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Abstract. To explore the generic features of synchronisation facilitated by

hydrodynamic interactions dominated by viscous forces, we investigate small systems

of rowers; rowers are a highly simplified model for motile cilia, with each cilium

approximated by a rigid sphere driven through a geometrically updated force. We

introduce a new framework to analyse rowers, in which we average the pair-wise

interaction of rowers by converting to the natural phase. In doing so the function

describing the interaction becomes continuous, dramatically simplifying the system and

allowing standard dynamical system techniques to be applied. Through inspection of

phase portraits, we capture the broad features of rowers driven by power law forces and

quantify their coupling strength. This approach is not limited to power law potentials,

and can be applied to any monotonically increasing function. When implemented

in systems with more rowers, the phase portraits show more diverse behaviour. By

exploring the phase space, small systems of rowers can be designed to demonstrate

specific features.

1. Introduction

Cilia are prevalent across eukaryotes. They are microscopic hair-like organelles that

protrude from cells, which are separated into two broad classes: motile and primary.

Primary cilia are present on almost all mammalian cells, and are involved in chemical

and mechanical sensing [1]. Motile cilia beat periodically and are expressed by many

species. In mammals they cover some of the epithelia, where they are critical for driving

fluid movement along surfaces. In some single cell eukaryotes the periodic motion of their

flagella is often their method of swimming [2]. In larger animals the cilia form carpets

and are involved in several crucial processes: assisting in ova transport in the fallopian

tubes, adjusting the flow field of cerebro-spinal fluid to target specific regions [3], and

integral to mucous clearance, a critical aspect of defence against microbes and dust

in the airways. For all these processes, synchronised dynamics are essential. Cilia

are of such importance, that their loss of function is studied as both a primary and

secondary symptom [4, 5]. In primary cilia dyskinesia for example, anomalies in the
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cilia structure can inhibit their motion and ability to coordinate, leading to severe health

complications [6]. Long term respiratory illness or trauma can also damage carpets of

cilia or inhibit their ability to coordinate. Complications involving the motion of cilia

have been noted in cases of cystic fibrosis [7], asthma [8], and more broadly in chronic

obstructive pulmonary disease [9]. Given the range and severity of diseases involving

cilia, many aspects of cilia, including their motion, have been the subject of research.

The coordination of cilia is thought to be mechanical, and there is evidence that

hydrodynamic interaction plays an important role [10, 11]. It has been explored using

various models with differing levels of complexity. More complex models replicate the

structure and motion of cilia using elastic rods or chains of beads [12–16]. These

model cilia are then used to investigate the synchronisation between pairs of cilia or

small clusters of cilia, before building up to large arrays or chains of cilia [15, 17–

19]. The more complex models often focus on specifics like the transport speed and

energy efficiency [16, 20–22], or the effect of variations in the cilium themselves on

coordination [23]. Alternatively the cilia can be highly simplified, in which case each

cilium is usually represented by a bead or sphere [24–26]. The advantage of this approach

is any observed features are likely to be generic.

While there are several minimal models [27–29], this work focuses on the rower

model [30, 31]. In this model a cilium is approximated by a sphere that is driven by

geometrically updated traps. Aspects of the pair-wise interaction between rowers can

be understood through an iterative map involving a simplified driving force, or through

the eigenstates of the coupling tensor [32, 33]. Both approaches have captured the shift

from in-phase and anti-phase behaviour as the driving force is varied, and are reviewed

in [34]. It is not feasible to extend the iterative map to systems of many rowers, but

the eigenstate approach can be applied to larger collections of rowers. Through this

lens the equilibrium behaviour of rowers in rings or chains was discussed in terms of

eigenstate growth and decay between switches [33, 35]. This culminated in predicting

the steady state of planar arrays when varying their positions and alignment [36].

