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Magnetic Resonance Imaging - MRI

• Very Important
• Harmless
• Flexible
• Physics Experiment Using Magnetism
• First Clinical Scanner 1986
• Nobel Prizes for Medicine 2003
• Still rapidly developing
• Superconducting Magnets - CERN
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Clinical MRI Scan
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Clinical MRI Scan

But how does it work?
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How it works (outreach version)
Water  H2O

HO

Proton has spin 
mini bar magnet

Human body is  
> 50% water!
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Outline

• Spin Physics
• MRI
• Clinical System
• Applications
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• Protons have spin 

• Quantized angular momentum

• Associated magnetic moment

• Quantum states:

• State in x-y plane precesses around z-axis in presence 
of B field along z-axis.

Spin

1
2 

pm

1
2

1
2

, , ( )z z x z z   =  +

5.59
2p

p

e
m

m =




Physics of MRI March 2013 Richard Ansorge

Spin

Energy in B field                        hence splitting:Bpm- ⋅
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Net Magnetization  

• In B field get more magnetic moments in 
lower energy state

• Energy gap

• Boltzmann distribution

• Net magnetization 
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T1

• When protons placed in B field it takes 
time for equilibrium to be established.

• Basically each proton has a constant 
probability of being flipped into equilibrium 
configuration

• T1 due to “spin-lattice” interactions
• Leads to exponential approach to equilib

1/
0( ) (1 )t TM t M e-= -
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M(t) for T1 = 2.5 secs
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Nuclear Magnetic Resonance (NMR)

• Once system in equilibrium can perturb 
using RF field at resonant frequency

• RF pulse rotates net magnetization from z-
axis into x-y plane

• Spins precess in x-y plane and generate 
detectable RF signal

• NMR uses high fields up to ~21 T

0 42 MHz / Teslan =

0w
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900 MHz NMR spectrometer for structural biology research in the Center for 
Biomolecular NMR jointly run by the Heinrich-Heine-Universität Düsseldorf 

und the Forschungszentrum Jülich.
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Free Induction Decay (FID)
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Typical NMR Spectrum
• NMR requires sample 

to be in very uniform B 
field (good few parts in 
106  or better)

• Detected signal has 
range of frequencies 
from protons in different 
local molecular 
locations

• Needs FFT



Physics of MRI March 2013 Richard Ansorge

Spin Precession is like a Gyroscope
Gravity plays the 
role of the magnetic 
field for gyroscope.

Gyroscope wants to 
fall but is prevented 
by conservation of 
angular momentum.

Similarly quantized 
spin coupled 
magnetic moments 
precess.
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T2

• Magnetization in x-y plane relaxes back to 
equilibrium at with rate constant T2

• Usually T2 < T1 due to in plane dephasing 
of spins

• “Spin-Spin” interactions responsible for T2
• May observe additional dephasing if 

magnetic field not perfectly uniform.
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Dephasing

• In perfectly uniform B field decay rate T2
• T2 includes dephasing in x-y plane and 

relaxation back to equilibrium (at T1)
• If B-field not perfectly uniform there is 

additional dephasing so observe decay at 
T2*<T2

• Can recover additional dephasing using 
180o RF pulse – spin echo.
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© http://www.physics.monash.edu.au/~chrisn/espin.html

static
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Spin Echo
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T2

• Expect signal in x-y plane to decay at rate 
given by T1

• In practice usually find faster decay at rate 
T2<T1

• This is due to dephasing of spins as they 
rotate in x-y plane.

• T1 and T2 are intrinsic properties of matter 
and depend on spin-lattice and spin-spin
interactions 
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Clinical Application - Imaging

T1 and T2 vary for 
different tissues. 
Hence may be 
possible to image 
soft tissues with 
better contrast than 
x-rays.  Also no 
radiation dose!

