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Individuality and universality in the growth-division laws of single E. coli cells
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The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to
depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and
individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend
where the spread in both size and doubling times is a linear function of the population means of these variables.
Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second
observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We
found that scaling relations based on the means collapse both size and doubling-time distributions across different
conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint
fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for
the means between size and either growth rate or inverse doubling time. Our calculations show that these results
emerge from a broad class of division control mechanisms requiring a certain scaling form of the “division
hazard rate function,” which defines the probability rate of dividing as a function of measurable parameters.
This “model free” approach gives a rationale for the universal body-size distributions observed in microbial
ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our
experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate
and division time, which can be understood in terms of different regimes of genome replication control.

DOI: 10.1103/PhysRevE.93.012408

I. INTRODUCTION

How is the size of a cell at division determined in different
environments and conditions? This simple question lies at
the foundations of our understanding of cellular growth and
proliferation [1,2]. For some fast-growing bacteria, part of
the question was answered between 1958 and 1968, through
a series of key studies starting from the seminal work of
Schaechter, Maaløe, and Kjeldgaard [3]. Quoting these au-
thors, size (mass), as well as DNA and RNA content, “could be
described as exponential functions of the growth rates afforded
by the various media at a given temperature.” Remarkably,
these laws for the dependency of mass and intracellular content
on population growth rate are fully quantitative and suggest the
possibility of a theory of bacterial physiology in the way this
term is intended by physicists [4,5]. Mean growth rate results
as the sole “state variable,” not unlike thermodynamic intensive
properties such as pressure or concentration. Specifically, the
exponent of the Schaechter et al. curve for size has been related
to the control of replication initiation [6,7], which is a key
regulation step in the cell cycle.

*marco.cosentino-lagomarsino@upmc.fr

The understanding summarized above, however, solely
relates to the average behavior of, e.g., Escherichia coli cells
within large colonies. A population can be made of between
a handful to billions of cells, each of which will exhibit
individual growth and division dynamics, where diversity
depends both on fluctuations of the perceived environment and
on inherent stochasticity in the decision process underlying cell
division. One has then to address how such a heterogeneous
collective of growing cells behaves in order to give rise to
the Schaechter-Maaløe-Kjeldgaard “growth law.” Thinking
of mean growth rate as a “control parameter,” i.e., a scalar
variable that the cells may individually measure in their
decisions about cell division, one key aspect is whether each
cell is individually “aware” of the mean growth conditions to
regulate its individual cell division dynamics or if it simply
responds to individual-cell parameters. These two scenarios
imply different relationships between the three main observed
quantities: cell size, individual growth rate, and interdivision
time (the two latter quantities cease to be equivalent for
single cells), e.g., whether cells dividing at the same rate in
different conditions will divide at similar sizes or tend to have
similar growth rates. Early experimental efforts to capture
this behavior were limited in precision and statistics [8,9].
Furthermore, such “nonmolecular” approaches rapidly came
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to be considered old-fashioned in favor of the rising paradigm
of molecular biology [10]. Today, the characterization of
the fluctuations of cell growth and division across growth
conditions remains a largely open question, with potential
impact for our general understanding of cell proliferation
and its molecular determinants. Additionally, advances in
hardware and computational power have made it possible
to efficiently collect high-resolution and high-quality data
resolved at the single-cell level. Recent studies on Escherichia
coli [11,12] and Bacillus subtilis [12] have found a near
constancy of the size extension in a single cell cycle (an “adder”
mechanism of division control, see also Refs. [13,14]). There
is disagreement on whether the same feature is present in
Caulobacter crescentus [11,12,15,16]. One study [12] reports
a universal trend in E. coli where the spread in both size and
doubling times is a linear function of the population means of
these variables, but also that the joint fluctuations of size and
growth rate in a given condition deviate from the mean law
followed by the means of these quantities. While the authors
show that both behaviors are captured by a suitable “adder”
model, they address neither a possible link between them
nor an origin that is more general than the specific division
mechanism they consider.

Here we use a generic scaling theoretical analysis and a set
of high-throughput experiments to fully characterize the joint
fluctuations of individual E. coli cell size, growth rate and
doubling times in a considerable range of growth conditions
and show their links to the scaling properties. Our experiments
confirm the findings of Ref. [12] on the universal scaling
and “individual” joint fluctuations of size and growth rate,
as well as uncovering novel behavior. Most importantly, the
joint fluctuations of growth rate and doubling times also show
the same “individualism,” whereby two individuals with the
same interdivision time, but coming from two populations
with different average growth rate, typically do not follow the
same behavior in growth rate (and deviate more strongly in
faster growth conditions). Our general theoretical approach
shows that the diversity in individual cell size and the scaling
are linked by the control of cell division across conditions.
Specifically, we calculate the condition under which the
variation of cell size control with mean growth rate respects
the observed scaling of the cell size and doubling time
distributions, and show that this generally leads to the observed
joint fluctuation patterns of doubling times and cell size.
Importantly, while our results are compatible with near-adder
division control, we show theoretically that the link between

FIG. 1. Description of experimental procedure. (a) Schematic of the data collected about each cell. Initial and final volumes V0 and Vf were
estimated from the initial and final lengths of the cell and the width of the cell averaged across its life. The interdivision time τ was defined
as the number of frames between two divisions, multiplied by the time between frames. Since cell growth was well described by exponential
growth [17,18], the growth rate α was defined by fitting the length of the cell to an exponential. (b) Schematic of the agarose pad growth
environment. An agarose pad infused with a given growth media was placed on a cover slip, along with a piece of wet filter paper. A dilute
bacterial suspension was placed on the agarose pad, sealed with silicone grease, and covered with a second cover slip. The cover slip “sandwich”
was placed on the microscope for viewing (see Sec. IV). (c) Example of the raw and processed data. The left panel is a representative “raw”
image of a microcolony after several generations of continuously observed growth. The right panel is the result of the segmentation algorithm
applied to the raw image (see Sec. IV).
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FIG. 2. Escherichia coli cell size and interdivision time distributions have a common scaling form across growth conditions. (a) Histograms
of initial cell size (from n > 950 cell cycles each) in different nutrient conditions (represented by different curves) with different mean growth
rates, rescaled according to mean initial cell size V0 as p(V0) = 1

V0
F (V0/〈V0〉) [22]. In this and later figures, nutrient conditions are M9 +

glucose 0.4% (Glc), M9 + casamino acids 0.5% + glucose 0.4% (CAA), Neidhardt’s rich defined media (RDM) [23], and LB. See Sec. IV
for exact formulations. P5-ori is the shorthand for a BW25113 derivative strain described under Sec. IV, and MRR is the strain described in
Ref. [24]. (b) Same plot as in (a) but for the interdivision time distribution. (c) Top panels: The minimum of the functional E(�) [22,25] is a
measure of the most parsimonious scaling exponent �; when evaluated for the distributions of initial size (left) and interdivision time (right),
it suggests that the best estimate for the scaling exponent is near to 1. [For the definition of E(�), see Sec. IV.] Bottom panels: Linear scaling
of successive moment ratios for the distributions of initial size (left) and interdivision time (right) confirms the linear scaling behavior. For a
quantity X (either initial size or interdivision time), filled circles represent the value of 〈X2〉/〈X〉 for each condition; gray squares represent
〈X3〉/〈X2〉; open triangles represent 〈X4〉/〈X3〉. A dashed line with slope one is shown as a guide to the eye.

scaling and fluctuations holds beyond this specific mechanism
and cannot be regarded as conclusive evidence in favor of a
specific mechanism.

In the following we will first introduce the experiment
(Fig. 1) and approach the problem from the point of view of the
resulting data (Figs. 2–5). Subsequently, we will introduce the
theoretical approach and show how it unifies the interpretation
of the experimental results shown in Fig. 2 (collapse of size
and doubling-time distributions) and 5 (joint fluctuations of
growth and size). The link between all these results is shown
in Fig. 6. Furthermore, Figs. 3 and 4 report measurements
on individual growth rate and interdivision times that are not
described by the current theories.

II. RESULTS

A. Reliable high-throughput collection of cell division cycles

By using agarose pad microscopy we grew and imaged
a large set of colonies in media of varying nutrient quality
(Fig. 1). Specifically, we report five physiological conditions
from a total of four different nutrient conditions split across
two (similar) strains, in the following referred to as P5-ori
and MRR (see Sec. IV). A custom-made protocol involving
automated imaging and efficient segmentation algorithms
(see Sec. IV) gave us wide samples of full cell cycles,

typically order 10 000 for each condition, including multiple
biological replicates. Since, as we mentioned in the Intro-
duction, doubling time and growth rate are not equivalent
variables for single cells, it is important to define a consistent
terminology. Figure 1(a) illustrates the variables measured
in our experiment. Since growth in time of single cells is
well described by an exponential [17,18], the growth rate α

is defined by an exponential fit. The interdivision time τ is
defined as the time interval between two divisions. The inverse
interdivision time defines a “rate” or “frequency” of cell
division for a given cell, which can be naturally compared to α.
Since we also consider a division hazard rate function h, which
defines how the probability per unit time of dividing changes
with internal cell-cycle variables such as instantaneous and
initial size, we reserve the wording division rate for h and refer
explicitly to inverse interdivision time otherwise. Finally, V0

and Vf are defined as the estimated spherocylinder volume
from the initial and final lengths of the cell and the average
width of the cell. Since we monitored cell volume fluctuations
across a range of conditions, the changes in cell width made
it necessary to estimate cell volume by measuring both width
and length of cells (see Sec. IV).