Here we provide an alternative framework to analyse the rower model, the average

pair interaction. In calculating the average interaction the system become continuous,

and the rowers are expressed as a dynamical non-linear system. This ties into broader

work involving Kuramoto oscillators and other general phase oscillations. The new

continuous expression for the rower interaction rigorously explains the behaviour of

rower pairs. When applied to larger systems, it becomes possible to determine the

equilibrium solutions. Prediction of the steady state is a necessary part of designing

systems with specific behaviour, which might inform research into engineering functional

collective filament dynamics in artificial systems.

2. Rower Model

Simple models for cilia approximate both the fluid dynamics, and the filament internal

degrees of freedom, by replacing the filament with a sphere. In the rower model the
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Figure 1: Rowers are beads driven by a geometrically updated force, they were designed

as a highly simplified model for motile cilia and have been studied both theoretically and

experimentally. A rower is driven by a potential that updates at a given threshold xs,

see (a). At xs the potential is reflected and the rower changes direction; in (a) this is the

switch from the dark green to light green curve. The amplitude of the resulting oscillations

is A. (b) The driving potential can be any monotonically increasing function, but we focus

predominantly on the simple case where the potential is a power law ∝ xαr , with xr the

distance relative to the trap edge. (d) The only extension to power law potentials we

consider is a cubic potential with a mixture of positive (marked in green) and negative

(purple) curvature, i.e. near a non-stationary point of inflection. The switch point xs is

measured relative to the local minimum, and xR is the distance between the minimum and

maximum. (e) The composition of the curvature is varied by adjusting xs. (c) For pairs of

rowers the centre of each trap potential is a distance d apart, with the rowers interacting

via hydrodynamic forces at low Reynolds’ number. (f) When considering three rowers we

place the trap centres at the vertices of an isosceles triangle. To vary the coupling we

vary dv, the perpendicular distance between the central rower (C) with the left and right

rower (L,R). This changes the relative strength of the left/right coupling with respect to

the left/centre coupling (equivalently right/centre). (g) A phase transition can be seen

in the phase portraits as dv is increased. Nullclines are shown in green and purple, and

fixed points and limit cycles are marked by orange; unstable fixed points are the open

circles, and stable points filled markers. The toroidal nature of the phase space ensures

the existence of a stable state.
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bead oscillates along a direction, say x, driven by potential traps that are updated

geometrically. The shape of the potential contains in a coarse-grained fashion the

degrees of freedom of the complex cilium shapes and activity, and the far-field fluid

dynamics can be matched to a given biological system [34]. The potential in the model

can be any monotonically increasing function, but we predominantly focus on a simple

power law with k xαr ; k is the trap strength and xr the distance relative to the vertex of

the trap. Details of the model are represented in figure 1, with aspects of the power law

potentials covered in 1(b). The position update behind the oscillations is illustrated in

figure 1(a). Once a rower passes a certain threshold xs the trap is reflected and the bead

reverses direction, with the threshold measured relative to the vertex. The reflection

axis is chosen to create oscillations with amplitude A. The period of the oscillation is set

by the driving potential and the drag in the fluid, whereas the phase of the oscillation

is free and subject to drift in the presence of Brownian noise.

The one alternative to the power law potential we consider is a monotonic region

of a cubic potential. Specifically we chose a trapping potential that included a non-

stationary point of inflection. This ensures the potential has three stages, slow-fast-

slow, rather than switching from fast-slow or slow-fast as in the power law case. The

form of the potential is U(x) = −k
3
x2(x − 1.5xR), where xR is the distance between

the local minimum and local maximum, see figure 1(d). The switch point xs controls

the proportion of the trapping potential that has positive curvature. The effect of

increasing xs is illustrated in figure 1(e). For small xs the potential more frequently

has positive curvature, marked in green. When xs is increased the potential gains

sections with negative curvature, indicated by purple. When xs = 1
2
(xR − A) the

driving potential is centred about the point of inflection, and has equal parts positive

and negative curvature. This potential is more similar to that of Chlamydomonas when

its flagella are approximated by spheres moving on the filament’s centre of drag [32, 37].

The trap centres are spaced d apart, so the distance between a pair of rowers is on

average d, see figure 1(c). The y position of the rowers is maintained by a harmonic

trap centred on 0, restricting oscillations to one-dimension along the x-axis.

