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Abstract. The protein hydrophobin HFBII self-assembles into very elastic films at the surface of water;
these films wrinkle readily upon compression. We demonstrate and study this wrinkling instability in
the context of non-planar interfaces by forming HFBII layers at the surface of bubbles whose interfaces
are then compressed by deflation of the bubble. By varying the initial concentration of the hydrophobin
solutions, we are able to show that buckling occurs at a critical packing fraction of protein molecules on
the surface. Independent experiments show that at this packing fraction the interface has a finite positive
surface tension, and not zero surface tension as is usually assumed at buckling. We attribute this non-zero
wrinkling tension to the finite elasticity of these interfaces. We develop a simple geometrical model for the
evolution of the wrinkle length with further deflation and show that wrinkles grow rapidly near the needle
(used for deflation) towards the mid-plane of the bubble. This geometrical model yields predictions for the
length of wrinkles in good agreement with experiments independently of the rheological properties of the
adsorbed layer.

1 Introduction

From the formation of finger prints [1] to geological struc-
tures [2], the buckling of thin sheets in various situations
can be explained by the onset of an elastic instability in
which an in-plane compression leads to an out-of-plane de-
formation. The theory of elasticity of a beam or a plate [3]
can be used to predict the wavelength and amplitude of
the wrinkles by balancing the bending and stretching en-
ergies [4, 5]. Conversely, buckling instabilities have fre-
quently been used to infer properties of materials, such as
Young’s modulus and thickness, based on measurements
of the wrinkling pattern [6, 7].

Wrinkling is also observed in materials with more com-
plicated rheologies than simple Hookean solids. For exam-
ple, wrinkling has been observed in surfactant and pro-
tein monolayers [8,9] as well as in “particle rafts” [10,11].
While these systems have been well studied, theoretical
models are often based on the assumption that buckling
occurs when the interfacial tension vanishes (so that defor-
mation out of the plane costs little or no surface energy).
This hypothesis has been verified experimentally for films
with no significant elastic shear modulus, such as lung sur-
factants [8]. However, for films with notable elastic shear
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modulus the stress within the film need not be isotropic
and homogeneous. Indeed, the literature provides many
examples of layers buckling before the apparent interfacial
tension reaches zero. For example, interfaces coated with
spherical [12] and ellipsoidal [13] colloidal particles buckle
upon compression whilst the measured interfacial tension
is still a significant fraction of its value before coating.
This discrepancy is most likely explained by the localized
nature of the wrinkling pattern: the interfacial tension is
usually measured away from the wrinkled region and so
does not preclude the possibility that the stress really does
collapse in the wrinkled region.

Although commonly observed, the buckling of layers
with finite shear modulus has yet to be fully understood
from a theoretical point of view. Various models based on
the mechanics of thin elastic sheets have been proposed to
explain the observed wavelength of wrinkles [10, 14]. It is
also observed that folds may develop from wrinkles in such
systems [8, 15]; an observation that sparked considerable
theoretical work on the nature of the transition from wrin-
kles to folds [16, 17]. However, such elastic-based theories
are currently unable to explain the various empirical rela-
tionships between the geometry of the experimental appa-
ratus and the surface tension that is measured at the on-
set of buckling, which have been reported recently [11,18].
The question then arises: are these features due to inho-
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mogeneous packing of the molecules at the interface or
rather a combination of elasticity and geometry?

The observation that the onset of wrinkling has a vital
geometrical aspect makes it surprising that most studies
of the buckling and collapse of interfacial monolayers fo-
cus largely on compression in planar geometries such as
a Langmuir trough. Recently, Stanimirova et al. [19] have
observed wrinkles on a pendant droplet covered by the sur-
factant Saponin, which has the potential to develop highly
elastic monolayers. Here, we develop a controlled setup to
investigate the wrinkling of hydrophobin HFBII films on
the surface of a bubble where the compression of the inter-
face is achieved by deflation of the bubble. Our use of the
protein hydrophobin HFBII is motivated by recent interest
in its ability to self-assemble into highly elastic films. This
high level of elasticity is believed to explain HFBII’s ca-
pacity to stabilize foams on long timescales [20,21] which
in turn makes it of interest in a range of food and med-
ical applications. We focus on studying the wrinkling of
hydrophobin films in this geometry since it is both one of
practical interest and because it removes some of the limi-
tations of studying wrinkling in planar Langmuir troughs,
such as friction with side walls [18]. We show that buck-
ling appears to occur when the hydrophobin layer reaches
a critical surface concentration but also demonstrate that
some features of the problem, such as the rapid rate at
which wrinkles grow with further compression, can be un-
derstood using purely geometrical ideas.

