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 
Abstract— Recently inexpensive graphical processing units 

(GPUs) have become established as a viable  alternative to 
traditional CPUs for many medical image processing 
applications. GPUs offer the potential of very significant 
improvements in performance at low cost and with low power 
consumption. One way in which GPU programs differ from 
traditional CPU programs is that increasingly elaborate 
calculations per voxel may not impact of the overall processing 
time because memory access dominates execution time. This 
paper presents a new GPU based elastic image registration 
program named Ezys.  The Ezys image registration algorithm 
belongs to the wide class of diffeomorphic demons but uses 
surface preserving image smoothing and regularization filters 
designed for a GPU that would be computationally expensive on 
a CPU. We describe the methods used in Ezys and present results 
from two important neuroscience applications. Firstly inter-
subject registration for transfer of anatomical labels and 
secondly  longitudinal intra-subject registration to quantify 
atrophy in individual subjects. Both experiments showed that 
Ezys registration compares favourably with other popular elastic 
image registration programs. We believe Ezys  is a useful tool for 
neuroscience and other applications, and also demonstrates the 
value of developing of novel image processing filters specifically 
designed for GPUs.  

 
 

Index Terms—deformable registration, medical image analysis, 
demons algorithms, graphics processors, multi-core processing. 
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I. INTRODUCTION 

REE-FORM image registration methods have many 
important applications in medical image processing. 

However such registrations are computationally demanding; 
free-form image registration algorithms have to optimize a 
large number, perhaps millions, of free parameters whilst also 
applying smoothness constraints to ensure physicality. In their 
2009 publication [1] Klein et al. compared 14 popular free-
form registration programs  having typical processing time per 
registration of between many minutes and hours.  More 
recently, graphical processing units (GPUs) have been applied 
to the problem and impressive speed ups have been 
demonstrated [2-4]. Importantly, this increase in 
computational speed not just convenient, it also enables the 
design of more complex image registration algorithms and 
processing pipelines.  

The present paper introduces a new, GPU-enabled, free-
form image registration program, Ezys,  which incorporates 
surface preserving smoothing and regularization filters 
optimized for GPUs. Ezys is very fast, robust and performs 
well for important neuroscience applications including inter- 
subject registration for transfer of anatomical labels and intra-
subject serial registration for detection of subtle longitudinal 
volume changes in dementia patients. We describe the Ezys 
algorithms in some detail, including novel image denoising 
and surface-based regularization methods.  

As validation we present two studies. The first study repeats 
Klein et al.'s inter-subject anatomical label matching test 
where we find Ezys performs better than any of the 14 
programs previously tested using the median target overlap 
measure. On this measure Ezys also outperforms a more 
recent version of the ANTS-SyN program [5] which itself was 
significantly better than the beta version used in [1] where it 
was found to be one of the best performing programs. This 
first study can be regarded as an application of voxel based 
morphometry (VBM) [6].  

Our second validation study involves intra-subject 
registration to quantify progressive regional brain atrophy in 
individual subjects using the Jacobians of the derived 
deformation fields for tensor based morphometry (TBM). A 
total of 18 subjects were studied. In practice this method is 
very sensitive to the quality of the transformation fields. We 
repeated our Ezys TBM analysis using three other popular 
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image registration packages:  FNIRT - part of the FSL 5.0 
software toolkit [7], NiftyReg 1.3 - a GPU enabled program 
[3], and DARTEL - a diffeomorphic image registration 
algorithm [8]. DARTEL was one of the best performing 
methods evaluated by [1] and has been available as part of the 
statistical parametric mapping software package, SPM, since 
the SPM5 version. The SPM package is frequently employed 
for neuroscience image-analysis and a recent paper describes 
many applications [9]. 

Progressive brain atrophy is a well known feature in many 
neurodegenerative diseases. Detecting atrophy patterns in 
individual subjects is important for accurate diagnosis and 
measuring therapeutic outcomes. Typically sequential MRI 
scans are acquired at intervals of 6 months or more and many 
different techniques have been developed to quantitatively 
analyze such datasets. Such methods include voxel based 
morphometry (VBM) [6], the boundary shift integral (BSI) 
[10], structural image evaluation using normalization of 
atrophy (SIENA) [11] and tensor-based morphometry (TBM) 
[12-15]. Both BSI and SIENA use linear image registration to 
transform longitudinal images to a common coordinate system 
and then look for changes in  tissue boundaries within the 
brain. In VBM, longitudinal images are also registered to a 
standard or custom cohort-specific space and a voxel level 
statistical analysis on the grey and/or white matter partitions is 
then used. In contrast TBM uses the deformation fields 
relating two structural images  directly. The determinant of  
the Jacobian matrix of the transformation field is calculated at 
each voxel and is a direct measure of the local volume change. 
For brevity we will use the term Jacobian map to mean 
Jacobian determinant map in the rest of this paper. TBM has 
some advantages over other methods in that Jacobian maps 
give local volume changes between the two images at voxel 
resolution. Finally the full Jacobian matrix has potentially 
more information than just its determinant, for example the 
eigenvectors or Green's tensor can be used [16]. 

II. MATERIALS AND METHODS 

The details of the Ezys registration methods are described in 
sections A-F, the subjects and methods used in our VBM 
analysis in sections G-H and for the TBM analysis in sections 
I-K.  