The rowers are coupled by hydrodynamic forces, because bead movement sets up a

velocity field. The equation governing a given rower is,

dri
dt

=
N∑
j=1

Hij(Fj + fj), (1)

where fj is a stochastic noise term, Fj the trapping force, and Hij represents the

hydrodynamic interaction between the N rowers. From Brownian Dynamics the noise

has zero mean and 〈fi(t)fj(t′)〉 = 2kBTH
−1
ij δ(t − t′) [38]; kB is Boltzmann’s constant

and T the temperature. In the simplest conditions (far field approximation, and absence

of other boundaries) the hydrodynamic interaction is implemented through the Oseen

tensor,

Hij =

 I/γ : i = j
1
γ

3a
4rij

[I + r̂ij r̂ij] : i 6= j
. (2)
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The drag is γ = 6πηa, where η is the viscosity of the fluid, a the radius of the rower

sphere, I the 3×3 identity, and r̂ij and rij are the direction and distance between rowers.

3. Average pair interaction

Natural phase gauge

To calculate the average interaction between rowers we first transform into the natural

phase frame. This transformation is often used to link Josephson junctions to Kuramoto

phase oscillators, but it is not restricted to such cases [28, 39, 40]. The natural phase

is a frame where the velocity is constant for an uncoupled rower. The natural phase

accounts for any variations in velocity due to the driving force, but not for velocity

changes stemming from coupling between oscillators. The transformation also reduces

the parameters describing the place a rower is in its cycle to just the phase φ, rather

than its position and the trap direction.

The relationship between phase and position can be determined using the velocity

in terms of x as determined by equation (1). We approximate by dropping the noise

and only considering the direction of oscillation x. Equations (1) and (2) then simplify

to:

dxi
dt

=
N∑
j=1

H x
ijFj(x), (3)

H x
ij =


1/γ : i = j

1
γ

3a
4rij

[
1 + (xi−xj)2

r2ij

]
: i 6= j

. (4)

The hydrodynamic coupling in the x direction is H x
ij and the trap force along this

direction Fj(x). To simplify future calculations, we approximate the distance between

rowers (rij) by the distance between their trap centres (r
(t)
ij ). The hydrodynamic coupling

for a given pair is constant under this approximation, which we label µij,

µij =


1/γ : i = j

1
γ

3a

4r
(t)
ij

1 +

(
x
(t)
ij

r
(t)
ij

)2
 : i 6= j

. (5)

x
(t)
ij is used to indicate the trap separation in the x direction. This approximation

assumes the oscillation amplitude is small, i.e. A � r
(t)
ij . For a pair like in figure 1(a)

r
(t)
ij is d, for the isosceles layout in figure 1(f) it is either dh or (d 2

h/4 + d 2
v )1/2.

The reparametrisation of position to the natural phase transforms a rower into a

moving reference frame. For an uncoupled rower in this frame the phase velocity is

constant. To determine the transformation to this frame we consider a single rower, and

relate its phase to position using the chain rule,

dφ

dxr
=
dφ

dt

dt

dxr
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= −π
τ

∣∣∣∣∣ γ

F (x)

∣∣∣∣∣ , (6)

dφ

dt
= Ω =

π

τ
. (7)

Ω is the constant phase velocity for an isolated rower, which we defined using τ the

time between successive trap updates of a single rower i.e. the semi-period. We choose

the natural phase to be strictly increasing. It is easier to relate the phase to position

using the position relative to the trap vertex xr = |x− xt|, which is strictly decreasing

with time. Given a specific trap force, the transformation between the natural phase

and the position coordinates can be calculated by integrating. This transformation

between phase and position is used to express the driving force in terms of phase, and

so include interactions between rowers in the phase velocity. This is expanded upon in

the following section.