Colonies grown on agarose in microscope slides are known
to show dependency of growth rates on both time and cell
position in the colony. To avoid problems of nonsteady growth
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FIG. 3. The distribution of single-cell growth rates is sym-
metric and does not show linear scaling with respect to the
mean. (a) Distributions of growth rates α in different conditions.
(b) Growth rate distributions rescaled by the means, as in Figs. 2(a)
and 2(b), do not collapse. Inset: Coefficient of variation of α

distributions for each experimental condition, as a function of average
growth rate.

we designed and optimized our experiment in order to prepare
and keep the cells in conditions that were as close as possible to
steady growth. Importantly, both the total cell volume and the
total number of cells grew exponentially (Supplemental Fig. S1
[19])—consistent with previous reports [15,17,18,20,21]—
and the growth rates of total colony volume and cell number
are in good agreement. Further, colony growth rates in agar
compared well with bulk growth rates (Supplemental Fig. S3
[19]) with the exception of one condition, in which growth on
agar was faster than bulk growth. As we shall show, however,
these deviations from classic behavior in a single condition do
not affect the statistics of cell size fluctuations.

During the analysis, we controlled for a possible depen-
dency of growth parameters on position within the colony,
finding that doubling times and growth rates of single cells
are not dependent on colony position. However, we found that
measured cell sizes on the outer edge of a colony appeared
larger, due to an image segmentation bias (Supplemental
Fig. S2 [19], see Sec. IV for a discussion). Removing these
outermost cells from the analysis did not affect the results.

We analyzed 2000–20 000 cells in each condition
(Table I) that satisfied various technical requirements (com-
pletely tracked over their whole cell cycle, did not cross
the image border, had a positive growth rate, etc.). We also
verified that the area growth of microcolonies corresponded

very well with the average growth rate of segmented cells
and that the distributions of all measured variables agreed
with manually curated data, hence the divisions that the
segmentation algorithm failed to capture did not introduce
any relevant bias (Supplemental Fig. S3 [19]). The initial
size distributions changed gradually with generation, at least
in part due to the segmentation problems for cells close to
colony edges mentioned above (Supplemental Fig. S5 [19] and
Sec. IV C 4). This change was noticeable but small relative to
the variability present within any one generation. To control
for the effect of this time dependency on results, we analyzed
the cells from the range of generations in which the main
growth variables are most steady as well as the full data
set (Supplemental Fig. S4 [19]). From the 2000–20 000 cell
divisions for each condition, about 1000–6000 were in the
steadier interval of generations (Supplemental Table S1 [19])
[18]. Subsequent analysis reported here refers to these data.
Importantly, Supplemental Fig. S6 [19], which reports our
main plots on the joint fluctuations of cell size and doubling
times for the unrestricted set, shows that the the subsample has
the same statistical properties as the whole and hence shows
that our conclusions do not depend on this restriction.

B. Single-cell size and interdivision times
rescale with growth rate

We first considered the distributions of three main observ-
ables: interdivision time τ , growth rate α (obtained from fitting
an exponential to the curve of length versus time, see Sec. IV),
and initial size V0. Since the distribution of initial sizes at
one generation is defined by the distribution of final sizes in
the previous one, in steady growth with binary cell division
and equal daughter cell sizes, the distribution of final sizes
divided by two has to match the distribution of initial sizes. We
verified that this was the case in our data (Supplemental Fig.
S7 [19], since daughters are nearly equal [17], this condition
is applicable to our data).

The distribution of newly divided cell size is right skewed,
and symmetric when plotted on a log scale, resembling a
log-normal or a Gamma distribution [Fig. 2(a)]. This is
one of the most consistently reported features of E. coli
size [9,11,12,18,26–32]. We found that the distribution of
interdivision time τ was also positively skewed [Fig. 2(b)]
and resembles a Gaussian on a logarithmic scale. This point
has been discussed in the recent literature [11,12,15,33]. Both
initial size and doubling time distributions across all five
growth conditions collapse when rescaled by their means
[Figs. 2(a) and 2(b)]. This feature was reported early on for E.
coli cell sizes [27] and very recently also for doubling times
[15] in C. crescentus cells growing at different temperatures
but constant nutrient conditions.

We tested a finite-size scaling form of these distributions
[22]

p(x) = 1

x�
F

[
x

〈x〉1/(2−�)

]
, (1)

where p(x) is the distribution of a quantity of interest x (τ or
V0), � is a scaling exponent, and F (ξ ) is the functional shape
seen in the distribution of x, assumed to be constant for all
conditions [22,34]. Note that the normalization condition for

012408-4



INDIVIDUALITY AND UNIVERSALITY IN THE GROWTH- . . . PHYSICAL REVIEW E 93, 012408 (2016)

FIG. 4. Heterogeneous behavior of growth rates and interdivision time of single cells. (a) Box plots of growth rate α vs the inverse
interdivision time 1/τ , showing that growth rates of cells with similar division frequencies (inverse interdivision times) are similar across
slow growth conditions, while this correlation is lost in faster growth conditions. (b) Plot as in (a) but binned instead by growth rate α,
showing that the mean expected equality of division and doubling rates is restored at the single cell level. Bin width is 0.2 units of 1/τ (in
divisions/h) or α (doublings/h). Boxes are the inner quartile range and whiskers represent data within 1.5 times the inner quartile range;
bins represent at least 50 cells. Large symbols represent population averages. Black dashed lines have a slope of one as a guide to the eye.
(c) Pearson correlation coefficient between α and 1/τ across growth conditions. Error bars represent bootstrapped 95% confidence intervals.
(d) Coefficient of variation (CV) of 1/τ distribution as a function of growth rate. Large symbols represent the whole population CV; dots
represent CV binned by α (bin width 0.05 doublings/h, each dot represents at least 50 cells). Discrepancy between the large and small dots
reveals heterogeneity.

Eq. (1) requires some constraint on the cutoff of the upper or
lower tail of the distribution in order to be compatible with
� �= 1 (discussed in the Supplemental Material of Ref. [22]).
Equation (1) is a postulate of self-similarity (stating that
under a suitable rescaling a set of different curves are in fact
the same), classically introduced by Fisher in the context
of critical phenomena in statistical physics, justified by

TABLE I. Average values of the main parameters: initial size (V0),
interdivision time (τ ), growth rate (α), and Lysogeny Broth (LB).

Condition 〈V0〉 (μm3) 〈τ 〉 (min) 〈α〉 (doublings/h)

P5ori Glc 1.4 68.2 0.9
P5ori CAA 1.6 38.2 1.5
P5ori RDM 3.4 24.6 2.4
MRR Glc 2.3 31.3 1.8
MRR LB 6.5 20.9 2.9

behavior of a thermodynamic system near a critical point
[34]. However, in the past decades it has found very broad
application, for example, in ecology, including microbial size
spectra [22,35–37]. Using a quantitative method to assess the
most parsimonious value for � [25] based on a cost function
E(�) measuring the goodness of the collapse (see Sec. IV),
we obtained values very close to unity for this parameter
[Fig. 2(c)]. This suggests—as proposed in Ref. [22]—that
these size distributions can be described by a single parameter:
their mean. Finally, we found that the scaling prediction that
the ratios of successive moments of the size distributions
should scale with the mean is verified [Fig. 2(c)].

In contrast with initial size and doubling time, the
distribution of the single-cell growth rates α was more
symmetric and roughly compatible with a Gaussian in all
conditions [Fig. 3(a)], with the two faster growth conditions
visibly distinct from the rest when the distributions were
rescaled linearly as a test of the finite-size scaling hypothesis
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FIG. 5. Joint fluctuations of interdivision times and size and cell division control. (a) Box plots of the logarithm of initial cell size binned
by inverse interdivision time. Bins are as in Fig. 4(a). Large symbols represent the population averages. The black dashed line represents
exponential fit of population averages and is compatible with the Schaechter-Maaløe-Kjeldgaard result. The fluctuations around this mean
deviate from the law, more strongly for faster growth conditions. Single-cell growth rate (b) and interdivision time (c) do not show any collapse
when plotted as a function of rescaled initial size V0/〈V0〉, but average net growth ατ (commonly used to proxy for size control in cell division
[39]) does (d). Each point represents the average value of the corresponding quantity binned by size [bins are constant on log scale, and each
bin is 0.02 units of log(V0/〈V0〉)]. Left panels in (b), (c), and (d) are rescaled versions of the right panels.