2 Experiment

Class II hydrophobin (HFBII) from Trichoderma reesei
was a gift from Unilever Global Development Centre and
was obtained from VTT Biotechnology (Espoo, Finland).
Details of the preparation are described elsewhere [22,23].
A drop tensiometer (First Ten Angstroms, UK) compris-
ing of a precise microstage and a camera was used for the
buckling experiment. A bubble was formed at the tip of a
J-needle dipped into a cuvette filled with a hydrophobin
solution, left to equilibrate for 20 minutes (to reach the
equilibrium surface tension of the surrounding solution),
and then deflated by sucking the air back into the syringe
gently, see fig. 1.

The equilibrium surface tension of hydrophobin solu-
tions of varying concentrations, was characterized by Wil-
helmy plate tensiometry at a planar interface (process ten-
siometer K12, Kruss GmbH, Hamburg). These data then
allow us, given a value of the surface tension of a solution,
to infer the area per molecule, by comparison to surface
compression isotherms with a known amount spread.

Prior to compression, the surface area of each bubble
was measured (from images) and the number of molecules
on the surface estimated from the bubble surface area and
the hydrophobin molecular area. It should be emphasized
here that the measurements of surface pressure returned
by a Wilhelmy plate in a rigid layer might not correspond
simply to the pure surface pressure [18]. However, this
technique can still be useful to provide an idea of the sur-
face area per molecule; other techniques, such as surface

Fig. 1. Wrinkles form in hydrophobin-coated bubbles, under
deflation. (a) Experimental image of a wrinkled bubble in
hydrophobin solution. The bubble is initially allowed to equi-
librate with the bulk solution before it is deflated causing the
wrinkling seen here. (b) Schematic diagram illustrating the
model parameters used here, namely the radius of the needle to
which the bubble is attached, a, the typical radius of curvature
of the bubble, R, and the length of the wrinkled portion Lw.

quasi-elastic light scattering can be used to measure com-
pression isotherms [18,24] and yield similar values for the
molecular area.

The volume and surface area at which the bubble
first wrinkles can be recorded, as well as the length of
the wrinkles. J-needles with outer diameters of 0.75 mm
and 1.25 mm were made by bending blunt stainless steel
needles with round pliers. The experiment was repeated
varying the initial volume of the bubble (typically be-
tween 2 and 10 μL) and the surface tension of the bulk
hydrophobin solution.

3 Results

Our measurement of the surface pressure isotherm for
hydrophobin is shown in fig. 2(a) together with the in-
ferred values of the initial molecular area for the bubbles
in our experiments before deflation, and at the onset of
wrinkling. Note that there is a region of concentration
that can be reliably measured by both Wilhelmy plate
and light scattering (SQELS). SQELS is described in pre-
vious work [24]. At lower pressures, the Wilhelmy plate
measures a lower pressure than SQELS, since SQELS is
more sensitive to localised, tenuous structures that form in
dilute conditions, as described previously [24]. At higher
pressures, the elastic stress in the layer builds up and af-
fects the different experimental probes in different ways.
These measurements, on “flat” interfaces, give us a ref-
erence for comparing to the compression of monolayers
formed on bubbles.

Whilst the molecular scale structure of hydrophobin
monolayers has not yet been fully established, the quali-
tative picture we have in mind is of hydrophobin as a core-
shell unit, with a hard core and a semi-soft shell. This type
of object will form a close-packing of the semi-soft shells,
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which is manifested in the surface pressure isotherms as a
drastic increase in pressure from near zero. Shear elasticity
begins to build up from that point. There is then a second
concentration, where the hard cores are packed, and the
layer cannot compress further in-plane, and so buckles.

Figure 2(b) shows that the bubble surface area at the
onset of wrinkling is directly proportional to the number
of molecules adsorbed at the bubble interface before its
deflation. Each marker corresponds to an independent de-
flation experiment; the concentration of the hydrophobin
solution and the bubble volume were varied between ex-
periments. We can see that all of these data collapse on
to a single straight line. This suggests that the wrinkles
arise when the molecules have reached a given packing,
and this occurs at a molecular area of around 410 Å2, as
seen in fig. 2(a). From the observed molecular area at the
onset of wrinkling and the surface pressure isotherm, we
estimate that the apparent surface tension at wrinkling
(γwrink = γC − Π � 72.8 − 30 � 42.8 mN/m) is non-
zero. This value is consistent with observations by Kisko
et al. [25] on hydrophobin HFBII films, who imaged the
collapse of the layer by Brewster Angle Microscopy at a
surface pressure ≥ 30 mN/m.