Cycle average

When including interactions between rowers in the evolution of the natural phase, the

interaction can be approximated by its average effect over a period. This approach

has two key benefits: the interaction is explicitly dependent on the differences between

rowers, and the interaction becomes continuous. This allows the system to be analysed

in terms of fixed points and stability using standard techniques. This is a far more

tractable problem than previous approaches [32, 33].

The approximation relies on weak coupling between the rowers, i.e. µij is small,

which is true in the far field we are considering. The full derivation of the phase evolution

is laid out in Appendix A, with the final expression,

dφi
dt

= Ω +
∑
i 6=j

µijGint[φi − φj], (8)

Gint[ψ] =
1

2π

∫ 2π

0

dφ

dxr

∣∣∣∣∣
x(ϑ+ψ)

dxr
dx

∣∣∣∣∣
x(ϑ+ψ)

F [x(ϑ)] dϑ. (9)

Gint[ψ] is defined as the mean of the interaction function in the natural phase frame,

where the variable ϑ is a dummy used for the averaging. This expression is generic and

applies to any potential, assuming the phase/position inverse exists i.e. the potential is

monotonically increasing.

When considering the evolution of the phase difference for a single pair of rowers,

the even component of the interaction is the same regardless if the rower is leading or

trailing (Geven[ψ] = Geven[−ψ]). Defining the odd component of Gint[ψ] as Godd[ψ], the

phase difference changes as,

dψ

dt
=
dφ1

dt
− dφ2

dt
= µ12 (Gint[ψ]−Gint[−ψ]) ≡ 2µ12Godd[ψ], (10)

where µ12 = µ21. Calculating the effective interaction by transforming to the natural

phase gauge and taking the average over a period uses equivalent steps to those taken
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Figure 2: The average pair interaction captures the shift from the in-phase behaviour

to the anti-phase as the trapping potential changes shape. (a) The average interaction

for p = 2/7 (α = 0.6) indicates that when a rower lags behind (ψ < 0) it experiences a

greater force than the rower in front (ψ > 0). (d) Focuses on the odd component of the

interaction. It confirms that the a rower that falls behind will catch the leading rower,

and highlights the stability of the in-phase fixed point. (b) The average interaction for

p = 0 (α = 1), i.e. a linear driving potential. (e) In this case the interaction function is

even and the rowers don’t coordinate. (c) The behaviour reverses, with the leading rower

experiencing the greater force when p = −3/7 (α = 1.3). (f) The odd function has been

reflected in the horizontal axis, which leads to the fixed points swapping stability.

in [28]. It is remarkable that in doing so the expression used for the interaction

is no longer discontinuous. This converts the complex configuration and history-

dependent interactions of a rower pair synchronising to a simple one-dimensional non-

linear system. The fixed points of the system and their stability can be investigated

from this perspective, where before it was interpreted in terms of eigenstates of the

hydrodynamic tensor and their decay rate [33, 35, 36].

Representing the interaction graphically for power law potentials

The mean interaction for power law potentials can be calculated analytically, details are

in Appendix B.1. The resulting expression Gint[ψ] depends on two variables p and C0,

p =
1− α
2− α, C0 =

πx2−αs

(A+ xs)2−α − x2−αs

. (11)

The parameter p depends exclusively on the trap shape α. The p interval (0,1
2
)

corresponds to 0 < α < 1 and negative curvature, while p ∈ R\[0, 1) to α > 1 and
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for positive curvature. α = 2 is the special case where p diverges. The divergence

stems from the calculation of phase-position transformation which involves
∫
x1−αr dxr

that assumed α 6= 2. Considering the case α = 2 separately, the integral still has a

solution and it is still possible to solve for Gint[ψ]. C0 ensures the switch point of the

trap corresponds to φ = nπ. It depends on the amplitude and switch point, so in some

way quantifies the variation of the force within the trap. A higher value corresponds to

a potential with more similar forces and hence weaker coordination.