[Fig. 3(b)]. Notably, the coefficient of variation (CV) of the
growth rate decreases in faster growth conditions, consistent
with recent results [38], and hence the distribution does
not show a simple linear scaling with the mean across all
conditions [Fig. 3(b)]. We also tested scaling with other
exponents using the same goodness-of-collapse measurement
as for the initial size and interdivisional time, but the results
gave poorer collapse. Indeed, the miminum value of E(�) was
noticeably higher than for the other variables (Supplemental
Fig. S8 [19]). The most parsimonious scaling exponent for
the growth rate distribution was � = 0.82.

C. Increased deviations from mean-cell behavior at faster
growth conditions

Next, we asked how the growth process of cells influenced
cell division. To explore this question, we first analyzed the

relation between inverse doubling times 1/τ (i.e., “division
frequencies”) and growth rates α of single cells. Figure
4(a) shows boxplots of growth rates for cells with different
inverse doubling times. As expected—on average—growth
rate and inverse doubling time still follow the expected trend
y = x. This is also confirmed by binning the same data
by α [Fig. 4(b)]. However, the behavior of the fluctuations
around this mean evidenced by Fig. 4(a) differs between
slow and fast growth conditions. Indeed, in faster growth
conditions, cells that divide at a given rate either because
of stochasticity or carbon source can have very different
growth rates. More specifically, Fig. 4(a) shows a transition
in behavior at intermediate growth rates between roughly 1.5
and 2 divisions per hour or, equivalently, at a crossover time
scale of roughly 30 min. This crossover is demonstrated by the
slope of the scatterplot for each condition gradually switching
from the straight line y = x (expected for the population

012408-6



INDIVIDUALITY AND UNIVERSALITY IN THE GROWTH- . . . PHYSICAL REVIEW E 93, 012408 (2016)

FIG. 6. Theoretical analysis showing that division control across different growth conditions is intimately linked to the universal size and
doubling-time distributions. Scheme of the theoretical result, which unifies the findings of Fig. 2 and 5. In the cartoons, different colors refer to
different conditions. The collapse of initial sizes and doubling times are equivalent to the collapse property of the division rate [Eq. (2)], when
plotted as a function of size rescaled by the average initial size, and with h∗ rescaled by growth rate. The collapse of the size-growth plot in
Fig. 5(d) is a consequence of these properties. The theory predicts that the slope of the fluctuations around the Shaechter-Maaløe-Kjeldgaard
law should be the inverse of the mean growth rate.

means) to a completely flat slope and by a drop in the Pearson
correlation [Fig. 4(c)] between the two variables, possibly
because cells have less time to adapt their divisions to transient
environmental fluctuations. A similar crossover is visible in
Fig. 3, although the measured quantity is not the same.

Several additional observations suggest a crossover. The
correlation between inverse doubling time 1/τ and initial size
V0 is stronger when 〈1/τ 〉 is less than two divisions per hour
(Supplemental Fig. S9 [19]), and the correlation between α

and V0 is low except when 〈α〉 is about 1.5–2 doublings per
hour (Supplemental Fig. S9 [19]). Finally, for slower growth
conditions, the CV of inverse doubling times of a population
deviates from the CV of data binned by α, indicating that cells
with similar individual growth rates have a more homogeneous
division frequency in slow-growth conditions, while in faster
conditions the variability in their inverse interdivision times
increasingly matches the population behavior [Fig. 4(d)].
Taken together, these data clearly indicate that to characterize
individual cell behavior one needs to specify both mean
population growth rate and a deviation from the mean.

Diversity of cell behavior is also evident on the single-cell
analog of the plot from Schaechter, Maaløe, and Kjeldgaard

of cell size versus growth rate α or inverse of doubling time
1/τ [Fig. 5(a) and Supplemental Fig. S10 [19]]. As previously
discussed, inverse doubling time (division frequency) is equiv-
alent to growth rate only when averaged over a population in
steady-state growth conditions [i.e., 〈α〉 = log(2)/〈τ 〉], but the
two quantities represent (in principle) independent variables
at the single-cell level. Figure 5(a) and Supplemental Fig.
S10 [19] show that fixing either variable, the deviations from
the population behavior increase in faster growth conditions;
furthermore, the Schaechter-Maaløe-Kjeldgaard “growth law”
(stating that in balanced growth, mean cell size increases
exponentially when plotted against the mean of the growth
rate or the reciprocal of the mean doubling time) does not
appear to hold at the single-cell level in even the slowest
conditions. These findings indicate as well that the laws
coupling individual cell growth to division (hence to cell
size) cannot be extrapolated from the population averages,
seemingly in contrast with the universal features of size and
doubling time fluctuations. On the other hand, the average sizes
of cells growing in different conditions in our data are fully
compatible with the expected trend (Fig. 5 and Supplemental
Fig. S11 [19]).
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D. Fluctuations in cell size and interdivision times are
linked to cell division control

The roles of individual growth rate and doubling time in
setting cell division size may differ profoundly. The slope of
the plots in Fig. 5(a) (and Supplemental Fig. S10 [19]) may
be interpreted as a test for the extent to which a cell that is
born larger or smaller than average compensates for this error
by modulating its growth or interdivision time. Equivalently,
the changes in size control at different growth rates are shown
directly by scatter plots of doubling time τ and single-cell
growth rate α versus logarithmic initial size log V0 [Figs. 5(b)
and 5(c)]. Consistently with previous results [17], these plots
show little correlation between initial size and growth rate
[Fig. 5(b)] and significant anticorrelation between initial size
and interdivision time [Fig. 5(c)], suggesting that the control
of cell size should be mostly effected by modulating doubling
times rather than growth rate. Additionally, the slopes of these
plots show variability across conditions even when rescaled
by mean initial size, reinforcing the idea that the extent of this
doubling time modulation varies in the different conditions
along the Schaechter-Maaløe-Kjeldgaard curve. To test how
this is compatible with the observed universal scaling of initial
size distributions, we considered another way to quantify size
control in cell division, comparing the amount of relative
growth within a time interval versus the cell size at the entrance
of the interval [Fig. 5(d), often referred to as a “size-growth
plot”] [17,39,40]. The slope of this plot is normally considered
a proxy of how much cell division depends on cell size.
Figure 5(d) shows the average net growth 〈ατ 〉 versus initial
size. These curves show a common slope and, analogously
to the size distributions, they collapse when rescaled by the
mean initial size in each condition. Note that this is possible
only because the correlation of α with 1/τ is nonzero and
varies across conditions; one extreme case is LB, where the
trend of both α and 1/τ with initial size is very weak, but
the trend in Fig. 5(d) is the same as in other conditions.
These results are consistent with a mechanism of cell size
control that modulates the division time, such that the scaling
is maintained or, equivalently, operated by a mechanism that
contains a single intrinsic length scale [15]. Our measurements
are also consistent with the nearly constant added volume in
each cell cycle reported recently for E. coli [16] (Supplemental
Fig. S13 [19]).

E. Theoretical constraints posed by finite-size
scaling on division control

To address the relationship among scaling, cell division
control, and the individuality in fluctuations observed in our
data, we used a theoretical approach (Fig. 6). The framework
we employed generally describes cell division through the
growth-division process in terms of a division hazard rate
function h∗ [12,17]. The hazard division rate is defined as the
probability per unit time that a cell divides, given the values
of the available state variables (e.g., current size, cell-cycle
time, etc.). This general description allows us to show that
the collapse of initial size and doubling time distributions and
the fluctuations around the Schaechter-Maaløe-Kjeldgaard law
can be explained as a common result of the division control
mechanism.

Specifically, we assumed a division hazard rate of the
form h∗

〈α〉(V,V0) (for a population with given mean growth
rate 〈α〉) and asked under which conditions this hazard
function can generate the observed scaling behavior of the
doubling-time and initial-size distributions. This assumption
includes as a particular case “adder” models where the control
variable is a size difference V –V0 [11,12,33] as well as
models where elapsed time from cell division is a control
variable instead of V0, provided the distribution of growth
rates is sufficiently peaked [17]. To understand this, note that
h∗ can be a function of all the state variables (t,V0,V ,α),
but under the constraint of exponential growth Vf = V0e

ατ ,
different choices of parameters become equivalent. (The full
calculation, as well as further details about the formulation of
the model, are reported in the Appendix). The essence of the
calculation is that the initial size distribution ρ〈α〉(V0) can be
obtained as a functional of h∗ by solving the model. One can
then impose the finite-size scaling condition on ρ〈α〉 and derive
the consequences for h∗. This gives the condition

h∗
〈α〉(V,V0) = 〈α〉f

(
V

〈V0〉〈α〉
,

V0

〈V0〉〈α〉

)
. (2)

In other words, our theoretical calculations show that under
the condition stated by Eq. (2) (i.e., the scaling form of the
division hazard rates from different conditions), the observed
scaling behavior for doubling times and initial sizes (Fig. 2)
hold and are equivalent. To test Eq. (2), i.e., the collapse
of the division hazard rate h∗

〈α〉(V,V0), with data, we used
direct inference from the histograms of dividing cells. The
procedure is described in detail in Ref. [17] and in the
Appendix and is based on the fact that, as in a Poisson
process, the division hazard rate h∗ is mathematically related
to conditional histograms of undivided cells. Figures 7(a) and
7(b) show that the condition given in Eq. (2) is verified in
our data.