Substance T1 (ms) T2 (ms)
Water 3000 1000
CSF 2000 250
White matter 680 90
Gray Matter 810 100
Liver 420 45
Fat 240 85
Mineral Oil 28 16
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T1 & T2 at 1.5 T
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T1 & T2 at 3.0 T
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T1 contrast at 1.5 T
T1 Contrast
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T2 Contrast
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Magnetic Resonance Imaging (MRI)

• NMR is incredibly useful for molecular 
work

• But for images need to make signals 
position dependent

• Add gradients so that the B field (along z-
axis) varies linearly as a function of 
position:
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Signal

Without gradients:

Gradients give frequency change 

Hence time dependent local phase change 

Thus

So                                        Fourier transform of  
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Must drive gradients to span 2D or 3D k-space
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Signal

Without gradients:

Gradients give frequency change 

Hence time dependent local phase change 

Thus

So                                        Fourier transform of  
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Must drive gradients to span 2D or 3D k-spacePaul Lauterbur Shared Nobel Prize for Medicine 2003
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Gradient Coils 2
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2D Slice Selection
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Spin Echo - Sequence
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Can use gradient for spin echo 

Single kx line at ky = 0
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k-space 

Single kx line at  variable ky
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k-space 

x-y plane in k-space

Either repeat above 
for each k-line (slow)

Or use EPI faster, 
but worse signal to 
noise
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Echo Plane Imaging (EPI)
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Echo Plane Imaging (EPI)

Peter Mansfield Shared Nobel Prize for Medicine 2003
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Hospital MRI Scanner

RF (Birdcage) TX/RX

X, Y and Z Gradient Coils 
inside magnet bore

Superconducting 
Solenoid, typically 
1.5 or 3T

RF Head Coil
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MRI Soft Tissue Contrast

© http://www.wbic.cam.ac.uk



Physics of MRI March 2013 Richard Ansorge

MRI of the Brain - Sagittal

T1 Contrast
TE = 14 ms
TR = 400 ms

T2 Contrast
TE = 100 ms
TR = 1500 ms

Proton Density
TE = 14 ms
TR = 1500 ms
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MRI of the Brain - Axial

T1 Contrast
TE = 14 ms
TR = 400 ms

T2 Contrast
TE = 100 ms
TR = 1500 ms

Proton Density
TE = 14 ms
TR = 1500 ms
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Brain - Sagittal Multislice T1
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3D Volume Data Sets
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3D Volume Data Sets
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Things to do with MRI

• Anatomy: proton density, T1, T2 etc
• Flow – cardiac
• Diffusion – trace neural pathways
• Whole Body – cancer staging
• Functional imaging

– research
– surgical planning

• Interventional
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It’s about the BRAIN!
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It’s about the BRAIN!
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Diffusion Imaging

Water diffuses 
more easily 
parallel to fibres
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Diffusion EPI
Use additional 
gradients to spoil 
180o pulse for 
protons that 
diffuse in selected 
direction.

Repeat for 
typically 30 
directions

Long acquisition 
times



Physics of MRI March 2013 Richard Ansorge

Tractography

Preferred diffusion directions are shown as the long axes of diffusion ellipsoids. The colour is a 
complementary way of coding the preferred direction where red denotes left-right, green denotes back-front 
and blue up-down (out of the image plane). The white line shows the streamline obtained by connecting up a 
set of pixels based on their preferred directions and is an example of deterministic tractography.

http://www.humanconnectome.org/about/project/tractography.html
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High resolution diffusion image
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High resolution diffusion image
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High resolution diffusion image

Researchers are seeking to track 
the brain at earlier and earlier ages 
(here, the brain of a newborn baby 
born 10 weeks prematurely). ©
FNNDSC 2011 
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Muscle Fibres in Human Heart

Computed fits to Diffusion MRI of Human Heart
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Functional MRI (fMRI)

• Monitor T2 or T2* contrast during cognitive 
task

• Acquire 20-30 slices every 4 seconds

• Design experiment to have alternating 
blocks of task and control condition

• Look for statistically significant signal 
intensity changes correlated with task 
blocks
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oxyhaemoglobin

deoxyhaemoglobin

Resting

O2 & glucose
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O2 & glucose

Blood flow
‘over-compensation’

%O2

Active

ATP ADP

BOLD signal
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Finger Tapping Experiment

Echo-Planar fMRI – Typical Data

N.B. Signal/Noise ratio is generally poor

response stimulus

GE-EPI images
fMRI correlation 
maps

Signal response
averaged over
region
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Finger Tapping Experiment
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Coma (Persistant Vegetative State)
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http://www.bbc.co.uk/news/health-20268044
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Interventional MRI

This is still quite rare



Physics of MRI March 2013 Richard Ansorge

Interventional MRI

“Double Doughnut” magnet design
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(a) Coronal contrast-enhanced source MR angiogram (4.7/1.9, 25° flip angle) obtained before stent 
placement shows the intraluminal position of the pigtail catheter within the abdominal aorta. 