Examples of the interaction are shown in figure 2. In figure 2(a) p = 2/7 (α = 0.6),

and the curvature is negative. The interaction shows that when a rower lags behind

another (ψ < 0), it experiences a force greater than the rower ahead. This is confirmed

in 2(d), where the odd component of the interaction is plotted. The discrepancy in

the force leads to the lagging rower catching the leading rower, and so in-phase motion

ψ = 0 is stable. Figure 2(b) is the special case where p = 0 and the trap potential

is linear. In this case the average interaction is an even function, emphasised in figure

2(e), and rowers experience the same force regardless if they lead or trail. Consequently

there is no impetus to synchronise the rowers, as explored experimentally in [32]. In

2(c) p = −3/7 (α = 1.3) and the trap has positive curvature. The average interaction

in this case shows the leading rower experiencing greater force than the lagging rower.

This exacerbates the separation between the rowers and pushes the system towards

anti-phase. Figure 2(f) confirms the stability of the anti-phase point. In calculating

the average interaction we have accounted for the known shift between anti-phase and

in-phase behaviour when varying the shape of a power law potential.

Next we go further and quantify the coupling strength associated with a given

potential.

4. Fourier series approximation of the relaxation time

To quantify the coupling strength of a given potential we use the relaxation time.

Capturing the synchronisation strength increases the utility of the mean interaction

approach. At this stage it is useful to express the mean interaction in terms of its

Fourier series. This is a simple way to separate the odd and even contributions, and

accelerates any calculations. The series will converge, because the averaging process

ensured the interaction function is continuous. A side benefit of this is that it ties back

to more generic work with Kuramoto oscillators and other general oscillators [39, 41, 42].

The sine coefficients sk are calculated using the dimensionless form of Gint, and so

the evolution of the phase difference is expressed as,

dψ

dt
=

2γµ12

τ

∞∑
k=1

sk sin(kψ), (12)

sk =
τ

γπ

∫ π

−π
Gint[ψ] sin(kψ) dψ. (13)

The even sine terms s2k were zero across all the cases we investigated. Any driving

potential with a moderate s2 term would be of interest, because we believe it is the
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most likely case to exhibit phase-locking where ψ 6= nπ. We find that the first few

non-zero terms are enough to capture the details of the system.

To calculate the relaxation time we assume that the system is near equilibrium.

We then linearise the system, which leads to an exponential solution. Assuming the

in-phase point is stable then,

dψ

dt
=

2γµ12

τ
(s1 sin(ψ) + s3 sin(3ψ) + ...) (14)

≈ 2γµ12

τ
(s1 + 3s3 + ...)ψ, (15)

ψ = ψ0 exp[−t/tr], (16)

tr(2n− 1) = − τ

2γµ12

(
n∑
i=1

(2i− 1)si

)−1
. (17)

The relaxation time tr(2n − 1) varies with the number of terms included in the sine

series. For the anti-phase point,

dψ

dt
≈ −2γµ12

τ
(s1 + 3s3 + ...)(ψ − π), (18)

tr(2n− 1) =
τ

2γµ12

(
n∑
i=1

(2i− 1)si

)−1
. (19)

Including more terms increases the accuracy close to the fixed point but also limits

the region it is applicable, due to restrictions when linearising. It was assumed that

sin(kψ) ≈ kψ during linearisation, which completely breaks down when kψ > π/2. For

this reason keeping to a minimal number of terms is often more robust than including

many additional terms. The first order relaxation time of the power law potentials

is displayed in figure 3(a): it diverges when p → 0 reflecting the increasing difficulty

to synchronise as the driving potential becomes more linear. The relaxation time also

becomes longer as C0 is increased, reflecting that for large xs the forces don’t vary

particularly within the trap.