A. Overview Image Registration 

Image registration requires matching a source image to a 
target image. This is achieved by finding a displacement map 
or transformation, T, relating each point in the target image to 
a corresponding point in the source image. Corresponding 
points are selected by optimizing a similarity measure (or 
objective cost function) such as the sum of squared intensity 
differences, normalized correlation [17] or normalized mutual 
information (NMI)  [18] among others. The displacement 
map, T, can be used to estimate local volume differences 
between source and target brain structures in both longitudinal 
and cross-sectional study designs. In particular, the Jacobian 
determinant of T measures local volume changes. T is 
diffeomorphic if its Jacobian is positive everywhere. This is 

normally required for medical image registration making T 
invertible and avoiding fold over. 

Both the source, sI , and target image, tI , can be regarded 

as functions that relate position with intensity, the intensity of 
an image voxel at coordinates r  being ( )I r . Medical images, 

including those acquired with MRI, are voxelated, hence exact 
intensity values are only defined at discrete coordinates. In the 
present context, a transformation, T, which deforms a source 
image to match the target, can be interpreted as a three-
dimensional vector field, ( )T r , that relates coordinates of any 

given point in a target image to the coordinates of a 
corresponding point in a source image. T, therefore, deforms a 

source image in the following way: ( ) ( ( ))def
s sI r I T r= . Here, 

we will use the notation sTI as shorthand for ( ( ))sI T r . Note 

that the argument, r , is defined over the domain of the target 
image. The aim of the image registration algorithm is to 
optimize T by maximizing (or minimizing if appropriate) the 
chosen similarity measure, subject to any smoothness 
constraints imposed to ensure physicality of the resulting 
transformation, to find the “best match” between the deformed 
source and the target images.  

The final displacement map T will in general point to non-
integer voxel positions in the source image, hence some 
method of choosing a suitable intensity value from the source 
image is required. Trilinear interpolation is commonly used 
for this purpose and gives a weighted average of the 
neighbouring source voxel values. As interpolation causes 
blurring of the transformed image it is important to 
concatenate displacements to avoid multiple interpolation 
steps during registration. Ezys implements nearest neighbour, 
trilinear and sinc interpolation methods; typically trilinear 
interpolation is used for transforming MR and Jacobian 
images and nearest neighbour for transforming segmentation 
maps. 

B. The Ezys Image Registration Algorithm 

The Ezys image registration algorithm belongs to a wide 
class of demons algorithms first introduced by Thirion [19]; in 
particular, it belongs to the subclass of diffeomorphic demons. 
A Gaussian filter is used as the “fluid” regulariser, and our 
customized anisotropic diffusion filter (described in section F) 
is used as the diffusion regulariser. Similarity measures  
including NMI and normalized correlation ratio are 
implemented in Ezys, NMI was used as the similarity measure 
for all the results presented here. Several demons algorithms 
do not require explicit similarity measures; they only use 
forces. However such force fields, if conservative, can be 
regarded as the gradient of an objective cost function with 
respect to the free parameters defining the transformation.  
 After an initial affine transformation has been found our 
elastic registration algorithm runs through the following steps:   
 
1. Reduce noise and enhance surfaces on both source and 
target images using the surface enhancement algorithm as 
discussed in section D below. 
2. Detect surfaces on a target image as discussed in section E. 
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3. Assign an initial transformation, T, parameterized by a set 
of parameters ip  (indexed by i). These are estimated using 

geometric moments or by registering sub-sampled versions of 
source and target images. 
4. Then iterate across steps 4.1-4.4 until convergence: 

4.1. Calculate the gradient, G, of the chosen similarity 
measure, S, with respect to the transformation  parameters 

ip , so that that ( , ) /i s t iG S TI I p=¶ ¶ , where 

,( )s tS S TI I= .  In our case the ip  are just the 

displacements at each target voxel, thus G is a vector field 
over the domain of the target voxels. 
4.2 Apply a 3D Gaussian filter to smooth G, reducing 
kernel width as registration progresses. 
4.3.  Find an optimum step size optl  by performing  the 

modified gradient descent  steps  4.3.1 to 4.3.3: 
4.3.1. If 0l is the optimum l  value from the previous 

step, for trial values trl  in{ }0 0 0; 4 ; / 4l l l   , 

calculate  transformations ( ) ( ( ))tr trT r T r G rl= + . Use 

of function composition rather than addition ensures that 
the trT  are diffeomorphic provided  T is diffeomorphic 

and trl  are not too large. 

4.3.2. For each trT , evaluate ( , )tr tr s tS T I I  between sTI  

and tI . A parabolic fit to the trS against trl is then used 

to find the new optl  value corresponding to an optimum 

value of S  and set ( ) ( ( ))optT r T r G rl= + . 

4.3.3. For one in five iterations a random non-optimal 
step is used instead of optl  to help escape from local 

stationery points. 
4.4. Given the new value of T, apply a regularization step to 
smooth the transformation using the surface preserving 
smoothing filter described in sections E and F below. 

5. Done. 
We found that using function composition rather than 

addition in step 4.3.1 contributes significantly to the overall 
performance of our algorithm, as it ensures that the resulting 
transformation is diffeomorphic. Most fluid-flow based image 
registration algorithms use a similar idea when exponentiating 
velocity fields, however our method is less computationally 
intensive and well suited to GPU based interpolation. 

 

C. Symmetric Image Registration 

Asymmetric image registration algorithms, where an 
interpolated source image is warped to match a stationary 
target, have recently been criticized for introducing bias [20, 
21]. We implemented an option to average direct, A B , 
and indirect, B A , registrations, thus if the asymmetric 
registration A B  results in 1T , and the registration B A , 

in 2T , we compute ( )A BT r as 1
1 2( ( ) ( )) / 2T r T r-+ , where 

1
2T -  is the inverse of the transformation 2T , [22]. This option 

increases symmetry and reduces potential bias caused by the 
asymmetric treatment of source and target images at the 

expense of doubling the number of registrations required. 
 