The observation that wrinkling occurs at a well-defined
molecular packing, and that this packing corresponds to
an apparent positive surface tension, suggests that the
packing of molecules on the surface is likely to be homoge-
neous. Nevertheless since wrinkles are observed, the state
of stress in the bubble’s surface is necessarily anisotropic
and inhomogeneous. We also note that at this point in
the surface pressure isotherm the rheology of the interface
is changing rapidly with small variations in the compres-
sion. We emphasise that the molecular packing at wrin-
kling appears to be homogeneous and independent of the
initial size of the bubble suggesting that it is a combina-
tion of elastic and geometric effects only that give rise to
wrinkling (i.e. it is not an accumulation of hydrophobin
molecules in one region of the bubble decreasing the sur-
face tension there to zero).

Once wrinkles have appeared near the needle, their
length grows dramatically as the bubble is deflated fur-
ther. This is illustrated in fig. 3, which shows the wrin-
kle length as a function of bubble volume for a range of
initial bubble volumes and bulk solution concentrations.
We present a minimal model aimed at explaining this ob-
servation; this model highlights the role that the system
geometry plays in the development of the wrinkling pat-
tern without the need for detailed rheological models of
the interface.

4 A geometrical model

Previous studies have shown that the rheology of inter-
facial layers is complicated: the effective elastic moduli
depend on the packing fraction of the molecules at the
interface [26]. Here, therefore, we develop a model that
bypasses the mechanical properties of the interface and
focuses solely on the geometrical aspects of wrinkling.
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Fig. 2. Wrinkling takes place at a well-defined area per
molecule, and the tension at this molecular area is finite.
(a) For each experiment, the initial surface pressures before
compression (∗, +, × for hydrophobin solutions with surface
tensions of 52mN/m, 48mN/m and 44 mN/m, respectively)
are reported on an isotherm of compression (solid line). To-
gether with the initial surface area of the bubble, this allows
us to estimate the number of molecules adsorbed at the bub-
ble interface. The solid dots mark the pressure measured by
surface light scattering from thermal fluctuations [24], which
is is agreement with the Wilhelmy plate data over the range
of interest. (b) The surface area of the bubble when the first
wrinkles appear is proportional to the number of hydrophobin
molecules adsorbed. Each marker represents a single compres-
sion experiment. All the data collapse onto a single straight
line, indicating that buckling occurs when the hydrophobin
molecules have reached a given packing. The three sets of data
(�, �,◦) correspond to the onset of wrinkling in hydrophobin
solutions with surface tensions of 52 mN/m, 48mN/m and
44 mN/m, respectively, in both panels. Given the “compres-
sion factor” to buckling, it is possible for each bulk concentra-
tion to infer the corresponding area per molecule at buckling:
These are marked by open symbols in panel (a), and coincide
to within experimental accuracy. Note that the corresponding
pressure is well below 72mN/m.
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Fig. 3. The experimental wrinkle length can be described the-
oretically by a simple geometrical model with no fitting param-
eter. As the bubble volume is reduced, wrinkles grow from the
needle. The data here are the dimensionless wrinkle length, as a
function of bubble volume. Lengths are non-dimensionalized by
the radius of the needle, a, and volumes by a3. Markers repre-
sent experimental data, at three different equilibrium values of
the hydrophobin solution surface tensions (values as marked, in
mN/m). Lines show the theoretical predictions from the mini-
mal geometrical model presented in the main text, in excellent
agreement for wrinkles up to the mid-plane of the bubbles. The
growth of the wrinkles beyond the mid-plane of the bubble is
shown by open markers (experiments) and dashed curves (the-
ory): In this case the wrinkled region is noticeably curved in
experiments, while the model maintains the assumption of a
straight wrinkled region.