5. Comparison with simulation

5.1. Power law potentials

We verified the analytical relaxation time by comparing with the relaxation time in

simulation. The pair of rowers from section 4 are simulated by updating their position

using the Langevin equation in (1). The noise is implemented using the Ermack

McCammon method [38]. The dimensionless noise ξ and velocity parameter Ṽ are,

ξ =
2kBT

A〈F 〉t
, Ṽ =

τ〈F 〉t
Aγ

= 1. (20)

The average force over the duration of the trap 〈F 〉t is kept constant by maintaining

a constant τ . The semi-period τ is maintained by adjusting the trap strength k

for changes in the trap shape, α ∈ [0.5, 1.5]. See the supplementary material of

[32] for details. Keeping 〈F 〉t constant means ξ is unchanged as α changes, where
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Figure 3: The relaxation time can be determined by linearising the Fourier series of the

average interaction and is a proxy for the strength of the pair coupling. (a) The magnitude

of the first sine coefficient as predicted by the average interaction; this coefficient determines

the relaxation time for a pair of rowers. (b) The theoretical relaxation time with distance,

comparing (green) the in-phase case p = 0.17, and (purple) the anti-phase p = −0.25. For

small distances, adding terms improves the in-phase approximation but the anti-phase fit

deteriorates. This discrepancy disappears at large d, and is likely due to a breakdown of the

fixed distance assumption. The effect of noise is shown: high noise in grey (ξ = 1.93× 10−3)

and low noise in black (ξ = 9.70 × 10−4). The higher noise case is usually better captured

by lower order approximations, because increasing the order also decreases the region where

they are valid. The insets zoom in on the analytical results, with the convention that t(1)r , t(3)r ,

t
(5)
r , and t

(7)
r correspond to solid, dashed, dot-dashed, and dotted lines. For the in-phase case

t
(13)
r is also included, the line with large dots, to coincide with the strongly coupled cases at

low d/A. (c) The predicted relaxation time is compared with the simulated results when the

trap shape is changed. The inset emphasises the decreasing effect of adding correction term,

using the same convention as in (b) but only considering up to t
(5)
r . We set d/A = 10 when

changing the trap shape, to justify approximating the hydrodynamic coupling as a constant.

(d) The predicted relaxation time is accurate also when considering the more complex cubic

potential; here the change in trap shape is captured by the average curvature <c>. (e) The

change stability is predicted by the mean interaction, with the analytical fixed point (orange

curve) coinciding with the average phase difference <ψ> from simulations (grey squares).



11

we set τ/(Aγ) = 1.09 pN−1 and calculated k accordingly. Unless stated otherwise

ξ = 9.70×10−4. Using the trap amplitude as the characteristic distance, the switch point

xs/A = 1
31

, bead radius a/A = 0.56, and trap separation d/A = 10. We used a time step

dt/(2τ) = 1
490

, i.e. 490 frames per period, and each simulation lasted 400 cycles. To

begin the rower position is drawn from a uniform distribution (x ∈ U [−A/2, A/2]) and

the trap randomly oriented. Once the pair reaches equilibrium the relaxation time is

calculated using the autocorrelation of the phase difference. We measure the relaxation

time by fitting an exponential to the autocorrelation and recording the rate of decay.

This simulation run is repeated 20 times with different initial conditions. The extreme

outliers are then removed before calculating the mean and standard deviation of tr;

extreme outliers occasionally occur in weakly coupled cases, and are defined as being

far outside the interquartile range, tr < Q1 − 3(Q3 −Q1) or tr > Q3 − 3(Q3 −Q1) with

Q1 and Q3 the first and third quartiles.

The comparison between the simulated and analytical Fourier series relaxation

times are shown in figures 3(b,c). The trap shape is varied in (c), and the simulated

results closely follow the Fourier series approximation. The inset focuses on changes

as the number of Fourier terms in the linearisation is increased. In both the plot and

the inset the first order term is the solid line, the third is the dashed, and the fifth

the dot-dashed. The simulation measurements for relaxation time are marked with the

grey error bars. The bars mark the confidence interval t̄r ± t(0.025),(n−1)S(tr)/
√
n, where

t(0.025),(n−1) is drawn from the t-distribution, S(tr) is the measured standard deviation,

and the number of trials is 20, n = 20. The trap separation is set to d/A = 10, to

ensure the hydrodynamic coupling is approximately constant throughout the cycle, i.e.

