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1.1 Introduction

Living biological systems all share the same properties of being
able to transform one kind of energy, normally chemical energy,
into another in order to do work. For this purpose, over the course
of evolution, cells have developed a large collection of molecular
machinaries, each with different purposes. In this chapter, we will
focus on one category of these: molecular motors.

We have mentioned at the beginning of the course that the cell is
a very crowded environment and diffusion is often not sufficient to
deliver molecules across the cells in a biological meaningful times-
cale. To bypass this problem and others, cells employ molecular
motors that move non randomly. Non-random movement costs
energy and these molecular motors are able to transform chemical
energy, often in the form of ATP into kinetic energy.

Molecular motors are often classified as follows with some ex-
amples:

• Cytoskeletal motor proeins: myosin, kinesin, dynein

• Polymerization motors: actin, microtubules, RecA

• Ion pumps: Na-K pump

• Rotary motors: ATP-synthase, bacterial flagellar motors

• DNA motors: RNA polymerase, helicases

These motors perform many different functions, such as the
contraction of stress fibers that give cells a certain shape and
muscle contraction, cell motility, separation of the chromosomes
in the two daughter cells, transport of cargo across the cell, etc...

The structure of these motors also come in different shape, how-
ever most of them exhibit head-domains, where ATP binds. Hy-
droplysis of ATP results in a conformational change, which is then
guided and amplified into a larger structural change of the whole
molecule leading to movement. For instance, kinesin and dynein
move along the microtubules, which have a well-defined polarity,
which determines the directionality of the movement of these mo-
tors. Many motors also have a cargo-binding domain where pass-
ive cargo can bind and then be actively transported (Fig. 1.1).
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Fig. 1.1 Key classes of translational motors

1.2 Energy source: ATP

Many molecular motors use hydrolysis of ATP as an energy source,
which is then converted to motion. One hydrolysis event generates
approximatly 20-30kBT of energy, where T is temperature and kB
is the Boltzmann constant. Not all this energy will be transfered,
as the process is not 100% efficient. The products of the chem-
ical reaction, ADP and the orthophosphates, sit at a much lower
energy. This is partially because the orthophosphates group is
stabilized by multiple resonance structure and the electrostatic
repulsion is reduced going from ATP to ADP.

ATP is obtained through the process of cellular respiration by
glucose metabolization. One glucose molecule will produce of the
order of 30 ATP molecules, by going through glycolysis (+7-9
ATP), the oxidative decarboxylation of pyruvate (+5 ATP), and
the Krebs cycle (+20 ATP). In particular, at different points in
this process, oxidative phosporilation occurs. It involves the elec-
tron transport chain that establishes a proton gradient across the
boundary of the inner membrane by oxidizing NADH produced
in the Krebs cycles. The resulting proton-motive force is a com-
bination of an electrostatic term caused by the electrical potential
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Fig. 1.2 Schematic of G-ratchet and S-ratchet.

gradient and a diffusion term caused by a difference in ion con-
centration.

pmf = Vm + ∆µ/e

1.3 Physical models

To model the dynamics of molecular motors we will think of them
as random walkers moving in an energy landscape, in which the
motor can assume different internal states.

1.3.1 Thermal rachet

Molecular machines live in a world dominated by thermal fluctu-
ations. These thermal fluctuations can be exploited to jump over
energy barriers.

Imagine a machine that when it encounters an energy bump,
only needs to wait some time for a thermal fluctuation to come
and allow it to jump over the barrier. We can model this as a shaft
with a series of beveled bolts mounted on springs that prevents
the shaft to move to the left (G-ratchet in fig. 1.2). The shaft
also pulls a load represented by a force f directed to the left.
Occasionally, large enough thermal fluctuations will be able to
kick the shaft with energy greater than ε + fL required to jump
the next bolt and the shaft will move to the right. If you imagine
to wrap the shaft around a circle, this machine would be able to
constantly extract work from the surrounding thermal motion and
thus violate the second law of thermodynamics.

How can we resolve this paradox? As shown in fig 1.2 if kBT is
comparable to ε and sufficient to pull the weight to the right, then
it will also be sufficient to allow the shaft to retract because the
bolt springs will be subject to thermal fluctuations. So, effectively,
the shaft will be pulled in the direction of the force.
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However, let’s modify the shaft so that there are latches that
keep the bolts down if the bolt is to left of the wall, and releases
it if it is on the right side (S-ratchet in fig. 1.2). In this case, it
will be the potential energy stored in the compressed bolts that
will be used to pull a cargo right as long as the springs are stiff
enough. Let’s formalize this mathematically.