D. Surface Preserving Noise Reduction 

Prior to surface detection, a step to reduce image noise and 
to increase image contrast while preserving surfaces was 
implemented as follows: 

For each given image voxel at r  we assume it and its 26 

nearest neighbours (forming a 3 3 3´ ´  cube) can be split into 
two tissue classes by a cut-plane through the cube. The 
corrected image intensity at r  is then computed as the median 

signal intensity of all voxels within the cube that belong to the 
same tissue class as r . We choose the cut-pane by testing 39 
candidate planes passing through the cube either parallel to or 

at 45 to one of the coordinate planes. For each candidate, the 
voxels are divided into two groups and a measure of 

separation is calculated as on offV V- , where onV  is the mean 

intensity of the voxels cut by the plane and offV  is the mean 

intensity of the voxels not cut by the plane. The 39 candidate 
planes are chosen such that each of these groups contains at 
least 9 voxels. The cut plane with the maximum measure of 
separation is selected and the voxel at r  is assigned the 

median value of the onV population if it is on the plane or 

otherwise the median value of the offV  population. An 

example of the filter is shown in Fig. 1 for  one and two 
iterations. Two iterations were used for all the work presented 
here The algorithm both reduces image noise and increases 
tissue contrast. Note that although this filter is computationally 
expensive, it is well suited to parallel computation on GPUs. 

 
 

E. Surface Detection 

Ezys performs an iterative surface-detection operation that 
assigns weights ( )W r  to each voxel. The aim of this surface 

detection approach is to weight each voxel according to its 

 
 
Fig.1. Example of Ezys surface enhancement algorithm. From left to 
right: a) original image, b) after one iteration, c) after two iterations and 
d) using a standard lower-upper-median (LUM) filter. The top two rows 
show sagittal slices from a T1 weighted structural image; the bottom row 
shows an enlarged view of the cortical region pointed by the arrow. 
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likelihood of belonging to a surface within the image volume. 
We consider a surface to be the boundary between image sub-
volumes each of which is relatively homogeneous but with 
different mean intensities. The weights are used as a constraint 
on the Ezys regularization procedure described in section F. 
The method is as follows: 
 
1. Initially set all weights equal to zero: ( ) 0W r =  for all r . 

Repeat the following steps 2.1 - 2.5  for 5 iterations: 
2.1. For each voxel with coordinates ( , , )r x y z=  and for 

some selected distance d (typically d is 6 voxels), compute 
means and variances for voxels laying along one of the 
coordinate axes with distance less than d from r . Along x, 

define xa + and xa - as the mean values at either side of r 

and xv + and xv - as the corresponding intensity variances; 

compute analogous means and variances along y and z. 
2.2. Compute surface sensitive signal to noise ratio along 

each axis, for x this is ( ) /x x x x xs a a v v+ - + -= - + . 

2.3. For each Cartesian axis { , , }j x y zÎ calculate a distance 

jn from the central voxel r  to the nearest voxel along the j 

axis that has a weight greater or equal to the weight ( )W r  

of the central voxel. If there is no such voxel within a 
maximum distance d, then assign jn d= . 

2.4. Compute coefficients (1 1/ (1 3 / 0.5))j jk n d= - + - to 

determine the level of response along each axis and update 

all weights: ( ) x x y y z zW r k s k s k s= + + . 

2.5. If this is not the last iteration, apply an isotropic 
Gaussian filter to the surface estimates. The algorithm 
halves the width of the smoothing kernel in each iteration 
starting with 8 voxels. 

3. After the last iteration, non-surface weights are set to zero. 
If current weights are W, calculate a smoothed version sW  of 

W by applying a 16-voxel wide isotropic Gaussian filter along 
each axis. If ( ) ( ) / 8sW r W r< , set ( ) 0finalW r = , otherwise 

set ( ) ( ) / ( )final sW r W r W r= .  

The effect of our surface estimation method compared to a 
simple smoothed gradient is that step 2.3 in our method 
produces surfaces which are 1 voxel thick 

F. Surface Preserving Regularization 

Free form registrations have to be constrained to prevent 
nonphysical results such as negative volume changes; this 
process is known as regularization. There are two classes of 
strategy commonly employed for regularization. In the first 
class, extra terms are added to the cost function to penalize for 
excessive local deformation [23], examples of such 
regularization terms include elastic energy and bending energy 
constraints. A disadvantage of these methods is the difficulty 
of selecting suitable weighting factors. The second class 
attempts to implicitly constrain the optimization to keep the 
transformation field sufficiently smooth. Methods in this 
category include B-spline based deformations [24] which 
impose smoothness by limiting the number of degrees of 

freedom. Alternatively demons algorithms [19] use diffusion 
or fluid regularisers to ensure some level of implicit 
smoothness. The regularization used by Ezys firstly applies a 
Gaussian smoothing filter to the gradient field (equivalent to a 
fluid regulariser) and secondly by modifying the displacement 
field by simulating diffusion constrained by the detected 
surfaces (a diffusion regulariser). Simulating diffusion to 
ensure smoothness is not novel, for example edge detection 
for 2D image processing using diffusion with a varying 
diffusion constant was discussed by Perona and Malik [25]. 
Adaptive regularization methods have also been discussed by  
many authors, including Hermosillo et al. [26] who include 
locally computed similarity measures in their survey of 
multimodality image matching,  Stefanescu et al. [27] who use 
a local intensity gradient based regularizer and more recently 
by Simpson et al. [28] who use Bayesian inference methods 
for determining locally adaptive regularisation constraints.  
Nevertheless our particular choice of an anisotropic, spatially-
dependent diffusion kernel, optimized for GPUs, is new. The 
registration performance of Ezys is strongly dependant on the 
choice of an appropriate kernel. As discussed in the previous 
section, weights ( )W r are found for each voxel; with positive 

values representing points more likely to be on a surface. 
These weights are incorporated into the diffusion kernel. If 