H x
12 ≈ µ12. The relationship between rower separation and relaxation time is explored in

more detail in figure 3(b). The top panel (green lines) with p = 0.17 has the pair moving

in-phase, and the rowers are expected to have a constant separation throughout a period.

The grey and black markers represent different noise levels, grey-ξ = 1.93×10−3, black-

ξ = 9.70×10−4. Higher noise results are often better represented by tr with fewer terms.

Including more terms restricts the region about the fixed point in which the measure is

valid. The restriction results from the linearisation in section 4. In the bottom panel

(purple lines) p = −0.25 and the rowers are synchronising in anti-phase. When moving

anti-phase the distance between rowers varies through the cycle, and for small separation

the approximation H x
12 = µ12 is poor. In this case we find the simulation relaxation time

is higher than would be expected at small separation. The mismatch between simulation

and analytical relaxation time is exacerbated by including additional terms. At larger

separation the results are more akin to the in-phase case, with lower noise cases better

represented by tr with more terms than the higher noise.

5.2. Chlamydomonas style cubic potential

The mean interaction can be calculated for any monotonic potential. We also

consider a cubic potential that has similarities to the resistive force approximation of
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Chlamydomonas flagella. For consistency all the parameters of the cubic potential,

including the average force, are the same as in the power law case. The noise is set to

an intermediate value of the two previously used, ξ = 1.45× 10−3. In this case the trap

shape is varied through the switch point xs, not α. To ensure a mixture of curvature

in each trap we set xR = 2(A + ς) and xs ∈ [ς, xR/2]. The small offset ς = 0.03A is

included to prevent the rower stagnating at the extremes, i.e. where the driving force

is zero.

The analytical expression for Gint[ψ] in the cubic case also exists and can be found

in Appendix B.2, but it and the associated parameters lack a natural interpretation.

Instead we will consider the average curvature of the potential <c>,

<c> = − 1

A

∫ xs

A+xs

d2U

dx2
dx

= −k(A+ 2xs − xR). (21)

The relaxation time is plotted against the average curvature in figure 3(d). The

theoretical values from Gint[ψ] are shown by the orange lines, with the same style

convention as in figure 3(c). The results from simulation are marked with grey squares.

The agreement between the simulation and Fourier series relaxation time is as high for

the more complex, cubic case as it is for the power law.

The fixed point as predicted by the average interaction also coincides with the

equilibrium behaviour seen in simulation. The average phase difference (grey squares)

and the phase difference of the stable fixed point (orange line) are plotted against <c>

in figure 3(e). The two are in agreement for all<c>. At<c>= 0 the average interaction

has no stable fixed point and the simulated rowers do not synchronise, reflected in the

large error bars.

Previously the equilibrium behaviour for a potential derived from the Chlamydo-

monas swimming stroke could only be corroborated using simulation, and the synchro-

nisation strength inferred through sensitivity to noise. Now with the average interaction

we can predict the behaviour and the relaxation time of the potential. The relaxation

time quantifies the synchronisation strength of different potentials, and can be used to

compare driving forces. In this way it is possible to probe the sensitivity of a potential

to small changes in shape.

6. The mean interaction as a predictive tool

The new approach of calculating an average interaction simplifies the interaction

between a pair of rowers to a one-dimensional nonlinear equation. Including additional

rowers increases the dimension of the system of equations. If restricted to a particular

driving force, i.e. a particular Fourier series, we can explore the effect of varying the

coupling between different rowers. In this way we can search for desired or interesting

behaviour and then design the rower layout to achieve the necessary coupling. This

extends the use of the average interaction beyond just understanding the synchronisation

between rower pairs to a predictive tool for designing systems of rowers.
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Figure 4: The average interaction is also applicable to larger systems and can be used to

predict behaviour or design control systems. (a) We investigated the specific case where

rowers are placed in an isosceles configuration. The vertical distance dv between the

central rower (C) and the left and right rowers (L,R) can be adjusted to control the ratio

of coupling between the left and right and the coupling with the centre Rµ = µLR/µLC .

