Patterning of light-emitting conjugated polymer nanofibres

FRANCESCA DI BENEDETTO1, ANDREA CAMPOSEO1, STEFANO PAGLIARA1,2, ELISA MELE1, LUANA PERSANO1, RIPALTA STABILE1,2, ROBERTO CINGOLANI1 AND DARIO PISIGNANO1,2*

1Italian Institute of Technology, Research Unit at NNL, National Nanotechnology Laboratory of INFM-CNR, via Arnesano, I-73100 Lecce, Italy
2Scuola Superiore ISUFI, Università del Salento, via Arnesano, I-73100 Lecce, Italy
*e-mail: dario.pisignano@unile.it

Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens1, solar cells2 and lasers3,4. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission5 and enhanced electroluminescence6. One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation7,8 as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability9 and electromagnetic confinement within subwavelength volumes8, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tunability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.

Nanopatterning and internal waveguiding of nanophotonic sources remain challenging. For instance, light confinement in polymers may suffer due to their low refractive index, n. For this reason, organic miniaturized optical fibres are generally based on passive high-n resists, possibly incorporating inorganic quantum dots10. In addition, light-emitting organics require specific, often technologically demanding and low-throughput nanolithography tools to be patterned at sub-micrometre resolution without oxygen-induced alteration of their emissive properties.

In contrast to other methods11–13, electrostatic spinning permits processing of large volumes of polymers and the formation of fibres with sub-micrometre diameter by means of plastic stretching14–17, and importantly promotes internal molecular orientation of the organic molecules by means of the applied electric field18. Because of the limited solubility and relatively poor viscoelastic behaviour of conjugated polymers, proposed approaches for performing electrostatic spinning of such materials15,19–24 rely on blends or core–shell heterostructures with more solution-processable but optically inert compounds. However, although conjugated polymers tend to gel at high solution concentrations, we saw that using non-solvents with a high boiling point and dielectric constant25 improves their processability, facilitating the realization of single-component conjugated polymer fibres using electrostatic spinning. Also, the polymer side-groups can increase the steric hindrance and the conformational plasticity of viscous solutions. Here, we make several different conjugated polymer fibres using electrostatic spinning (the molecular structures of the polymers used are shown in Fig. 1a) and use room-temperature nanoimprint lithography (RT-NIL) to pattern them. We find that the polymer fibre section varies from the micrometre scale down to tens of nanometres and is controllable by adjusting the electrostatic spinning bias (Fig. 1b,c).

Published online: 24 August 2008; doi:10.1038/nnano.2008.232

LETTERS
allows homogeneous YE fibres without microscopically appreciable scattering domains to be obtained. These results highlight the importance of the solvents in affecting the internal waveguiding performance in conjugated polymer fibres.

We also investigated the influence of the substrate material on waveguiding by measuring the optical losses on fibres with the same diameter and composition (YE from dimethyl sulphoxide:tetrahydrofuran), deposited on glass ($n = 1.51$) and silicon ($n = 3.87$). We can detect slight differences in the waveguide performance (Fig. 2d), measuring losses of $5 \times 10^2$ cm$^{-1}$ and $7 \times 10^2$ cm$^{-1}$ for the low-$n$ and high-$n$ substrates, respectively, which is evidence of a coupling of the guided radiation to the substrate due to the rounded shape of the fibre and the limited contact with the underlying material. This can

**Figure 1** Characterization and optical properties of as-produced conjugated polymer nanofibres. a, Molecular structures of the polymers. Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9-hexyl-3,6-carbazole)] (BE), poly[(9,9-dioctylfluorenylene-2,7-diyl)-co-(1,4-diphenylvinylene-2-methoxy-5-[(2-ethylhexyloxy)]-benzene)] (GE), poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzof-[2,1,3]-thiadiazole)] (YE), poly[2-methoxy-5-[(2-ethylhexyloxy)]-1,4-phenylenevinylene] (MEH-PPV) and poly[2-methoxy-5-((2-ethylhexyloxy)-1,4-(1-cyanovinylenehenylene)-co-(2,5-bis[N,N'-diphenylamino]-1,4-phenylene)] (RE). b, SEM image of conjugated polymer nanofibres (RE from 1:5 dimethyl formamide:chloroform solutions). c, Typical diameter (S) distribution and fit by a Gaussian curve (solid line). The letters indicate groups of fibres with similar diameters (see Methods). Inset: RE fibre with a diameter of 75 nm. d, Normalized photoluminescence spectra from nanofibre mats. e–h, Fluorescence micrographs of emitting fibres for polymers BE (e), GE (f), YE (g) and RE (h), respectively.
be advantageous, as it allows waveguided light to be coupled to on-chip detectors for sensing and nanophotonic applications.

