Find: $I(a, b)=\int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(a x^{2}+b / x^{2}\right)} d x$,
given $\int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}} d x=\sqrt{2 \pi}$.
and the hint to try the substitution $y=\sqrt{a} x-\sqrt{b} / x$, (we have omitted an extra factor $\frac{1}{2}$ in the original question, as it is slightly unhelpful).

This question is unreasonably hard!
Note $I(a, b)=2 \int_{0}^{\infty} e^{-\frac{1}{2}\left(a x^{2}+b / x^{2}\right)} d x$ by symmetry, and y goes from $-\infty$ to ∞ as x goes from 0 to ∞. Also $y^{2}=a x^{2}+b / x^{2}-2 \sqrt{a b}$, or $a x^{2}+b / x^{2}=y^{2}+2 \sqrt{a b}$.

Thus using the substitution we get:

$$
I(a, b)=2 \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}-\sqrt{a b}} d x
$$

Eqn 1
Unfortunately

$$
\begin{equation*}
d y=\left(\sqrt{a}+\sqrt{b} / x^{2}\right) d x \tag{Eqn 2}
\end{equation*}
$$

This makes it hard to continue; there are probably several ways of getting the integral done, we will follow Richard Feynman's lead ${ }^{\#}$ and differentiate $I(a, b)$ w.r.t. the parameter b :

$$
\begin{aligned}
\frac{\partial I}{\partial b} & =2 \int_{0}^{\infty}-\frac{1}{2 x^{2}} e^{-\frac{1}{2}\left(a x^{2}+b / x^{2}\right)} d x \\
& =-\int_{0}^{\infty} \frac{1}{x^{2}} e^{-\frac{1}{2} y^{2}-\sqrt{a b}} d x
\end{aligned}
$$

So we can write:

$$
\begin{aligned}
\sqrt{a} I-2 \sqrt{b} \frac{\partial I}{\partial b} & =2 \int_{0}^{\infty} e^{-\frac{1}{2} y^{2}-\sqrt{a b}}\left(\sqrt{a}+\sqrt{b} / x^{2}\right) d x \\
& =2 e^{-\sqrt{a b}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y \\
& =2 e^{-\sqrt{a b}} \sqrt{2 \pi}
\end{aligned}
$$

[^0]Rearranging we get a standard first order differential equation for I:

$$
\frac{\partial I}{\partial b}-\frac{1}{2} \sqrt{\frac{a}{b}} I=-\sqrt{\frac{2 \pi}{b}} e^{-\sqrt{a b}}
$$

We can use an integrating factor $\mu(b)=e^{\int-\frac{1}{2} \sqrt{\frac{a}{b}} d b}=e^{-\sqrt{a b}}$ to get:

$$
\frac{\partial}{\partial b}\left(I e^{-\sqrt{a b}}\right)=-\sqrt{2 \pi} \frac{1}{b} e^{-2 \sqrt{a b}}
$$

And finally $I=\sqrt{\frac{2 \pi}{a}} e^{-\sqrt{a b}}+K(a)$ where $K(a)$ is an arbitrary function of a, but noting the value of the integral for $b=0$ we set $K=0$ giving the final answer (for 15 marks):

$$
I(a, b)=\sqrt{\frac{2 \pi}{a}} e^{-\sqrt{a b}}
$$

The last part can be easily done by using the obvious substitution $y=1 / x$ or by noting we have already found this integral is $-\frac{\partial I}{\partial b}$. [Hence the answer is $\left.I(b, a)\right]$.

The above is my solution found in May 2012.
Or (October 2014) we can deal directly with Eqn 1 as follows:
From $y=\sqrt{a} x-\sqrt{b} / x$ we have the quadratic equation $\sqrt{a} x^{2}-x y-\sqrt{b}=0$ thus

$$
x=\frac{y \pm \sqrt{y^{2}-4 \sqrt{a b}}}{2 \sqrt{a}} \text { so } d x=\frac{d y}{2 \sqrt{a}} \pm \frac{y d y}{\sqrt{y^{2}-4 \sqrt{a b}}} .
$$

Substituting for $d x$ in Eqn 1:

$$
I(a, b)=2 e^{-\sqrt{a b}}\left[\int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} \frac{d y}{2 \sqrt{a}} \pm \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} \frac{y d y}{\sqrt{y^{2}-4 \sqrt{a b}}}\right]
$$

This looks horrible but the second term with $y d y$ is odd thus the second nasty integral vanishes! The first term is just a multiple of the standard Gaussian integral, so:

$$
I(a, b)=\sqrt{\frac{2 \pi}{a}} e^{-\sqrt{a b}} \quad \text { QED. }
$$

[^0]: \# "Surely You Must Be Joking Mr Feynman", pages 86-87. This book is great fun and a must read for all intending Physicists.