( )W r is large at a point, less smoothing is applied at that point 

so as to avoid blurring of boundaries.  
The Ezys diffusion kernel, ( , )K r rd , is defined with the 

following properties: 
1. K is linear in ( )T r for performance reasons, ease of 

implementation, analysis and to avoid various non-linear 
effects, i.e. ) ( , ) ( )smoothed rT r K r r T r rd d d( = +å ; 

2. Applying K does not cause net-expansion of the source 
image, thus the sum of weights must be 1, i.e. 

( , ) 1r K r rd d =å ; 

3. K  should be unbiased in the sense that it should not 
cause net-drift of the source image with respect to the target 
image after each application. Hence the first geometric 
moment of K should be 0: ( , ) 0r K r r rd d d =å ; 

4. For numerical stability, neighbouring points, r rd+ , 

should be weighted less than the point of interest: i.e. 
( , ) (0, )K r r K rd < ; 

5. A large surface weight, ( )W r rd+ , at the point r rd +  

should cause ( , )K r rd to be large: i.e. for any fixed r  and 

rd , ( , )K r rd should always increase if ( )W r rd+  does; 

6. Points will always see their weight diminish as a function 
of their distance from r : i.e. 2 1( , ) ( , )K r r K r rd d< if 

2 1r rd d> and 2 1( ) ( )W r r W r rd d+ £ + . 

 
A function satisfying the above requirements was 

implemented to run on the GPU. For each point with 
coordinates r  and any unit vector in voxel space p  along a 

particular coordinate axis, we define the function 



> Major Revision of IEEE TMI-2013-0778< 
 

5

, ( ) ( )r pf i W r i p= + where i is an integer. The algorithm then 

finds two local maxima for , ( )r pf i : one negative 

1 0i i= < and one positive 2 0i i= > . Then we define: 

, 1( ) 1/r pM i i=  for 1 0,i i£ <  

, 2( ) 1/r pM i i= for 20 ,i i< £  

, ( ) 0r pM i = for 1i i< or 2i i> and 

, , ,(0) max( ( 1), (1)).r p r p r pM M M= -  

At present we  search for up to 5 steps in either direction, if no 
maximum is found the corresponding 1i  or 2i value is set to 5. 

This function satisfies all the above conditions except (2); thus 
finally, we normalize it: 

, ,( , ) ( ) / ( )i r p j r pK p r M i M j= å , and ( , ) 0K r rd =  for 

directions rd  that are not parallel to our selected 
orientation p . This smoothing step is applied in turn for p  

along each coordinate axis. 
 

G. VBM based Target Overlap Calculation 

In [1] Klein et al. compare the performance of 14 
registration programs using target overlap measures. Target 
overlap is a VBM based measure of registration accuracy. 
Given a set of images each having a voxel based labelled 
segmentation, pairs of images can be registered and the 
fraction of labelled voxels in the target image which match the 
propagated labels of the source image calculated.  In fact two 
different definitions of target overlap are discussed in Klein's  
paper. Either calculate the fraction of matching labels over the 

whole image, 1
r rr

rr

S T

T
TO

Çå=
å

, where rS is the r-th labelled 

region in the registered source image and rT  is the r-th 

labelled region in the target image, and indicates a sum 

over voxels. Or calculate separate target overlap measures for 

each region r, as r rr

rr

S T
r T

TO
Çå=

å
 and then define the target 

overlap as the average of the regional target overlaps: 

2 /r r regionsTO TO N=å .  The second measure is more 

sensitive to image registration quality as all regions have equal 
weight, and is the measure used in Figure 5 of Klein et al.'s 
paper. 

We reproduced the calculations using Ezys for 80 normal 
subjects with T1 weighted MR scans and corresponding 
manually segmented label sets.  The data comprised 40 
subjects used to construct the LONI Probabilistic Brain Atlas 
(LPBA40), 18 subjects from the Internet Brain Segmentation 
Repository (IBSR18), 12 subjects from the Columbia 
University Medical Center (CUMC12) and 10 subjects 
scanned at the MGH/MIT/HMS Athinoula A. Martinos Center 
for Biomedical Imaging (MGH10). Full details of these 
datasets and the preprocessing performed  including brain 
extraction are given in Klein et al.'s paper. We used their 
preprocessed image data downloaded from the associated web 

site (http://www.mindboggle.info/papers/). For all images 
Ezys was run with the VBM settings shown in Table I below. 

The ANTS-SyN program [5] was one of the best 
performing programs evaluated by Klein et al. and we 
repeated the analysis using the more recent ANTs-1.9.x-
win32.exe version from http://sourceforge.net/projects/ 
advants/files/ANTS/. These registrations were processed using 
the same software tools that were used for processing the Ezys 
registrations.  