Imagine that the shaft is wrapped around a circle and it has
n bolts, P (x) denotes the probability that a ratchet will at be
position x at steady-state and we are tracking M ratchets. At
each time step ∆t a ratchet can get a thermal kick that can move
it to the right or to the left. There willMP (x)∆x ratchets between
position x−∆x/2 and x+ ∆x/2 and half of them will step to the
right in time ∆t. Similarly, there will be MP (x+∆x)∆x ratchets
between x + ∆x/2 and x + 3∆x/2 and half of them will step to
left in time ∆t. Then the number of ratchets that cross position
x+ ∆x from left to right is

1/2M [P (x)− P (x+ ∆x)]∆x ≈ −1/2∆x2M
dP

dx
= −DM dP

dx
∆t.

where D = ∆x2/2∆t is the diffusion coefficient.
Let’s define the F = −dUtot/dx. In the absence of any diffusive

motion, this force would impart a drift velocity given by vdrift =
F/ζ where ζ is the friction coefficient. By using Einstein relation,
we can rewrite this as

vdrift = − D

kbT

dUtot
dx

.

Then the total number of ratchets crossing x in time ∆t from the
left due to drift will be MP (x)vdrift. Therefore in total, we have
to contributions and the total flux of ratchets from left to right is

j1D = −MD(
dP

dx
+

1

kBT
P
dUtot
dx

).

Note that at equilibrium, the flux goes to zero. The equilibrium
probability distribution of the ratchets in the external field will be
the Boltzmann distribution

Peq(x) = P0e
−Utot/kBT

Because the number of ratchets has to be conserved ∂tP =
−∂xj/M and therefore

∂tP = D[∂x(P∂xUtot/kBT ) + ∂2
xP ]

called the Smoluchowski equation.

1.3.2 Polymerization ratchet

Polymerization motors can also be modeled as ratchets. The basic
idea consists in the fact that a growing filament can result in a
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Fig. 1.3 Sketch of a filament reaching a wall

pushing force on a resisting barrier by virtue of fluctuations in the
position of the barrier or the filament. Imagine a filament that
has grown in order to reach a barrier (cell wall). If the barrier or
the filament jiggle, then a new monomer may be able to squeeze
in (fig. 1.3).

For now, let’s neglect the action of the force. Let’s assume that
each monomer has length δ and can be inserted if the distance
between the tip of the filament and the barrier reaches such size.
This is a first passage type problem, which we are going to solve
using an analogy. Imaging that you have a particle that is diffusing
along a distance δ and you want to determine the first time it
reached position δ if it starts at 0. The current due to diffusion
will be

j0 = −D∂xP

where P is the probability of finding the particle at position x. At
steady-state, we know that

∂2
xP = 0

meaning that P = Ax+B. To compute A and B, we exploit the
fact that P (x) has to be normalized:∫ δ

0
P (x)dx = 1 = Aδ2/2 +Bδ

and that P (δ) = 0. With these two constraints, we find that
A = −2/δ2 and B = 2δ.

The current is then

j0 = −DA = 2D/δ2

and the first passage time is the inverse of this quantity

τ1 = δ2/2D.

Then the rate of polimerization will be

v = δ/τ1 = 2D/δ.
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Now, if we apply a constant force F, the current will become

j0 = −∂xP − P
F

ζ

where the friction coefficient ζ = kBT/D. At steady-state the cur-
rent is constant and the differential equation has general solution

P (x) = Ae−Fx/kBT − j0ζ/F.

Similarly to before we use the two constraints P (δ) = 0 and∫
P (x)dx = 1 to find A and j0. The result is that the steady-state

current is

j0 = [(kBTζ/F
2)(eFδ/kBT − 1)− ζδ/F ]−1

and the growth rate of the filament will be

v = δj0 =
D

δ

(Fδ/kBT )2

eFδ/kBT − 1− Fδ/kBT
.

1.4 Linear motors

1.4.1 One state model

For translational motors, we will start by assuming that the mo-
tor has no internal states and simply jumps from one position to
another with a forward rate k+ and a backward rate k− over a
discretized one-dimensional filament. These rates are related to
the energy potential the motor is moving in U , which is related
to the force U = fx. For the motor to move, the rates k− and k+

will have to be different.
Let’s define p(n, t) the probability of finding the motor at posi-

tion n at time t. Then the probability at time t+ dt will be

p(n, t+dt) = k+dtp(n−1, t)+k−dtp(n+1, t)+(1−k+dt−k−dt)p(n, t)

By sending dt to 0 and defining positions as x = na, we find the
following master equation:

∂tp = (k− − k+)a∂xp+
1

2
(k+ + k−)a2∂2

xp

which corresponds to a diffusion equation with drift with diffusion
coefficient D = (k+ + k−)a2/2 and drift velocity V = (k− − k+)a.