Our model is based on the observation that the wrin-
kled bubble may be approximately divided into a wrin-
kled part, in which the interface makes a constant angle
α with the horizontal, and an unwrinkled, spherical cap.
We note that with this assumption, elementary geome-
try ensures that α = β, with α and β defined in fig. 1.
The advantage of these simplifications is two-fold: firstly
this model is analytically tractable, secondly we neglect
the details of the stress state within the bubble, which
depends on both the detailed rheology of the interface as
well as the history of bubble deformations from an initial
condition [27]. To close the model, we assume that the
surface area of the bubble is fixed at its value at the on-
set of wrinkling, S = Swrink; this corresponds to assuming
that the molecules are already at maximum packing and
cannot pack further.

The connection between the wrinkled and unwrinkled
parts occurs at an unknown arclength s = Lw. The po-
sition of the boundary of the wrinkled region, Lw must
be determined as part of the solution of the problem. In-
deed, the position of the wrinkle extent has recently been
a focus of considerable theoretical and experimental ef-
fort in related systems [7, 28–30]. We therefore focus on
understanding the evolution of the wrinkle length as the
volume of the bubble is decreased further beyond the onset
of wrinkling.

The surface area of the bubble is the sum of that of
the section of a cone (the wrinkled region) and a spherical
cap of radius R (the unwrinkled region), which may be
expressed as

S̃ =
S

a2
=

π

cos α

[
R2

a2
(1 + cos α)2 − 1

]
, (1)

while the volume is

Ṽ =
V

a3
=

π

3

[
R3

a3

(1 + cos α)2

cos α
− tan α

]
. (2)

Here we are using the radius of the needle, a, to non-
dimensionalize. (We use this length scale because neglect-
ing the stresses within the membrane removes both sur-
face tension and gravity from the problem, and hence the
capillary length is no longer a relevant length scale; the
only remaining length scale is then a.) S̃ and Ṽ are thus
the dimensionless surface area and volume of the bubble,
respectively. Geometry may also be used to show that the
dimensionless length of the wrinkles is given by

L̃w =
Lw

a
=

R

a
tan α − sec α. (3)

For a given initial surface area at the wrinkling point
S̃ = S̃w, we may use the angle α to parametrize the bubble
shapes with this S̃. To do this, we calculate the bubble ra-
dius R(S̃w;α) from (1) and use this value in (2) and (3) to
give the corresponding bubble volume and wrinkle length.
In this way, it is possible to plot the wrinkle length as
a function of bubble volume for different initial surface
areas. Such a plot is shown in fig. 3 for a variety of dif-
ferent values of S̃w. We note that the agreement between
theoretical predictions for the length of the wrinkles and
experimental observations is extremely good; we empha-
size especially that there are no fitting parameters in this
model.

The most striking feature of the theoretical and exper-
imental curves in fig. 3 is that the curves are normal to
the x-axis at the point where they intersect it: the wrin-
kle length grows continuously (cf. a second-order phase
transition) rather than discontinuously. This result may
be demonstrated analytically by showing that the deriva-
tive V ′(α0) = 0, where α0 is such that Lw(α0) = 0, which
in turn requires that R(α0) sin α0 = a.

5 Conclusion

We have studied the deflation-induced buckling of bub-
bles coated by hydrophobin. This is novel both in the
sense that wrinkled bubbles may be of interest in appli-
cations and also because it may enable the future study
of the rheology of such interfaces in more realistic, curved
geometries than the use of a Langmuir trough currently
allows. This latter feature is particularly important since
numerous studies have shown that the use of a Langmuir
trough and Wilhelmy plate introduce geometrical compli-
cations that may invalidate results for practically relevant
scenarios [11,18].
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Our study has shown that the wrinkling instability first
occurs when the molecules reach a critical packing frac-
tion. The presence of elastic effects within the interface
means that the effective surface tension of the interface
does not vanish at this packing fraction. Furthermore, the
geometrical nature of the wrinkling instability was high-
lighted by a simple geometrical model using a minimal set
of physically based assumptions that was able to predict
the evolution of the length of wrinkles post buckling.

We intend to study this wrinkling in more detail in the
future, both with this system and with similar layers that
have a better characterized rheology. Of special interest
here is the fact that the resulting shells have negligible
bending stiffness, as measured by the “bendability” [30]

ε−1 =
p2R4

EhB
� 1, (4)

where E denotes the Young modulus, B the bending stiff-
ness, h the shell thickness and R the typical radius. We
therefore expect the wrinkling of such shells upon defla-
tion to be in the “far-from-threshold” regime [30,31].
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