H. Subjects and MRI Protocols for Longitudinal TBM 

T1 weighted MRI scans of eighteen subjects were used for 
the TBM study: 5 elderly controls and 6 Alzheimer's disease 
(AD) subjects each with three time points at 6 monthly 
intervals and, 7 subjects with semantic dementia (SD) with 
two time points having intervals between 19 and 38 months. 
These subjects were selected as a representative subset of a 
larger group previously reported on in [29, 30].  The whole-
head anatomical scans were acquired on a Siemens Trio 3T 
system (Siemens Medical Systems, Erlangen, Germany) with 
gradient coils capable of 45 mT/m and 200 T/m/s slew rate. A 
standard 12-channel phased-array total imaging matrix head-
coil (Siemens Medical Systems, Erlangen, Germany) was used 
for radio-frequency reception. The structural scans consisted 
of 3D magnetization-prepared, rapid gradient-echo 
(MPRAGE) volumes acquired with the following imaging 
parameters: TR / TE / inversion time / flip angle = 2300 

ms/2.86 ms/900 ms/ 9 , the image matrix was 192´192´144 
with isotropic 1.25 mm voxel dimensions. Whole head images 
were used for the registrations so as to minimize potential 
errors from inconsistent brain extraction between time points. 
Note, however, that for some of the post registration 
quantitative processing and preparation of figures SPM5 
derived brain masks were used. 
 

I. TBM Analysis using Ezys 

For each of the 18 subjects all possible pairwise intra-
subject registrations were performed, yielding 2 or 6 Jacobian 
maps in the case of 2 or 3 time points.  For each subject all  
maps were transformed to a common frame and annual 
atrophy rates were then computed on a per voxel basis 
assuming a constant atrophy rate. To quantify regional 
changes, images were segmented using a manually improved 
Brodmann map [31];  note that the original version was 
obtained from the MRIcron software package  [32]. In more 
detail the processing pipeline for the each subject and each 
available pair of time points was as follows:  
 
1. The image at time-point A was registered to that at time-
point B and vice versa, yielding transformations fields: A BT   

and B AT  . The Ezys settings used are shown in Table I 

below. 
2. Next compute the transformation composition: 

( ( ))A B A B A A B B A A BT T T T T r     = º . 
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3. The Jacobian map A B AJ    corresponding to each 

A B AT    was calculated. Ideally, ( )A B AJ r   should be 

unity everywhere, however in practice it may not be. Making 
the unbiased assumption that A BT   and B AT   are both 

affected by the same multiplicative Jacobian error we obtain 

( ) ( )error A B AJ r J r = . 

4. Corrected Jacobian maps, ( )c
A BJ r  and ( )c

B AJ r , were 

then calculated by dividing by ( )errorJ r  . 

5. The volume change estimates in c
A BJ  are in the coordinate 

system of B; whereas whose of c
B AJ   are in A's coordinate 

system. Having reciprocal Jacobians in different coordinate 
systems complicates the analysis. To deal with this we 
transformed all Jacobians into a common frame (that of a 
particular elderly control) using transformations obtained by 
registering the original images to the common frame. This 

resulted in a set of Jacobians,  either cf
A BJ   and cf

B AJ   in the 

case of two points or six such Jacobians in the case of three 
time points. 

6. The set of the Jacobian maps for the subject ( cf
A BJ   etc.) 

were then used to fit (voxel-by-voxel) for the annual atrophy 
rate assuming this was constant.  
7. The atrophy rates from step 6 were averaged over each 
separate Brodmann region in grey matter using an SPM5 
derived grey matter mask for the common frame and the 
Brodmann map discussed above. 
8. Subsets of the Brodmann regions were combined to produce 
atrophy estimates of grey matter within the temporal and 
parietal lobes. 

J. TBM Analysis using DARTEL  

DARTEL registration requires prior segmentation of each 
brain into grey matter, white matter and (optionally) CSF 
tissue classes. This segmentation is part of the SPM software 
suite into which DARTEL is embedded [33]. In typical use the 
set of images being analyzed is first segmented, then 
individually rigidly registered to MNI152 space [34] and an 
average template image is constructed by iterative non-linear 
registration of all images to the average.  Our DARTEL 
analysis had the following steps: 

 
1.  Firstly each image was segmented using the unified 
segmentation [9] in SPM8 with default settings, generating 
grey and white matter probability maps for each subject and 
time point in native space.  
2. The segmented images were imported into DARTEL using 
the native 1.25 mm isotropic voxel spacing. 
3. The segmented images were then used to create a common 
template using DARTEL and grey and while matter 
segmentations (CSF maps were not used).  This produced 
transformation fields between each image's native space and 
the common template space. These fields can be used for both 
forward (native to template) and  inverse (template to native) 
transformations 
4. For each subject and pair of time points the ratio of the 
Jacobian maps was calculated to yield an estimate of the 

Jacobian map between the time points in template space. 
These maps could then be further transformed into the native 
space of the subject or the common frame used in step 5 of 
sub-section I.  
5. Subsequent processing was the same as steps 6-8  in sub-
section I. 

K. TBM Analysis using NiftyReg 1.3 and FSL5 

Processing with these programs followed the same steps as 
section I, but omitting the errorJ correction. The programs 

were run with the finest practical warp resolutions in order to 
improve detail in Jacobian maps.  For FNIRT we used 
warpres = 7.5,7.5,7.5 and for NiftyReg we used 
sx=sy=sz=2.0 and bending energy regularization be=0.2. 

L. Processing  

Programs were run on a PC running Windows 7 64bit with 
8 GB of ram,  i7-2600 (3.40 GHz) cpu and Nvidia GTX 580 
CUDA capable graphics card with 512 cores and 1.5 GB of 
ram.  FSL5 is not available for a native Windows OS and was 
run in on a virtual Ubuntu 12.04 hosted by Oracle VM 
Virtualbox, restricted to using 3 GB of host ram and only one 
processor. 

. 

III. RESULTS  

A. Performance and Quality 

Table I shows the parameter settings used for Ezys in the 
VBM and TBM studies and Table II gives the average times 
required for one pairwise registration. In the VBM study 
ANTS-SyN was about 18.5 times slower than Ezys on our PC 
and in fact used all the available CPU cores in parallel for 
some of its calculations.  

