein 2 will then be given by:

r(1− pbound) =
r

1 +Kbc
n
1
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This gives us the coupled equations:

dc1

dt
= −γc1 +

r

1 +Kbc
n
2

dc2

dt
= −γc2 +

r

1 +Kbc
n
1

.

These can be made dimension-less by expressing concentrations

in units of K
−1/n
b , and time in units of γ−1. Then the equations

are:

du

dt
= −u+

α

1 + vn

dv

dt
= −v +

α

1 + un
,

where α = rK
1/n
b /γ.

We can see that there is always one steady state solution:

u∗ = v∗ =
α

1 + v∗n
.

Let’s see if there are other steady state solutions. Let’s consider
n = 2 to proceed with calculus. The steady state values have to
satisfy

u∗ =
α

1 +
(

α
1+u∗2

)2 ,

and the corresponding equation for v∗. This can be expanded as:

(u∗2 − αu∗ + 1)(u∗3 + u∗ − α) = 0.

The cubic polynomial here can be shown to have only one zero,
and by some inspection you can see that it is the solution with
u∗ = v∗. The quadratic however can have 0 (if α < 2), 1 (if
α = 2), or 2 (if α > 2) solutions, depending on the value of α. In
the 2-solution regime, the concentrations are not the same! The
solution with u∗ = v∗ exists for all α, but it is unstable for α > 2.

Calculate phase portraits of this system.

4.3 Oscillations in gene expression

Another ubiquitous dynamical element are coupled equations cap-
able of sustaining oscillations. It has even been proposed that,
much like FM vs. AM radio, oscillatory dynamics is used by some
cell processes to code and transmit information robustly. One
simple set of equations that gives rise to oscillations is a gene reg-
ulated by both an activator and a repressor:
- the repressor binds as a dimer, and represses production of the
activator
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- the activator also binds as a dimer, and increases the production
of itself, and also of the repressor.
Then the rate equations can be written as:

dcA
dt

= −γAcA + r0A
1

1 + (CA/Kd)2 + (CR/KD)2
+ rA

(cA/Kd)
2

1 + (CA/Kd)2 + (CR/KD)2

dcR
dt

= −γRcR + r0R
1

1 + (CA/Kd)2
+ rR

(cA/Kd)
2

1 + (CA/Kd)2
,

where r0A, r0R are the basal expression rates, and rA, rR are the
regulated rates in the presence of the activator bound.
As before, it is possible to write the equations in dimension-less
form:

dc̃A
dt

= −γ̃Ac̃A +
r̃0A + r̃Ac̃

2
A

1 + c̃2
A + c̃2

R

dc̃R
dt

= −c̃R +
r̃0R + r̃Rc̃

2
A

1 + c̃2
A

.

Oscillations can arise if there is a separation of timescales between
the activator and repressor dynamics. ‘Nullclines’ are the locus of
points achieved by the repressor or activator at steady state, given
fixed values of activator or repressor, respectively. They are ob-
tained by setting the time derivatives equal to zero, and we have:

c̃R =

√
−1− c̃2

A +
r̃0A + r̃Ac̃2

A

γ̃Ac̃A

c̃R =
r̃0R + r̃ARc̃

2
A

1 + c̃2
A

.

See fig.19.51 (Phillips et al., 2013).
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