The two rates are related to the difference in energy between
going forward versus backwards. If ATP hydrolysis allows to take
step forward, then

K+

k−
= e−β∆Gh

where ∆Gh corresponds to the free energy from hydrolysis. In
the presence of a force that pulls the motors backwords, than the
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Fig. 1.4 Schematic of a two-state model

energy of the step forward will be raised by a factor Fa and the
reaction coefficients will satisfy

K+(F )

k−(F )
= e−β(∆Gh+Fa)

The free energy released by hydrolysis is

∆Gh = ∆G0 + kBT ln

(
[ADP ][Pi]

[ATP ]

)
where ∆G0 is the energy released by breaking a chemical bond in
the ATP molecule. This results in

k+

k−
∝ [ATP ]

which predicts either a velocity that saturates with [ATP ] if all
the dependence is in the forward direction, or that is linear with
[ATP ] if all the dependence is in the backward direction.

1.4.2 Two state model

Some motors do not seem to follow the simple one state model
above and multiple intermediate states have to be considered. The
simplest case is a two-state model where the motor, in addition
to moving forward and backward, can be in two conformational
states and these states have to alternate in order to provide move-
ment.

In this case, the probability distribution pi(n, t) will refer to the
distribution of the two internal states the motor can be in. Let’s
define k+

A the rate at which state 1 will convert to state 0 and
move forward. Similarly, k+

B will be the rate at which state 0 will
convert to state 1 and move forward. Analogous definitions will
be for k−A and k−B (See fig. 1.4). Then the master equations are{

dp0
dt = k+

Ap1 + k−Bp1 − k−Ap0 − k+
Bp0

dp1
dt = k−Ap0 + k+

Bp0 − k+
Ap1 − k−Bp1
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Fig. 1.5 Typical structure of a rotary motor

At steady state, we find that

(k+
A + k−B)p1 = (k−A + k+

B)p0

Because p0 + p1 = 1 thenp0 =
k+A+k−B

k+A+k−A+k+B+k−B

p1 =
k−A+k+B

k+A+k−A+k+B+k−B

Let’s assume that when the motor transitions from 0 to 1 it
travels a distance δ and when going from 1 to 0 it travels a distance
a− δ. Then the net velocity will be

v = δ(p0k
+
B − p1k

−
B) + (a− δ)(p1k

+
A − p0k

−
A)

By replacing the solutions for p0 and p1, we find the average ve-
locity

〈v〉 = a
k+
Ak

+
B − k

−
Ak

−
B

k+
A + k−A + k+

B + k−B

Note that the velocity does not depend on the distance δ traveled
by the motor when transitioning between the two states.

1.5 Rotary Motors

Similar models to the ones developed in the previous section can be
applied to rotary motors by imagining to wrap the track around
a circle. Also the motors move through discrete steps that are
coupled with energy-realising reactions, such as ATP hydrolysis or
transport of ions down an electrical gradient. In rotatory motors,
instead of talking of linear speed, we talk about angular speed,
instead of force, we talk about torque.

The motor is driven by thermal fluctuations that result in ro-
tational diffusion of the rotor. The diffusion is rectified, leading
to directed motion by electrostatic between the charges on the ro-
tor, the stator and the Na+ ions. A rotor charge is captured by
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the stator charge, which is opposite in sign. It will then diffuse
away until it finds itself in a input channel, where it is exposed to
a high concentration of Na+. The driving force is then the free-
energy difference experienced by the ion as it travels through the
membrane (fig. 1.5).

One special example of rotary motors are bacteria flagella. The
energy source of these motors is the proton-motive force. Most
models that explain the behavior of these motors try to reproduce
the relationship between torque and speed found in experiments.
One example of such models by Xing et al describes the kynetic
of the motor with four physical ingredients: (i) load and motor
are connected through a soft elastic linkage, (ii) motor rotation is
tightly coupled to ion flux, (iii) motor rotation is driven by proton
driven conformation changes and (iv) the proton channel in the
stator is gated by rotor movement.
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