 

TABLE I 
EZYS PARAMETER SETTINGS 

 

Parameter VBM TBM 

MinGrid 8 4 

MaxGrid 384 128 

Steps 2 1 

Reg Type Direct Both 

Diffeomorphic 1 1 

Diffusion 1 1 

Elastic Termination 0.0001 0.0001 

Cost Fun NMI NMI 

 
Adjustable parameter settings for Ezys processing, Min/MaxGrid set the 

limits for the inverse widths of the Gaussian smoothing of displacement 
vectors, Steps controls the number resolution subdivisions used, Reg Type is 
direct for simple source to target registration or Both for an average of source 
to target and the inverse of target to source. The Diffeomorphic switch 
enables convolution of displacements for implicit prevention of negative 
Jacobian values and Diffusion enables the surface aware diffusion 
regularization filter. The Elastic Termination parameter sets minimum cost 
function change for convergence. 
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In Fig. 2 we show images for a typical inter-subject 

pairwise registration using direct registration VBM parameters 
for Ezys and ANTS-SyN with Klein et al.'s standard settings.  
While the overall match between the warped source and target 
images is good there are residual differences. Where the 
geometry of the sulci and gyri differ significantly, residual 
thin lines are left on the warped images, this may be due to the 
diffeomorphic registration constraint. The white arrows in the 
Fig. 2 point to examples. The difference images in columns 6 
and 8 for Ezys and ANTS-SyN are similar with SyN being 
slightly smoother. 

   
Fig. 3 shows intra-subject deformations  from the TBM 

study for a SD patient scanned at time points 1.4 years apart. 
Characteristic temporal lobe atrophy is clearly seen for all four 

programs however significantly better detail is seen in the 
Ezys and DARTEL images which are comparable.   

 
The accuracy of the symmetric registration discussed in 

section II.C was assessed by calculating the voxel based 
displacement error,  DE( ) ( ( ))A B B Ar T T r r = - , for 

typical intra-subject registrations. For the case of symmetric 
registration we found a mean DE of 0.28 0.22 voxels and for 
direct one way registration  0.61 0.38 voxels. 

 

B. VBM Accuracy 

We ran Ezys with the VMB settings in Table I for all image 
pairs in the four data sets used by Klein et al. in [1], the 2088 
registrations took at total of 22 hours on our system. As a 

check we also ran the recent version 1.9.x of the ANTS-SyN 
diffeomorphic Symmetric-Normalization program [5] on the 
these datasets. Klein et al. had found SyN to be one of the best 
performing programs. Fig. 4 and Table III compare the 

TABLE II 
PROGRAM EXECUTION TIMES PER REGISTRATION IN SECONDS 

 

Program CUMC12 IBSR18 MGH10 LPBA40 
WBIC 
TBM 

Ezys 60.5 44.1 45.2 34.4 87 

ANTS-SyN 1138 864 825 849  

FSL 5     1324 

NiftyReg 
1.3 

    111 

DARTEL     605 

 
Average execution times in seconds for one pairwise registration for 

programs listed in column 1. Columns 2-5 show the times for the four 
datasets used for the VBM comparison with Klein et al. and column 6 
shows the times for the TBM atrophy analysis.  Our DARTEL 
processing involved creation of a common template and subsequent 
registration to this template for 18 images, rather than 80 pairwise 
registrations. Thus in the table we show the total DARTEL processing 
time divided by 80 to be comparable with the other figures. 

 
 
Fig. 2. Example of pairwise registration from VBM study, the rows show  representative axial, sagittal and coronal slices for MGH subject 1 (source in column 1) 
registered to MGH subject 5 (target in column 2).  Columns 3 to 5 show the registration results which should match column 2.  Columns 3 and 5 show the Ezys -
VBM and ANTS-SyN as used for this study. Column 4 shows the result for Ezys run in symmetric TBM mode for comparison.  Columns 6 to 8 show the 
corresponding difference images obtained by subtracting the target image in column 2 from those in columns 3-5. The arrows point to features where the source 
and target differ.  

 
 
Fig. 3. Coronal (top row) and axial (bottom row) cross-sections of Jacobian 
maps inferred from four registration algorithms for a semantic dementia 
patient scanned twice, 1.4 years apart. The T1 MRI image for the latter time 
point is shown on the left hand column. Jacobian values represent voxel 
based volume changes between the two time points.  
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performance of the best non-linear registration algorithms 
tested by Klein et al., (i.e. ANTS-SyN and DARTEL) the 
latest SyN implementation and Ezys for the four datasets.  

Ezys performs significantly better than the algorithms tested 
by Klein et al. and matches or exceeds the performance of the 
newer version of ANTS-SyN which also performs 
significantly better than the version tested by Klein et al.,  the 
median overlaps are larger and the tails for small values are 
reduced. Ezys also required much less processing time.  In 
Table IV we show the Ezys target overlaps for each of the 
individual labelled regions averaged over all 1560 pairwise 
registrations performed for the LPBA40 dataset.  These are 
compared to the corresponding results for the ANTS-SyN 
program as tested by Klein et al. The differences are well 
correlated between left and right hemispheres suggesting that 
genuine anatomical structures are being co-registered.   
Similar results were observed for the other three datasets and 
more recent version of ANTS-SyN and Ezys have fewer 

differences. We also assessed the performance of NiftyReg - a 
recent GPU based program not tested by Klein et al. - on the 
MGH10 dataset and obtained a median 2TO  of 57.51% using, 

after some optimisation tests, the default 0.005BE =  and 
minimum spline spacing 3.5 mm.sx sy sz= = =  

 

C. TBM Analysis of Atrophy 

Fig. 2 shows Jacobian maps for one pair of images from an 
SD subject computed using Ezys, DARTEL, FSL5-FNRIT 
and NiftyReg. As it would be expected in SD, temporal lobe 
atrophy and ventricular expansion are the main features. Fig. 5 
shows tissue atrophy rate maps for two control, two AD and 
two SD subjects. For each subject these maps were computed 
using Jacobians from all possible pairwise registrations and 
assuming a constant atrophy rate as detailed in section II.I. To 
aid visual comparison the maps are shown warped to a 
common reference image space, (that of an elderly control 
subject). Serial changes - predominantly in the white matter - 
were detected in dementia patients with clearly recognizable 
patterns of progressive atrophy - widespread temporo-parietal 
regions in AD, and more focal temporal lobe atrophy in SD. 
Elderly controls, in contrast, showed less widespread and 
overall lower rates of progressive grey matter loss.  