F. The theory justifies the increased deviations of fluctuations
from means in faster growth conditions

Furthermore, the dependencies of the division hazard rate
determine the slope and collapse of the size-growth plot
[Appendix and Fig. 5(d)]. Since the size-growth plot is also
related to the heterogeneus behavior in the growth of single
cells [Fig. 5(a) and Supplemental Fig. S10 [19]], this shows
that, while apparently in contrast, the universal behavior of
the fluctuations and the deviations of single cells from the
Schaechter-Maaløe-Kjeldgaard behavior are in fact two sides
of the same coin. This link can be derived directly from Eq. (2),
as we report in the Appendix (see also Fig. 6). Here we
support it with the following simple quantitative argument,
valid for small fluctuations. Figure 5(d) implies that ατ ≈
log 2 − 1/b log(V0/〈V0〉〈α〉), where b � 2 is a dimensionless
constant (the horizontal dashed line in the plot is log 2).
However, Fig. 5(b) shows that most of the correlation with
size is contained in τ . One can then suppose that ατ ≈ 〈α〉τ .
From these two conditions, one gets that

(1/τ )

(
log 2 − 1

b
log(V0/〈V0〉α)

)
≈ 〈α〉. (3)
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FIG. 7. Division hazard rates inferred from data follow the predicted collapse properties. (a) Hazard rate plotted as a function of size,
conditional on initial size. h∗

<(V ) (solid lines) is the rate of cell division for cells whose initial size was smaller than the average initial size;
h∗

>(V ) (dashed lines) is the rate of cell division for cells whose initial size was larger than the average initial size (the curves would be the
same if division depended only on current size [12,17]). (b) The empirical functions h∗

〈α〉(V,V0) follow the collapse property of Eq. (2) (see
also Supplemental Fig. S12 [19]).

Assuming small fluctuations [see also the Appendix,
Eq. (A20)], the first term in the left-hand side of this equation
can be written as a mean, plus a fluctuation term, 〈α〉 + δ1/τ ,
while the second term is interpreted as a fluctuation of
logarithmic size δlog V0 . Assuming small fluctuations, one
immediately has that

δlog V0 ≈ δ1/τ

〈α〉 . (4)

In other words, the fluctuations in logaritmic cell size around
the Schaechter-Maaløe-Kjeldgaard law should become shal-
lower in faster growth conditions, coherently with the observed
trend in Fig. 5(a).

In conclusion, the joint universality in doubling time and
size distributions can be explained by a generic division control
mechanism based on a single length scale. Importantly, Eq. (2)
shows that other mechanisms, and not only the adder principle,
may exhibit both scaling and individuality in the fluctuations.
Thus, scaling and individuality are more general and not evi-
dence or simple consequence of near-adder behavior [12,16].
The Appendix also shows how this result holds using specific
examples of division control models [17]. For an adder, Eq. (2)
translates into the additional constraint that the division rate
h∗

〈α〉(V − V0) should be a function of V −V0
〈V0〉〈α〉

, which immediately
implies the prediction that, in each condition, each moment of
order k of the distribution of added size should be proportional
to the kth power of 〈V0〉〈α〉 (since this is the only relevant length
scale), while stationarity of the process requires that only their
means are equal (as stated in Ref. [12]).

III. DISCUSSION AND CONCLUSIONS

Our study shows that single cells from a given condi-
tion with a defined average division rate deviate from the
Schaechter-Maaløe-Kjeldgaard “growth law” (which states
that mean cell size grows exponentially with mean growth
rate), with stronger deviation in faster growth conditions. A

similar “individuality” in cell behavior relates growth rate to
cell division: At slow growth, individual cells appear to adapt
their doubling time to match their individual growth rate (thus
behaving like a colony of one). Conversely, at fast growth
the correlation between inverse doubling times and individual
growth rates decreases visibly. A crossover time scale around
30 min is seen across the data, marking the transition between
these two regimes. In analogy with the standard interpretation
linking the Schaechter et al. law with the control of replication
initiation [6,7], one can speculate that this characteristic
time may be connected to replication time: for example, at
fast growth, variability in interdivision times might be more
dependent on DNA replication, which becomes increasingly
challenging in the presence of overlapping rounds, while
other determinants of cell division might be more relevant
in slow growth. A connection between fluctuations in growth
variables and multifork replication is also consistent with
the qualitatively different correlations between α and 1/τ

observed in our work compared to that recently shown
in Ref. [15], since C. crescentus does not use multifork
replication. Iyer-Biswas et al. found that 1/α and τ were
well correlated in all growth rates they observed, similarly
to our data from slowly growing E. coli, which likely are not
undergoing multifork replication.

Our fast-growth results are consistent with findings on cells
growing steadily in a microchemostat in rich growth conditions
[17,18] and in line with more recent microchemostat results
[12] [Supplemental Fig. S13 [19] and Fig. 5(a)]. Finally, we
compared our results to previously obtained data in three
additional growth media, including poor carbon sources,
in order to enhance the range of explored growth rates
(Supplemental Fig. S17 [19]). These extra experiments were
also in line with our main results, showing collapse of size and
doubling time distributions, as well as increased deviations
from mean behavior at faster growth rates.

We now address the measurements of the distributions of
the main variables. The fact that the distribution of cell size is
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right skewed is one of the most consistently reported features
in the E. coli literature [9,18,26–32], and it has been derived
theoretically using different assumptions about the dynamics
(or fluctuations) in the growth process [8,17,22,41–43]. The
evidence on the shape of the doubling time distribution has
been less consistent, with some studies observing that the
distribution is weakly skewed and close to Gaussian [9],
and other studies finding positive skew in the distribution
[15,44–46]. The unskewed distribution of the growth rate α

has previously been reported for one growth condition [17,18].
The α distributions for different mean values 〈α〉 have been
considered in Ref. [12], which appeared while the present work
was under review. Interestingly, while this work only tests
the collapse with � = 1, the collapse with this value of the
parameter appears adequate for their data, in contrast with our
agar-derived data. An analytical form of this distribution has
been obtained by a recent modeling study [47]. The functional
form is Log-Fréchet, which appears to fit the published
single-cell data better than other forms and is not collapsible.

The linear finite-size-scaling form of the initial size and
doubling times distributions is consistent with recent results
in C. crescentus [15] for cells grown at different temperatures.
Earlier work had shown such a scaling for size but had
not investigated doubling time [27]. Our experiments extend
the findings in C. crescentus to a phylogenetically distant
bacteria with a radically different cell cycle, as well as a
complementary perturbation (change of nutrient conditions
instead of temperature), showing that the scaling properties of
these distributions are unvaried for cells grown at the same
temperature in different media. Interestingly, while the linear
scaling suggests that the mean behavior (the relative time or
length scale) fully sets the shape of the size distribution, the
naı̈ve expectation would be that the fluctuations around the
mean size would also behave equally in different conditions. It
is then interesting to ask how these differing properties relate
to the shape of the size and doubling-time distributions.

An important standing question is what sets this markedly
universal scaling for both size and doubling times. Iyer-Biswas
and coworkers [15,48] employ an autocatalytic model for
growth fluctuations to predict that, within a cell cycle, cell
sizes should not follow a multiplicative random walk but a
multiplicative process where the noise scales as the square
root of size. Under these conditions, the growth dynamics
preserve the scaling of the size distribution, and, provided that
binary division does not affect this property, scaling should
be observed. This reasoning is robust and consistent with data
[15]. However, being focused mostly on growth it does not
fully address the possible role of cell division in setting the
shape of the distribution.

In our case, we are able to show theoretically that in such
models, finite-size scaling of the size and interdivision time
distributions is directly related to the collapse of the division
hazard rate functions of different conditions, Eq. (2). Since
this would not necessarily be the case if the scaling were
purely determined by the cell growth process, we are led to
surmise that both growth and cell division contribute to the
observed size and doubling-time fluctuations. Considering the
data, two different measurements of cell division control—the
size-growth plot between net growth and initial size [Fig. 5(d)]
and our direct estimate of the division hazard rate as a function

of cell size—show rescaling collapse, suggesting that cell
division control across conditions contains the same universal
scale observed in the size distributions. Hence, since the
size-growth plot is also directly related to the fluctuations
around the Schaechter-Maaløe-Kjeldgaard curve [Fig. 5(a)],
the outcome of this analysis suggests that both the observed
finite-size scaling and the heterogeneity in single-cell behavior
across conditions may have a common explanation through cell
division control.