For realizing photonic nanostructures based on conjugated polymer nanofibres, we made use of their processability by patterning using RT-NIL. RT-NIL is a high-throughput technique based on the deformation of an organic layer under the application of pressure by a rigid nanostructured template, below the glass transition temperature, and without exposure to beams or solvents, surface treatments or a controlled atmosphere. In this way, RT-NIL overcomes the limitations of hot embossing for directly structuring conjugated molecules in air, as the optoelectronic properties of the active material do not undergo irreversible degradation due to oxygen incorporation into the molecular backbones. Such an approach would enable the realization of imprinted distributed feedback devices, which rely on periodic, wavelength-scale variation of optical gain or refractive index along the fibres.

We patterned single fibres with a resolution up to the 100 nm scale (Fig. 3). Because of the high applied pressure (240–290 MPa) fibres can undergo partial flattening upon RT-NIL. Once the sample convolution effect resulting from the physical dimension of the atomic force microscope (AFM) tip is taken into account, the fibre height/width reduction after patterning is <35% (Fig. 3a,b). As this effect is strictly related to the amount of polymer filling the recessed features of the master during pressure-induced flow, it can be greatly reduced by using masters with features having higher aspect ratios. The plan view and cross-section of on-fibre printed gratings with period in the range 400–640 nm show very well-defined patterns, the achieved resolution being dependent on the starting masters. The protruding master features determine neat indentations, with angle relative to the fibre axis depending on the mutual master/sample orientation during imprinting. The resulting patterns present the same period of the pressing mould and a feature height up to 150–200 nm (Fig. 3c–e), without significant reduction in the aspect ratio with respect to the master. By using AFM we established the absence of a bottom layer between indentations along the imprinted fibres. This effect is relevant, because a bottom layer would cause interference or crosstalk between adjacent light-emitting PL intensity (a.u.)
profiles are taken along the blue lines marking the fibre cross-sections in the planar views. Molecules and films often present S1 – S0 transitions with a MEH-PPV fibre are displayed in Fig. 4b. Although MEH-PPV uniformly bright imprinted gratings. The spectra of a typical Confocal microscopy (Fig. 4a) on nanopatterned fibres shows fluorescence micrographs and photoluminescence spectra.

The high-energy spectral component (l) is affected by chain packaging morphology and by internal quantum efficiency of the light-emitting nanostructure, because it reduces the effective length covered by the emitted photons and the self-absorption inside the organic medium. The observed photoluminescence peak depends on Θ according to an outcoupled Bragg mode: kq sin Θ = ± kp ± mG, where kp and kq are the wavevectors of the free and the guided electromagnetic waves, respectively. (|kq| = 2π/λ and |kp| = 2πn_eff/λ), G is the Bragg vector (|G| = 2π/λ) and m is an integer.

Figure 3 Nanopatterning of single light-emitting polymer nanofibres. a, b, AFM planar views and corresponding cross-sections of an MEH-PPV fibre electrospun from 1:5 dimethyl sulfoxide:tetrahydrofuran, before (a) and after (b) RT-NIL of a 400-nm-period grating (grating/fibre axis angle ≈ 60°). The height profiles are taken along the blue lines marking the fibre cross-sections in the planar views. c, AFM planar view (20 × 20 μm²) of a 550-nm-period grating (grating/fibre axis angle ≈ 90°). d, Three-dimensional imaging of a 640-nm-period grating on a single fibre. e, The height profile along the blue line marking the fibre axis in c.

features and a decrease in the optical feedback from on-fibre printed microcavities.

In order to assess the influence of patterning on emission, we measured single-fibre, angle-resolved photoluminescence before and after nanolithography. Fibres with diameters intentionally produced to be in the range 0.5–5 μm are used to collect reliable fluorescence micrographs and photoluminescence spectra. Confocal microscopy (Fig. 4a) on nanopatterned fibres shows uniformly bright imprinted gratings. The spectra of a typical MEH-PPV fibre are displayed in Fig. 4b. Although MEH-PPV molecules and films often present S1–S0 transitions with a 0–0 vibronic replica more intense than the 0–1 replica, in the emission of the untextured fibre the two replicas exhibit almost the same relative intensity, that is, a relative decrease of the high-energy spectral component (λ < 600 nm). This lineshape is affected by chain packaging morphology and by internal waveguiding in the fibres, which is more effective at low wavelengths, thus decreasing the intensity of the externally coupled light.

Upon patterning, we find clear evidence for an enhancement of the nanofibre forward emission, namely of the light collected at angles Θ ≤ 70° as the detection is moved perpendicularly to the direction of the patterned grooves. This increases the overall light output from the fibre source; that is, it enhances the external quantum efficiency of the light-emitting nanostructure, because it reduces the effective length covered by the emitted photons and the self-absorption inside the organic medium. The observed photoluminescence peak depends on Θ according to an outcoupled Bragg mode: kq sin Θ = ± kp ± mG, where kp and kq are the wavevectors of the free and the guided electromagnetic waves, respectively (|kq| = 2π/λ and |kp| = 2πn_eff/λ), G is the Bragg vector (|G| = 2π/λ) and m is an integer.