Scatter plots of average grey matter atrophy rates in 
temporal and parietal lobes are shown in Fig. 6 for all 18 
subjects using the four registration programs: Ezys, DARTEL, 
NiftyReg and FSL5 FNIRT. Ezys yielded the best separation 
between control, AD and SD groups. Note that with Ezys, the 
six subjects with the most progressive parietal lobe atrophy 
were all the AD cases, and the six subjects with the highest 
rate of temporal lobe atrophy were all SD. It was also noted 
that the SD patient with the most “stable” temporal lobe had 
the most severely lesioned hippocampi (data not shown). Note 
that for all four approaches we used images from all time 
points symmetrically hence avoiding possible biases caused by 
preferential treatment of baseline images. Note also that we 
chose to present volume change rates for these two grey 
matter areas because they are known to be differentially 
affected in AD and SD; this was confirmed by the results. 
  

IV. DISCUSSION 

The purpose of this paper is to introduce our new GPU 
based image registration program Ezys.  We have shown that 
for a number of neuroscience applications Ezys performs as 
well as the best existing programs and is faster.  
 The use of surface information, particularly corresponding 
positions of sulci and gyri is not new, but may depend on 
manual identification of landmarks [35] or prior segmentation 
[36, 37], additionally several software tools are available for 
segmentation including Freesurfer [38], BrainSuite [39] 
BrainVoyager [40] and BrainVisa [41].  In contrast the Ezys 
surface-preserving regularization methods are fully integrated 
into the registration procedure and use algorithms for local 
surface preservation which are particularly suitable for GPU 
implementation.  

 
Fig. 4. Box and whisker plots comparing the distributions of mean target 
overlap (as percentages) for the sets of all possible pairwise registrations 
for each of the four datasets. In each case the best result from Figure 5 of 
Klein et al. (either ANTS-SyN or DARTEL on the left)  is compared to 
the Ezys result (right) and our own reprocessing with a more recent 
version of ANTS-SyN (version 1.9.x centre). 

TABLE III 
MEDIAN TARGET OVERLAP VALUES IN PERCENT 

 

Program CUMC12 IBSR18 MGH10 LPBA40 

Ezys 55.41±0.32 56.99±0.24 59.03±0.31 72.79±0.05 

ANTS-SyN 
1.9.x 

54.07±0.32 55.92±0.24 58.05±0.32 72.79±0.04 

ANTS-SyN 
(Klein) 

51.46±0.29 52.98±0.24 56.52±0.31 72.48±0.13 

DARTEL 
(Klein) 

52.86±0.29 54.63±0.20 55.97±0.57 58.71±0.12 

 
Median values (in percent) for data shown in Fig. 4. The values for 

Ezys and ANTS-SyN 1.9.x were calculated by us and the other values 
were reported by Klein et al. and obtained from their  web page 
http://mindboggle.info/papers/ evaluation_NeuroImage2009.php. The 
errors are the standard errors on the disruption means. 



> Major Revision of IEEE TMI-2013-0778< 
 

9

  

 Using one displacement vector per voxel rather than, say B-
spline interpolation, helps detect small displacements near 
surfaces while the surface preserving regularization ensures 
smooth transformations within individual anatomical regions 
without blurring boundaries. This effectively allows us to have 
more degrees of freedom where they are needed typically near 
boundaries between white and grey matter and CSF, while 
constraining displacements elsewhere.  Ezys' high quality 
Jacobian map shown in Fig. 3 is a direct result of this feature. 
In a control experiment with pseudo ground truths, we showed 
an improvement over established registration methods such as 
FSL-FNIRT, NiftyReg, ANTS-SyN and DARTEL (see Fig. 4 
and Table III) at a fraction of the time (Table II). We also 
demonstrated that Ezys can quantify subtle anatomical 
changes in longitudinal MRI datasets of single dementia 
patients. Invertible Jacobian determinant values at each voxel 
(for all available pairwise intra-subject registrations) were 
used to generate TBM maps that measured annual rates of 
brain tissue volume change (see Fig. 5). In patients, extensive 
patterns of atrophy were observed for all four algorithms. All 
maps resulted in consistent - with prior knowledge [42, 43] - 
patterns of longitudinal change in single patients and relatively 
stable behaviours for control subjects. The quantitative scatter 
plots shown in Fig. 6 revealed total separation between 
patients and controls for Ezys and DARTEL, whereas group 

differences for other methods were less striking. The 
distribution of AD and SD atrophy rates also differed 
considerably: as it was expected, SD patients presented with 
fast rates of temporal lobe atrophy but parietal lobes remained 
relatively stable; whereas AD subjects showed a simultaneous 
increase in temporal and parietal lobe shrinkage rates. 
Analogous plots for the other two algorithms in Fig. 6 showed 
comparable qualitative behaviours, but the distributions were 
more diffused and group results largely overlapped. 
 Ezys supports both direct source to target registration and a 
form of symmetric registration as discussed in section II.C. 
We found direct registration gave the best results in our inter-
subject VBM study whereas symmetric registration was better 
for the intra-subject TBM study.  