It is important to frame this result in the current debate
regarding the specific mechanism for division control. Im-
portantly, our theoretical result is achieved through a “model
free” approach, i.e., a generic argument that can apply to a
wide range of division mechanisms. Recent works [11,12,33]
have shown evidence in favor of “adder” mechanisms of cell
division, where the division hazard rate depends on the volume
added by a cell h∗(V,V0) = h∗(V − V0) and a nearly constant
mean volume is added at each cell division. Our analysis and
our data are compatible with this mechanism (Supplemental
Fig. S13 [19]). However, our calculations (see Appendix) also
indicate that the scaling of size and doubling-time distributions
and the fluctuation behavior around the Schaechter-Maaløe-
Kjeldgaard curve should not be regarded as a smoking gun for
an adder mechanism. Indeed, different hazard rate functions
than that of an adder can obey the scaling given by Eq. (2).
Supplemental Fig. S14 and S15 [19] show specific examples
of nonadder models with universal size and interdivision-time
distributions.

We conclude that the apparently contrasting universal
behavior of the fluctuations and the deviations of single cells
from the Schaechter-Maaløe-Kjeldgaard behavior are, in fact,
two sides of the same coin. They come from control of cell
division, but they do not suffice to pinpoint a single specific
mechanism of cell division control. The idea that division
control plays a relevant role in setting size and doubling time
distributions is also supported by the finding of Giometto
and coworkers [22]. These authors observe size scaling for
a wide range of microorganisms in the context of a microbial
ecosystem, not all of which presumably grow and divide
in the same way, suggesting that the reason for the scaling
behavior of sizes and doubling times should go beyond the
specificity of a single mechanism [15,16,22]. Finally, we note
that our explanation of the link between size fluctuations and
scaling behavior does not include the additional heterogeneous
behavior that we found experimentally between growth rates
and doubling time (Fig. 4), and its crossover time scale. A
model fully accounting for fluctuations in both the growth and
division processes is still lacking, but the data reported here
should provide important clues to construct it.

IV. MATERIALS AND METHODS

A. Strains and growth conditions

Two strains were used in this research: a GFP reporter
strain of BW25113 (gift of Dr. Bianca Sclavi) with gfp and
a kanamycin resistance cassette fused to the λ phage P5
promoter and inserted near the aidB gene and the origin of
replication—this strain is referred to as P5-ori. The second
strain was the MRR strain previously described in Ref. [24].
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Four different media were used: LB (Lennox formulation,
Sigma L3022); Neidhardt’s rich defined media [23], referred to
here as RDM (Teknova); and M9 [Difco, 238 mM Na2HPO4,
110 mM KH2PO4, 43 mM NaCl, 93 mM NH4Cl, pH 6.8 ± 0.2,
supplemented with 2 mM MgSO4 and 100 μM CaCl2 (Sigma)]
with either 0.4% w/v of glucose (Sigma) or 0.4% w/v Glucose
and 0.5% w/v casamino acids (Difco) added. M9 media
were prepared by autoclaving separately M9 salts, MgSO4,
CaCl2, and casamino acids, and combining after autoclaving.
Glucose was filter sterilized. Additional data (Supplemental
Fig. S17 [19]) were obtained as described in Ref. [38], for three
different nutrient conditions: M9 + acetate, M9 + lactose, and
Neidhardt’s Rich Defined Media (RDM) + glycerol, spanning
growth rates from between 0.25 to 1.8 doubling per hour.

Strains were temporarily stored on LB-agar plates with
appropriate selective antibiotic at 4 ◦C for up to 1 week.
Prior to an experiment, cultures were inoculated into LB
with appropriate selective antibiotics and incubated at 37 ◦C
with shaking at 200 rpm overnight (10–16 h). Cultures were
then diluted 1000× into 10 ml of growth medium without
antibiotics in a 50-ml Ehrlenmeyer flask with a loosened cap
for oxygen exchange and grown until early exponential phase
(OD600 ∼ 0.05)—3–10 h depending on the growth rate. The
culture was diluted again into fresh prewarmed media and
grown to OD600 ∼ 0.05, 2–6 h depending on growth rate.

B. Microscopy

Agarose pads were cast using a custom-made mold,
maintained at 35 ◦C. Sterile molten agarose (3% w/v, Sigma)
was mixed 1:1 with preheated 2× growth media, poured onto
a coverslip placed in the mold, covered with a glass slide,
and allowed to cool. Agarose pad height was measured with
a digital caliper to be 0.48 ± 0.04 mm (standard deviation,
n = 4).

Immediately before starting the microscopy experiment, a
disk was cut out of the agarose pad using an 8-mm biopsy
punch and placed on a coverslip heated to 37 ◦C. 0.18-mm
spacers were placed on each end of the coverslip and a piece of
damp filter paper (approx 6-mm square) was placed next to the
agarose pad to decrease evaporation. The pad was inoculated
with 3 μl of bacterial culture diluted to ∼0.0006 OD units
(approximately 1000 cells total). The pad and filter paper
were sealed with air-permeable silicone grease and a second
coverslip was pressed on top.

The agarose pad-coverslip “sandwich” was transported to
the microscope on a metal block heated to 37 ◦C to minimize
temperature shock. During the experiment the sample was
heated by direct thermal contact with the objective via the
immersion oil. The objective was maintained at 37 ◦C using
a custom-built PID controlling an objective jacket from ALA
Scientfic Instruments.

Cells were imaged using a Nikon Eclipse Ti-E inverted
microscope equipped with “perfect focus” autofocusing hard-
ware and a 60× oil objective (NA 1.45). Images from the MRR
strain and the Glucose experiments of the P5-ori strain were
taken with an Andor iXon DU897_BV EMCCD camera using
EM gain and an additional Nikon 2.5x magnifying element
(VM lens C-2.5x). The pixel size was measured to be 0.106
μm/pixel, within the optimal Nyquist sampling regime. For

the CAA and RDM experiments in the P5-ori strain a Ximea
MQ042MG-CM camera was used, with spatial sampling
of 0.09167 μm/pixel, again within the Nyquist regime.
Fluorescence images were taken with light from a blue LED
passed through a GFP filter (Semrock: excitation FF01-472/30,
dichroic FF495-Di03, emission FF01-520/35). Frequency and
intensity of illumination were kept as low as possible, since
fluorescence illumination has phototoxic effects, which may
slow down cell growth and cause smaller cell sizes. In order
to set these parameters, we performed preliminary control
experiments measuring the area growth of microcolonies at
different illumination frequency and LED brightness. Based on
these controls, we chose conditions such that our maximum
loss in growth was less than 10%. When acquiring images,
light from the LED was always shone on cells for 0.3 s.

In a given experiment multiple fields of view were observed:
custom-written microscope control software kept track of the
locations of the different fields of view and moved between
them, acquiring an image of each field of view at specified
intervals. The time between fields of view was chosen based
on the growth rate so on average a cell would be imaged
about 20–30 times during a cell cycle. A typical field of view
contained one to three cells initially.

C. Data analysis

1. Segmentation and tracking

Segmentation was accomplished using custom-written
Matlab scripts. A preprocessing step of dark-field subtraction
was required for images taken with Ximea, due to the lower
camera sensitivity. Individual microcolonies were identified
by calculating the image gradient using the Sobel operator,
and the threshold over the background using the Otsu method.
Individual cells were identified by filtering with a logarithm
of a Laplacian and using morphological operations. Most
of the cells were segmented in the previous steps, except
for overlapping or recently divided cells. To further segment
overlapping cells, we used a seeded version of the watershed
method. The segmentation mask of the preceding image was
eroded to obtain the seeds. To separate cells that were recently
divided, we calculated the mean intensity along the major axis
of the candidate cells. If there was a decrease in intensity in
the center, the candidate cell was divided in two.

To test how reliably our segmentation algorithm detects
cell divisions, we investigated the asymmetry in daughter cell
sizes. Because E. coli are known to divide symmetrically, if
the segmentation algorithm is working, then the size of both
daughter cells after division should be close to identical. We
defined the “division asymmetry” as LD1

0 /(LD1
0 + LD2

0 ), where
LD1

0 and LD2
0 are the initial lengths of daughters 1 and 2 after

a division; if division is symmetric the division asymmetry
score should be 0.5. In all conditions the discrepancy between
daughter cell sizes was very small (Supplemental Figure S16
[19]), comparing favorably to that reported in other studies
with other segmentation algorithms [11,12,33], suggesting that
our algorithm can reliably detect divisions.