Manke C et al. Radiology 2001;219:527-534

©2001 by Radiological Society of North America
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(a) Coronal contrast-enhanced source MR angiogram (4.7/1.9, 25° flip angle) obtained before stent 
placement shows the intraluminal position of the pigtail catheter within the abdominal aorta. 

Manke C et al. Radiology 2001;219:527-534

©2001 by Radiological Society of North America



Physics of MRI March 2013 Richard Ansorge

(a) Coronal contrast-enhanced source MIP MR angiogram (4.7/1.9, 25° flip angle) obtained after 
stent placement shows a patent left common iliac artery and reduced signal intensity within the stent 
(arrows). 

Manke C et al. Radiology 2001;219:527-534

©2001 by Radiological Society of North America
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(a) Coronal contrast-enhanced source MIP MR angiogram (4.7/1.9, 25° flip angle) obtained after 
stent placement shows a patent left common iliac artery and reduced signal intensity within the stent 
(arrows). 

Manke C et al. Radiology 2001;219:527-534

©2001 by Radiological Society of North America



Physics of MRI March 2013 Richard Ansorge

Whole Body MRI

• Whole-body MRI is a noninvasive screening technique 
that acquires images of the entire body in the coronal 
plane only using fast magnetic resonance pulse 
sequences 

• Whole-body MRI is a promising method for screening 
pediatric patients with small round blue cell tumors for 
metastases, including lymphoma and neuroblastoma

• Whole-body MRI is also useful for assessing tumor
burden in patients with neurofibromatosis and potential 
detection of malignant transformation 

• Whole-body MRI is particularly beneficial for children 
because there is no exposure to ionizing radiation, 
making it an ideal imaging modality for serial imaging 
surveillance
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Whole Body 
MRI

A) Whole body MRI of 
a lymphoma patient 
using a STIR 
sequence shows 
multiple cervical and 
mediastinal tumors.

B) Corresponding CT 
Image of the same 
patient.

http://www.mghradrounds.org/index.php?src=gendocs&ref=2010_may
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Whole Body MRI
(A) High soft-tissue contrast of MR 
image is apparent in whole-body MRI 
tomogram of human.

(B) In contrast, fused PET/CT image 
shows mainly bone structures. 
Metabolic PET images 

(B and C) clearly depict tumor area 
(arrow) that appears also in MR 
image. Anatomic information is most 
prominent in MR image, whereas PET 
image can help to guide diagnostic 
focus toward abnormalities in 
metabolism. These abnormalities can 
then also be identified as structural 
malignancies in PET images. 
(Courtesy of Heinz-Peter Schlemmer, 
University of Tübingen.)
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Cardiac Imaging Heart function using cine imaging

From Wikipedia

Most sequences use ECG gating to acquire images at each stage of the cardiac cycle over several heart 
beats. This technique forms the basis of functional assessment by CMR. Blood typically appears bright in 
these sequences due to the contrast properties of blood and its rapid flow.

A 4 chamber view of the heart using SSFP cine imaging
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Cardiac Imaging Infarct imaging using contrast

From Wikipedia

Scar is best seen after giving a contrast agent, typically one containing gadolinium bound to 
DTPA. With a special sequence, Inversion Recovery (IR) normal heart muscle appears dark, 
whilst areas of infarction appear bright white.

CMR in the 4 chamber view comparing the cine (left) with the late gadolinium image using inversion recovery 
(right). The subendocardial infarct is clearly seen. Fat around the heart also appears white.
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Cardiac Imaging Perfusion

From Wikipedia

In angina, the heart muscle is starved of oxygen by a coronary artery narrowing, especially during stress. 
This appears as a transient perfusion defect when a dose of contrast is given into a vein. Knowing whether a 
perfusion defect is present and where it is helps guide intervention and treatment for coronary artery 
narrowings.

CMR perfusion. Contrast appears in the right ventricle then left ventricle before blushing into the muscle, 
which is normal (left) and abnormal (right, an inferior perfusion defect). 
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Combined PET & MRI
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100 Gauss

5 Gauss

Shielding coil

Main coils

PET PMTs in low field region

PET Light 
guides

LSO 
Detectors
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Addenbrookes Hospital
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Thank You