The internal data representation used by Ezys stores 
displacements of each voxel directly. Using such a simple 
internal representation allows the calculation displacement 
field compositions efficiently,  this operation is more complex 
using B-spline based displacement fields.  Ezys updates 
displacement fields at each iteration using displacement 
composition rather than addition, thus ensuring an invertible 
and diffeomorphic displacement field. In addition, smoothness 
is maintained by firstly applying a Gaussian filter to the 
gradients along each axis, which are approximated as three 
moving averages, and secondly by smoothing the 
displacement fields themselves. The smoothing of 
displacement fields is done by simulating diffusion 
constrained by surfaces, which is also implemented by using 
co-axial moving averages. These smoothing steps can very 
efficiently implemented on the GPU. In our implementation 
most computationally expensive tasks such as similarity 
evaluations, gradients, Gaussian filtering, regularizations and 
other image processing routines are implemented on the GPU. 
while other less performance critical parts of the algorithm are 
written in C++ and run on host CPU. Ezys has both graphical 
and command line user interfaces and can process long script 
files. Thus Ezys can easily be integrated with complex 
workflows. A GPU is required to run Ezys, but these are 
relatively inexpensive and indeed Ezys can run satisfactorily 
on suitably equipped laptops. The present version of Ezys 
requires a CUDA capable GPU of compute capability 2.0 or 
higher with a minimum of 1.5 GB of on board ram for typical 
applications. The results presented here used a GeForce GTX 
580 and we have also obtained good results with a more recent 
GeForce GTX 760. 

 Ezys has potential applications in other areas of medical 
imaging, for example inter-modality imaging such as MR-CT 
or MR-PET.  The accuracy and speed of would also be helpful 
in applications such as treatment planning for radiotherapy 
[44]. 

 
 
 
 
 
 
 

TABLE IV 
REGION OVERLAPS FOR LPBA40 

 
      Ezys             SyN         DifferenceLPBA40 Region 
    L       R        L        R         L     R 

superior frontal gyrus 82.7 82.2 81.5 80.7 1.3 1.5
middle frontal gyrus 80.8 80.3 79.2 78.4 1.7 2.0
inferior frontal gyrus 75.2 75.2 73.6 72.9 1.7 2.3
precentral gyrus 73.1 74.2 74.2 73.3 -1.1 0.8
middle orbitofrontal gyrus 71.0 70.5 68.6 68.7 2.4 1.9
lateral orbitofrontal gyrus 62.9 60.2 60.7 59.1 2.2 1.1
gyrus rectus 68.8 70.3 68.9 71.2 -0.1 -0.9
postcentral gyrus 64.5 67.4 68.1 68.4 -3.6 -0.9
superior parietal gyrus 72.9 73.1 73.4 72.5 -0.5 0.6
supramarginal gyrus 66.3 66.4 67.6 66.5 -1.3 -0.1
angular gyrus 65.8 67.6 64.2 65.9 1.6 1.7
precuneus 69.1 69.4 67.4 68.5 1.7 0.9
superior occipital gyrus 61.6 59.1 60.6 58.8 1.0 0.3
middle occipital gyrus 70.4 69.9 68.9 68.3 1.5 1.6
inferior occipital gyrus 69.6 70.3 68.1 68.0 1.5 2.3
cuneus 67.4 66.7 66.9 66.1 0.5 0.5
superior temporal gyrus 77.3 78.3 77.0 77.8 0.3 0.5
middle temporal gyrus 67.4 70.7 67.8 70.6 -0.4 0.1
inferior temporal gyrus 69.4 70.9 67.2 68.4 2.1 2.5
parahippocampal gyrus 72.6 71.5 72.0 70.8 0.6 0.7
lingual gyrus 73.1 74.8 72.7 74.6 0.5 0.2
fusiform gyrus 71.7 72.5 70.9 70.8 0.9 1.6
insular cortex 84.3 82.5 79.1 77.6 5.2 5.0
cingulate gyrus 73.7 73.2 72.0 71.1 1.7 2.1
caudate 81.3 80.2 74.9 74.5 6.4 5.7
putamen 82.0 80.9 77.8 77.6 4.2 3.4
hippocampus 77.8 77.8 74.8 75.2 3.1 2.6
cerebellum 86.4 87.6 -1.3 
brainstem 81.3 79.9 1.4 

 
Average region overlaps, in percent, for 1560 pairwise registrations on 

LPBA40 dataset. The Ezys values for the left and right hemispheres are in 
columns 2 and 3, the corresponding results for SyN from Klein et al.'s 
analysis are in columns 4 and 5. The differences between Ezys and SyN are 
in columns 6 and 7, negative values (where SyN has outperformed Ezys) are 
shown in bold.  The last two rows have undivided structures. 
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V. CONCLUSIONS 

Ezys is a fast  and accurate image registration program 
suitable for both inter-subject and intra-subject studies. We 
have shown both accurate anatomical label propagation 
between subjects and detection of disease-specific, 
longitudinal brain volume changes in single patients. 

The image regularization and smoothing algorithms 
presented here are somewhat heuristic and could perhaps be 
further improved, however they do demonstrate that there is 
scope for developing novel algorithms targeted at SIMD 

architectures having a very large number of processing cores 
such as GPUs.   

Ezys is freely available, the program version used for this 
work together with supporting material can be downloaded 
from: http://www.bss.phy.cam.ac.uk/~rea1/ezys. 
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