To track the lineages, we measured the overlap between
labeled regions in two consecutive frames. Since in these
experiments the growth rate is slow compared with the frame
rate, most of the pixels identified for a given cell in one frame
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will correspond to the same cell or its daughters in the next
frame. Therefore if we considered the labeled pixels for a
single cell identified in a given frame, in the next frame they
could contain either: (1) only one label therefore being the
same cell; (2) two labels, implying the cell divided, or (3) zero
or more than two labels, meaning that there was a problem in
the segmentation and the lineages must be restarted.

2. Measurements

The volume of a given cell was calculated (to leading
order) assuming a cylindrical shape with hemispherical caps
according to V (t) = π

4 
(t)〈w〉2, where 
(t) is the length of that
cell at a particular time and 〈w〉 is the width of the cell averaged
over that cell’s life. Length and width were calculated as the
major and minor axes of the ellipse with the same normalized
second central moments as the cell, as calculated by MATLAB’s
regionprops command.

Interdivision time τ was calculated as the number of images
containing the cell, multiplied by the time elapsed between
consecutive images. To calculate the growth rate α, linear
regression was performed on log2[
(t)], with α the inferred
slope.

3. Image analysis filters

An essential part of the automated analysis pipeline is
the quality control of data, avoiding false positives cells
and tracks, while introducing no bias from filters. Data
on segmented objects were processed by technical filters
removing segmented objects that are not cells, and excluded
wrong or incomplete tracks. A cell was excluded from analysis
on technical grounds if

(1) It was smaller than the cutoff size (cross section less
than ≈0.46 μm2).

(2) It was touching the border of the image.
(3) It had no mother cell. This filter excludes the first cell,

since its initial size is unknown, as well as other cells which
emerge from just outside the field of view or due to errors in
tracking.

(4) Its growth rate α was negative.
(5) An error in tracking occurred such that the cell was lost

for at least a frame. This could be caused by mis-segmentation
of a cell, or by overlap between two adjacent cells. A
significant number of the total segmented cells were excluded
by this criteria. We determined that this filter did not bias the
distributions of the critical observables α, τ , and V0.

Additionally, we scanned for false-positive detections of
cell division giving unreasonably short interdivision times.
Inspection of several movies of such events revealed that these
were often cells with tracking errors that had not been captured
by the earlier technical filter. We also excluded cells for which
the goodness-of-fit (r2) value of cell growth to an exponential
was less than 0.8 (these were outliers, since 85–90% of cells
had r2 values larger than 0.9). We verified that this affected
<10% of cells, mostly with erratic tracks due to wrong
segmentation. This filter also reduced the spuriously low
interdivision time population without biasing the remainder
of the distributions. Finally, we eliminated objects with track
length less than 8.6 min. Relatively few cells failed to pass this
filter: Between 0.1 and 6% of cells in each condition passing all

other filters were excluded due to their interdivision time—less
than 2% overall. This procedure completely eliminates the
peak of tracks with implausibly short duration. Supplemental
Table S1 [19] highlights how many cells were excluded by
each filter.

4. Selection of steady state cells

As mentioned in the main text, to control for varying
conditions on the agarose pad, analysis was restricted to
generations in which cell size, interdivision time, and growth
rate were relatively steady (see Supplemental Fig. S4 [19]).
In most experiments, the growth rate and interdivision time
varied little over the course of the experiment, while the
initial size showed more visible change. We have tried to
diagnose the source of the change in initial size (which
occurs without concomitant changes in τ or α), but it remains
elusive. Part of the effect is attributable to the fact that cells
on the outside edge of a colony appear larger than cells on
the inside (Supplemental Fig. S2 [19]). This only affects cells
on the outermost ring in the colonies and does not vary with
time or correlate with concomitant variations of interdivision
time or growth rate that could explain the increase in size.
Hence, a plausible explanation is the image segmentation
bias due to overall change in fluorescence signal in this area.
Importantly, regardless of the source of this variability in
initial size, our main conclusions are not qualitatively changed
when the analysis is performed on cells from all generations
(Supplemental Fig. S6 [19]). Alternative microfluidics devices
[18,49] are more laborious and fragile and at the time of
writing gave us too-low experimental throughput.

5. Statistics and evaluation of goodness-of-collapse

The goodness of scaling for the finite-size scaling ansatz
of cell size and interdivision time was calculated similarly to
Refs. [22,25]. The distributions p(x) were smoothed using a
Gaussian kernel and then rescaled according to

p(x) = 1

x�
F

(
x

〈x〉1/2−�

)

for varying �. The collapse of the distributions onto a
single curve F (x) was assessed by calculating the function
E(�), which is defined as the average area enclosed by each
pair of curves over their common support. This functional
was minimized for �. Bootstrapped confidence intervals
were calculated using the Bias-Corrected and Accelerated
(BCa) bootstrap method [50] implemented in the PYTHON

scikits.bootstrap module. Data points were repeatedly
resampled with replacement to obtain the bootstrapped sam-
pling distribution.
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APPENDIX : THEORETICAL ARGUMENTS ON
FINITE-SIZE SCALING AND DIVISION CONTROL

This Appendix presents a general formulation of the process
of growth and division as a stochastic process and discusses
the constraints that the empirical finite-size scaling of doubling
time and size distributions impose on possible models of
division control.

In particular, using a simple analytical calculation, we
will show that the linear scaling of size and doubling time
distributions with their mean values is equivalent to the scaling
of the division rate hazard function and the collapse of the size-
growth plots. Limiting the class of models compatible with the
experimental data gives indications on the microscopic scheme
at the basis of the observed phenomenology.

1. Theoretical description of the growth and division process

As presented in detail in Ref. [17], the growth and division
of single cells can be represented as a stochastic process
defined by the two functions, representing the rates of growth
(hg) and the division hazard rate (h∗), i.e., the rate per unit time
of cell division as a function of the measurable variables. A
linear dependence on cell size V of the growth rate, hg = αV ,
implements the observed exponential growth of single cells.
Empirically, α follows an approximately Gaussian distribution
with a mean value dependent on the strain and nutrient
conditions (Fig. 3). The division hazard rate h∗ may be a
function of all the growth parameters, and its form can be
inferred from the data [17]. In general, it can be described as
a function of all the state variables, e.g., initial cell size and
time elapsed in the cell cycle h∗(t,V0,α), or of current size and
initial size h∗(V,V0,α). Under the constraint of exponential
growth Vf = V0e

ατ , different choices of parameters, such as
the ones just given, are equivalent. The probablity of division
at time t for a cell with initial size V0 and growth rate α can
be expressed as:

p(t |V0,α) = h∗(t,V0,α)e− ∫ t

0 dsh∗(s,V0,α) = − d

dt
P0(t |V0,α),

(A1)

where P0(t |V0,α) is the cumulative probability that a cell born
at t = 0 is not divided at time t , given that its initial size is V0

and its growth rate α. Alternatively, the size V can be used as
a coordinate

p(V |V0,α) = h(V,V0,α)e− ∫ V

V0
dvh(v,V0,α) = − d

dV
P0(V |V0,α).

(A2)

Here h(V,V0,α)dV is the probability of cell division in the size
interval [V,V + dV ]. The two rates h and h∗ are simply related
by h(V,V0,α)dV = h∗(t,V0,α)dt , where dV/dt = hg(V ) =
αV , and therefore

h∗(t,V0,α) = h(V (t),V0,α)αV (t) = h(V0e
αt ,V0,α)αV0e

αt .

(A3)

The difference between the hazard functions h∗ and h is that
the former is a probability per unit of time (i.e., a proper rate)
while the latter is a probability per unit of volume. Note that
both of them can be expressed as a function of size or time. In

particular, in the main text we considered h∗(V,V0), i.e., the
probability per unit of time of cell division at size V given an
initial size V0.

For simplicity, in the following we will neglect fluctuations
of α in a given condition, assuming α = 〈α〉. We will indicate
the rates obtained under this assumption as h∗

〈α〉(t,V0) and
h∗

〈α〉(V,V0). In this formulation of the process, the stationary
distribution of initial cell sizes ρ〈α〉(V0) (if it exists) must
satisfy

ρ〈α〉(V0) = 2
∫ ∞

0
θ (2V0 − V ′

0)ρ〈α〉(V ′
0)P〈α〉(2V0|V ′

0)dV ′
0,

(A4)

as described previously [17], where the Heaviside function
θ (2V0 − V ′

0) is written explicitly to show the bounds. The
equation above is fully defined given a functional form of the
division rate h [which defines ρ〈α〉(V = 2V0|V ′

0) in Eq. (A2)].
Once ρ〈α〉(V0) is known, the interdivision time distribution
at steady state can in principle be calculated from the
condition

ρ〈α〉(τ ) =
∫ ∞

0
p〈α〉(t = τ |V0)ρ〈α〉(V0)dV0. (A5)

Since the nutrient conditions define the average growth rate and
the average cell size (Fig. 5), division control is expected to
change with nutrient conditions. Moreover, in this modeling
framework, the functional form of the division rate sets the
mean values and the level of fluctuations of the observables and
must induce the observed finite-size scaling of both doubling
time and cell size distributions.