Investigation of the photoluminescence polarization provides further information on the influence of the imprinted grating on fibre emission. We find different angular dispersion for light with s- and p-polarization, namely with the electrical field vector parallel or perpendicular to the grating grooves and corresponding to transversal electric (TE) or transversal magnetic (TM) guided modes, respectively (Fig. 4c). The two modes are concomitantly present in the Bragg outcoupled emission, with TM peaks blueshifted by 18–46 meV with respect to the TE peaks, indicating a lower effective refractive index (n_eff) for light polarized perpendicularly to the nanoimprinted features. In fact, the Bragg coupling condition, stating the conservation of momentum at the nanofibre/air interface, allows us to extract the effective refractive index of the out-fibre coupled guided modes. For an MEH-PPV nanopatterned fibre, n_eff for TM and TE light monotonously decreases from ∼1.9 to 1.2 upon increasing the wavelength from 570 to 575 nm, whereas the difference, Δn_eff = n_eff[TE] − n_eff[TM] slightly increases from 0.01 to 0.04 (Fig. 4d). For the sake of comparison, we recall that these values are comparable to those previously reported for sub-micrometre period gratings on conjugated polymers and low-molar-mass organic molecules, such as in nanopatterned spiro-terphenyl (n_eff = 1.8 – 1.7 for 360 < λ < 395 nm) and MEH-PPV (n_eff = 1.7 – 1.6 for 579 < λ < 739 nm).
In conclusion, these results indicate that multicolour conjugated polymer nanofibres exhibit remarkable waveguiding properties and can be effectively patterned by room-temperature imprinting. The availability of both full-colour tuneability and flexible patterning technologies, allowing emission enhancement, enables the realization of photonic devices based on conjugated polymer nanofibres such as nanoscale patterned light-emitting diodes and distributed feedback lasers.

METHODS

The electrostatic spinning setup consisted of a syringe pump (Harvard Apparatus, Holliston, MA) feeding a hypodermic syringe with the polymer solution, an 18–27 gauge stainless steel needle, a high-voltage power supply (XRM30P, Gamma High Voltage Research), and a grounded collector (10 × 10 cm²) mounted on an isolating stand at an electrostatic spinning distance between 6 and 15 cm. The typical diameter (S) distribution of the fibres that were obtained comprised different populations, labelled A–F in Fig. 1c, where for A, S < 0.65 μm; B, 0.65 μm < S < 0.90 μm; C, the population of fibres exhibited the most frequent size, S (that is, S = 380 nm for the fibres of Fig. 1b); D, 1.4 μm < S < 1.7 μm; E, S > 1.7 μm; F, micrometre-scale beads.

For the waveguiding characterization, the fibre photoluminescence was excited by a GaN semiconductor laser diode (λ = 405 nm, power = 3 mW, excitation spot diameter = 5 μm), and detected through a ×100 microscope objective by a colour charge coupled device (CCD) camera. A long-pass filter was used to cut the exciting laser light. Fluorescence micrographs of the emitting fibres were acquired using an upright stereomicroscope equipped with a CCD camera and exciting the nanofibre emission with an Hg lamp. The collected photoluminescence spectra did not vary upon moving from point to point on the same fibre.

The master gratings were fabricated by electron-beam lithography and reactive ion etching on silicon and directly used as a mould for RT-NIL. The spectra of nanopatterned fibres were obtained by collecting the light emitted in a small solid angle (3 × 10⁻³ sr) around each angle value, measured by rotating an optical fibre detector in a plane perpendicular to the surface grating (see Supplementary Information for complete details and the experimental scheme).

Received 5 March 2008; accepted 15 July 2008; published 24 August 2008.

References


Supplementary Information accompanies this paper at www.nature.com/naturenanotechnology.

Acknowledgements

The authors thank A. Cometta and M. Brich (Zeiss) for the confocal microscopy measurements. F.D.B. acknowledges helpful discussions with F. Ko about the electrostatic spinning technique.

Author contributions

A.C. and D.P. conceived and designed the experiments. F.D.B and S.P. performed the electrospinning experiments. L.P. performed the AFM measurements and analysed the data. R.S. performed the SEM measurements, realized the NIL masters and analysed the data. E.M. carried out the imprinting experiments. A.C. was responsible for the optical characterization. E.M., L.P., A.C. and D.P. contributed materials and analysis tools. F.D.B. and D.P. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/. Correspondence and requests for materials should be addressed to D.P.