2. General scaling form of the division hazard rate function

This section addresses the constraints imposed by the
observed collapse of interdivision time and initial size distri-
butions on the division hazard rate function h (or, equivalently,
h∗). The initial size distribution ρ〈α〉(V0) in a given condition
characterized by mean growth rate 〈α〉 is given by

ρ〈α〉(V0) = 2
∫ ∞

0
θ (2V0 − V ′

0)ρ〈α〉(V ′
0)p〈α〉(2V0|V ′

0)dV ′
0,

(A6)
where θ is the Heaviside function and p〈α〉(Vf |V0) is the
conditioned distribution of final sizes given initial ones.

The collapse of initial sizes implies that ρ〈α〉(y) = ρ(y),
with y = V0/〈V0〉〈α〉. Imposing this condition in Eq. (A6)
implies that

ρ(y) = 2
∫ ∞

0
θ (2y − y ′)ρ(y ′)p〈α〉(2y|y ′)dy ′. (A7)

This equation immediately shows that a necessary and
sufficient condition for the collapse is that the conditioned
distribution

p〈α〉(yf |y0) = f (yf |y0), (A8)

i.e., it does not depend on 〈α〉.
This condition immediately translates into a constraint for

the division rate hd (V,V0), which is related to the above
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conditional distribution by the following equation:

h〈α〉(V,V0) = − d

dV
log

∫ V0

V

p〈α〉(V |V0)dV0

= − 1

〈V0〉〈α〉

d

d(V/〈V0〉〈α〉)

× log
∫ V/〈V0〉〈α〉

V0/〈V0〉〈α〉
p(y|V0/〈V0〉〈α〉)dy. (A9)

This shows that the collapse of initial size distributions is
equivalent to the fact that the division hazard rate is universal
when rescaled by mean initial sizes, i.e., that

h〈α〉(V,V0) = 1

〈V0〉〈α〉
f

(
V

〈V0〉〈α〉
,

V0

〈V0〉〈α〉

)
. (A10)

The equivalent condition for h∗ follows directly from the fact
that h∗

〈α〉(V,V0) = 〈α〉V h〈α〉(V,V0).

h∗
〈α〉(V,V0) = 〈α〉 V

〈V0〉〈α〉
f

(
V

〈V0〉〈α〉
,

V0

〈V0〉〈α〉

)
, (A11)

implying that h∗
〈α〉(V,V0)/〈α〉 is a function only of the rescaled

variable.
We now consider the collapse of interdivision-time dis-

tributions and the size-growth plot. Introducing a change of
variables in Eq. (A8), the conditional distribution for final
sizes can be written as

p〈α〉(Vf |V0) = 1

〈V0〉〈α〉
g1

(
Vf

〈V0〉〈α〉
,

V0

〈V0〉〈α〉

)
. (A12)

Since log(Vf /V0) = 〈α〉τ , the above expression, combined
with Eq. (A8), immediately gives the following condition for
the collapse of the distribution of interdivision times:

p〈α〉(τ |V0) = 〈α〉 Vf

〈V0〉〈α〉
g1

(
Vf

〈V0〉〈α〉
,

V0

〈V0〉〈α〉

)

= 〈α〉g2

(
〈α〉τ, V0

〈V0〉〈α〉

)
. (A13)

The above condition implies the joint collapse of the distribu-
tion of interdivision times and initial cell sizes.

Additionally, the same condition also implies a collapse of
the size-growth plot—essentially given by an average of the
conditional distribution p〈α〉(τ |V0). Neglecting the variability
of α within a single condition we have that

〈ατ 〉 = 〈α〉
∫ ∞

0
dτ τ p〈α〉(τ |V0). (A14)

If Eq. (A13) holds, then

〈ατ 〉 = 〈α〉
∫ ∞

0
dτ τ f (ατ |V0/〈V0〉α), (A15)

and the change of variable u = 〈α〉τ gives

〈ατ 〉 =
∫ ∞

0
du u g(u|V0/〈V0〉α), (A16)

i.e., the mean net volume change is a function of the sole ratio
V0/〈V0〉α , therefore implying that size-growth plots obtained
with different conditions collapse when the sizes are rescaled
relatively to the average initial size.

Importantly, Eq. (A13) and (A11) are necessary and
sufficient conditions for the collapse of interdivision time
and initial size distributions. Therefore the collapse of the
size-growth plots [which is a direct consequence of Eq. (A13)]
is a necessary condition for the universality of interdivision
time and size distribution. These conditions are obtained
neglecting the fluctuations of α and are approximately valid if
these are sufficiently small. Growth-rate fluctuations introduce
a new time scale (proxied, for example, by the inverse standard
deviation of individual growth rate fluctuations), making
Eq. (A13) not strictly applicable. Hence, these fluctuations
are not compatible with a perfect collapse of the size-growth
plot and the size and doubling time distribution. This fact
could explain the small deviations across conditions that are
observed when the size-growth plots are rescaled.

The recent study by Taheri-Araghi and coworkers [12] has
shown that, within the adder model, the collapse of the added
size, the initial size and the final size are equivalent (i.e., the
scaling of one of this quantity implies the scaling of the other
ones). The more general calculation performed here shows
that this result is model independent. Indeed, our calculation
allows us to recover their result in our more general setting.
For binary divisions, it is trivial to show that the scaling of the
initial and final size are equivalent: Since the division ratio is
independent of the size, the probability of the initial sizes is
just given by the one of the final sizes under the change of
variables Vf = 2V0. In order to show that the scaling property
of the added size and the ones of final and initial size are
equivalent, we can use the result of the previous section. There
we showed that the scaling of final ans initial sizes is equivalent
to the scaling of the probability p〈α〉(V |V0). The probability
of the added size can be obtained from this one from a simple
change of variable V = V0 + �:

padd
〈α〉 (�|V0) = p〈α〉(V0 + �|V0), (A17)

where padd is the probability of the added size given an
initial size V0. The case of an adder would correspond to
padd

〈α〉 (�|V0) being independent of V0. From Eqs. (A17) and
(A12), we have that the scaling of initial, final, and added size
are equivalent even if the division control is not an adder. This
result can be understood by a generic dimensional argument
using the simple observation that the scaling of the sizes are
a consequence of the fact that the division control depends
on a single size scale. If a single size scale exists, then it
follows immediately, just from dimensional analysis, that all
the size distributions collapse when rescaled by that scale or
any quantity with the same dimension.

3. Relationship between fluctuations around the Shaechter
growth law and universal distributions of interdivision times

and initial sizes

This section derives the slope of fluctuations of indi-
vidual cells logarithmic size around the Schaechter-Maaløe-
Kjeldgaard law [Fig. 5(a)] directly from the collapse condition
on the division hazard rate [Eqs. (2) and (A10)]. The
fluctuations around Schaecter law have the form

log(〈V0〉τ,α)) = log(A) + B

τ
, (A18)
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where 〈V0〉τ,α) stands for the average initial size V0 for a given
growth condition 〈α〉 and single-cell interdivision time τ . The
quantities A and B have respectively the dimensions of a size
and a time. The collapse implies that the only size and time
scales of the system are 〈V0〉α and 1/〈α〉 and therefore the only
dependence compatible with the collapse is A = a〈V0〉α and
B = b/〈α〉, where a and b are two dimensionless constants,
independent of the condition. We have therefore

log(〈V0〉τ,α)) = log(〈V0〉α) + log(a) + b

〈α〉τ . (A19)

Stationarity implies that when V0 = 〈V0〉α , 〈α〉τ = log(2).
Under this condition

log(〈V0〉τ,α)) = log(〈V0〉α) − b

log(2)
+ b

〈α〉τ . (A20)

The parameter b can take different values depending on the
mechanism of size control. We observe, in agreement with
Fig. 5(a), that the slope of the fluctuations decreases for fast-
growth conditions as 1/〈α〉.

The same result can be obtained without dimensional
considerations, from the conditional probability of initial size
and interdivision times, applying Bayes’s formula, as follows,
p〈α〉(V0|τ ) = p〈α〉(τ |V0)p〈α〉(V0)/p〈α〉(τ ), which gives

p〈α〉(V0|τ ) = 1

〈V0〉〈α〉
g3

(
V0

〈V0〉〈α〉
,〈α〉τ

)
.

Since 〈V0〉τ,α is defined as the mean of this distribution, if we
impose it to have a linear dependence on 1/τ as in Eq. (A18),
then we immediately recover the dependence of A and B on
〈V0〉〈α〉 and 〈α〉 obtained above.

4. Inference of division hazard rate from data

Recently, we have introduced a simple method to estimate
directly the dependency of hazard-rate function from measur-
able variables such as size, cell-cycle time, and initial size
[17]. Under the simplifying assumption of a division rate
only dependent of current size V , the division hazard h(V )
can be directly estimated from the cumulative fraction P0(V )
of surviving cells at size V using Eq. (A2). Considering our
data, in every growth condition the estimated division rates
shows a functional dependence on size characterized by a steep
increase at small sizes, followed by a relaxation of control for
larger sizes (Supplemental Fig. S14 [19]), in good agreement
with previous results [17].

However, a cell’s decision to divide may not depend
solely on its current size [17,43]. To test whether variables
other than cell size are used to determine cell division, we
applied the inference method considering the division rate
dependence of both current size and an additional variable.
As a coarse test of this additional dependence, we defined
two bins of initial sizes and estimated division rates h>(V,�)
and a h<(V,�), respectively, from the cumulative fractions
P0>(V |V0 > �) = P0>(�) and P0<(V |V0 < �) = P0<(�) of
surviving cells at size V and with initial size V0 larger
or smaller than �, respectively. Specifically, we chose for
each condition � = 〈V0〉 and defined h> = h>(V,〈V0〉) and
h< = h<(V,〈V0〉).

These functions, as estimated from data, are plotted in
Fig. S12 [51]. Under the assumption that h depends only on
size V , these two curves would be equal for data from the same
experimental condition. The fact that the two curves deviate
indicates that additional variables, summarized by V0, control
division, a condition that can be defined “concerted control”
[17]. In other words, cell division is not determined solely
by the instantaneous size, but may contain a memory of a
landmark size, or elapsed time from a given cell cycle event.
Fig. 7 in the main text reports the same estimate for h∗. We also
performed two-sample Kolmogorov-Smirnov tests comparing
the cumulative histograms P0>(〈V0〉) and P0<(〈V0〉), obtaining
P values lower than 10−4 for all growth conditions for the
null hypothesis that the underlying distributions were equal.
Since these small P values may be affected by the large
sample sizes, we also performed the test on survival histograms
obtained from two random subsamples of the same data set,
composed of a list of 1000 or 1500 dividing cells chosen
randomly. In all cases the P values were higher, between
0.18 and 0.75, meaning that the null hypothesis that the
underlying distribution is the same could not be rejected in this
case. This analysis indicates that size-based control is similar
at different growth rates (and is consistent with concerted
control). Conversely, pure sizer or timer of division control
are not consistent with the E. coli data and support a control,
where at least one extra variable, in addition to size, determines
division. This variable could be recapitulated equivalently by
age in the cell cycle or initial size [17], in line with the results
of recent studies [1,17] and as argued in less recent ones [45].

In addition, the shapes of the functions h< and h> are also
similar at different growth rates. Furthermore, upon rescaling
by average initial size 〈V0〉 the h< and h> curves appear
to collapse [Fig. S12(b) and Fig. 7], suggesting that the
mechanism of division control is universal across conditions,
as expected from Eq. (A10). Finally, the distance between h<

and h> is constant across conditions [Fig. S12(c)].

5. Connection between scaling and division
control in specific models

In the minimal assumption of a division rate only dependent
on size V , the functional form of the divison rate h∗(V )
[or, equivalently, h(V )] can be estimated from empirical data
starting from Eq. (A1) [or (A2)] [17]. More specifically,
Supplemental Fig. S14 [19] shows h∗(V ) for each environ-
mental condition and E. coli strain used in experiments. The
functional form is compatible with the result of the analysis
of E. coli cells growing in a microfluidic device [17]. In
particular, in every condition the division rate is characterized
by a steep increase with cell size for small sizes with respect
to the average one, and a subsequent plateau in division
rate, indicating relaxation of control. Therefore, the empirical
division rate h∗(V ) as a function of size V can be well
represented by a nonlinear saturating function such as a Hill
function in which the parameters are all in principle dependent
on the average growth rate α:

h∗(V ) = k(α)
1

1 + [
g(α)
V

]n(α) . (A21)
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In the above expression, the Hill coefficient n sets the strength
of division control, i.e., a sharper increase of the division
rate with cell size. In the limit of n → ∞ the Hill function
tends to a step function, and the model becomes equivalent
to a “perfect” sizer, defined as a fixed size threshold at which
division occurs. The parameter g is the half-maximum position
of the division rate, setting an intrinsic size scale. In the
n → ∞ perfect sizer limit this parameter becomes the size
threshold for division. Finally, k is the maximum value of the
division rate, defining the plateau level of the Hill function
and dimensionally defining an intrisic time scale. With this
functional form for the division rate, the stationary distribution
of initial cell sizes [Eq. (A4)] can be calculated analytically
[17],

p(V0) = k

α

1

V0

1(
g

2V0

)n + 1

[
1 +

(
2V0

g

)n]− k
αn

, (A22)

and, consequently, the coefficient of variation CVV0 =
σV0/〈V0〉 of initial cell size is

CV2
V0

= 2n
�

(
2
n

)
�

(
k
αn

)
�

(
k−2α
αn

)
�

(
1
n

2)
�

(
k−α
αn

)2
− 1. (A23)

(Here the dependence of g, n, and k has been omitted for
clarity.) The empirical linear scaling of cell size shown in
Fig. 2 implies a constant level of relative fluctuations CVV0 . In
the model, this noise level depends on the Hill coefficient n,
and on the ratio k/α, but does not depend on the intrinsic size
scale in the division rate defined by its half-maximum position
g. Therefore, a sizer mechanism with a constant strength of
control n (i.e., independent of α) naturally leads to a constant
CVV0 if the only intrinisc time scale is simply set by α (i.e.,
k/α is a constant). In fact, the parameter k in the division rate
is the only one with the dimensions of time and has to be linear
in α to keep the relative fluctuations constant in every growth
condition. This is a constraint on the possible mechanisms of
size control.

Supplemental Figs. S14(a) and S12 [19] strongly suggest an
independence of n on growth conditions, supporting the picture
of a constant strength of size control. Similarly, Supplemental
Fig. S14(b) [19] shows that the maximum division rate is
simply proportional to the growth rate, i.e., k = Aα where A

is a constant. Note that, due to the relation h∗ = hαV , this is
equivalent to an independence from α of the plateau value of
the rate h shown in Fig. S12 [19]. Therefore, the empirical divi-
sion rates increase with cell size with the same steepness across
growth conditions and hence are compatible with a constant
parameter n. Additionally, the only time scale in the model, set

by the plateau level k of the division rate, is simply proportional
to the growth rate α. These two observations imply a level
of relative size fluctuations completely independent from
the average growth rate induced by the nutrient conditions.
Moreover, Eq. (A23) shows that this level of fluctuations is
completely independent from the intrinsic size scale in the
model, defined by the half-maximum position g. In turn, the
size scale g defines the average initial cell size, which is
described by the expression

〈V0〉 = g
k

2αn2

�
(

2
n

)
�

(
k−α
αn

)
�

(
1 + k

αn

) . (A24)

Figure S14(c) [19] confirms the linear proportionality g =
B〈V0〉, where B is a constant, in the data analyzed. Note that
this implies an exponential dependence of g on growth rate, in
agreement with the Schaechter et al. law. The different division
rates can be collapsed on a universal division control function if
size is rescaled by the average initial size and the rate is rescaled
by the average growth rate [Supplemental Fig. S14(d) [19]].
This opens the possibility of accumulating statistics using
data collected for different strains and in different nutrients
conditions to infer more precisely this universal function. With
the two established relations k(α) = Aα and g(〈V0〉) = B〈V0〉,
the size distribution in Eq. (A22) can be rewritten as

p(V0)V0 = A
1(

B
2

)n( 〈V0〉
V0

)n + 1

[
1 +

(
2

B

)n(
V0

〈V0〉
)n]− A

n

,

(A25)

which represents the model prediction for the rescaled size
distributions in Fig. 2(a). Supplemental Fig. S15(a) [19] shows
that Eq. (A25) with the estimated values of the constants A and
B is indeed in good agreement with the empirical distributions.

Even for this simplified model in which the division rate is a
function of size only, the stationary doubling time distribution
is hard to calculate analytically. However, simulations of the
process show that the model predicts a finite-size scaling also
for the doubling time distribution [Supplemental Fig. S15(b)
[19]], as it is observed in empirical data (Fig. 2). In this case, the
empirical and the simulated distributions cannot be compared
quantitatively. Indeed, the model neglects the presence of
concerted control, i.e., the dependence of the division rate on
an additional control variable (V0 or t), which is supported
by the data (Fig. 7 and Supplemental Fig. S12 [19]). As
shown in Ref. [17], this concerted control has the effect of
reducing the fluctuations in the doubling time distributions
(as well as altering some correlations between variables) but
does not influence substantially the size distributions. For this
reason, a simple sizer model can predict well the empirical
size distributions [Supplemental Fig. S15(a) [19]] but fails to
capture, even qualitatively, the interdivision time distributions.
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