(b) Poincaré sections of simulations reveal a limit cycle centred on π for Rµ = 3.1, and a

stable fixed point near ψLR = 2 for Rµ = 1.1. (c) This is consistent with the predictions

from the phase portraits, which initially showed a stable fixed point, but as Rµ is increases

disappears and is replaced by a stable limit cycle. The simulation results for the fixed

points are shown by square markers, with green and purple distinguishing between ψLR
and ψLC . For the limit cycle the mean of ψLC is irrelevant, because ψLC continues to grow

in time (see inset). The mean of the cycle for ψLR is marked with green triangles, where

the error bars are calculated using the standard deviation of the each cycles midpoint.

Near Rµ = 2.2 both the limit cycle and phase-locked state were observed, when plotted

each behaviour was considered separately. The analytical results for the fixed point are

marked by the green and purple lines.

We focus here on the three rower case, which has three pair combinations and

so three different coupling strengths. To reduce this, we assumed the coupling was

symmetric between two of the pairs. An isosceles triangle layout is a simple geometry

that would lead to this sort of dynamic, represented in figure 1(f). In this system the

dynamics depend on a single parameter Rµ, the ratio between the unique pair coupling

µLR and the symmetric coupling µLC = µRC . We can tailor the system for any value by

varying dv, the vertical distance between the central rower (C) and the left and right

rowers (L,R), demonstrated in figure 4(a). We used the Fourier series derived from a

power law potential with p = −0.25 and C0 = 0.21.

The evolution of the phase difference between the left-right pair, ψLR, and left-centre

pair, ψLC , can be calculated by extending equation (8) to three rowers, i.e i, j ∈ {1, 2, 3}.
Using these equations the phase portraits of the system for a given Rµ can be plotted,

examples of which are shown in figure 1(g). The nullclines are marked by purple and

green curves, with the fixed points indicated by orange points; unstable are empty and
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stable points are filled circles. If a stable limit cycle exists it is also marked in orange,

but is a curve. The portraits show the saddle-node bifurcation that occurs when the

coupling with rower C decreases. The phase space is toroidal and must be bounded, so

a stable limit cycle forms as the fixed points ‘mask’ and then annihilate one another.

Examples of the two stable behaviours are shown using Poincaré sections in figure 4(b).

ψLR is plotted at each point rower C completes a cycle, i.e. phase of rower C φ(c) = 2π.

The same parameters as in section 5.1 are used, but the noise is decreased to emphasise

the limit cycle behaviour, ξ = 4.85× 10−4.

The rowers are phase-locked at the fixed points, the predicted shift in phase

difference is compared to simulation in figure 4(c). The curves are the predicted values

and the markers the results of simulation. The colour indicates the pair being considered,

green for ψLR and purple for ψLC . The marker changes from a square to triangle when

the simulations are displaying a limit cycle. The centre of the limit cycle is calculated

by finding the midpoint of cycle and averaging. It is meaningless to average ψLC for

the limit cycle because it continually grows, see the inset. At Rµ = 2.4 both the limit

cycle behaviour and the phase-locked state were observed. The two behaviours were

considered separately and both results shown, hence the presence of the square and

triangle markers. This aligns with the predictions from the phase portraits, which show

a region of coexistence between the phase-locked state <ψLR>≈ 2 and the stable limit

cycle centred at <ψLR>= π.

The phase portraits derived using the average interaction are a highly effective

predictive tool for rower systems. Here we focused on a given driving force for a three

rower system, where one rower was designed to have equal coupling with the other two.

The phase portraits predicted a shift from a fixed point with a set phase difference to

a limit cycle. Of particular interest was the overlap of the regions where each state

is stable, revealing a region of bistability. This approach is not limited to the case

discussed here, but can be applied to any system with an arbitrary number of rowers.

It is only limited by the ability to visualise and understand the phase space.

7. Conclusion

We have shown the mean interaction between a pair of geometrically updated oscillators

captures their synchronisation properties. The structure of the average interaction’s odd

component accounts for the switch between in-phase and anti-phase behaviour when the

trap shape is changed. This explanation involving a one-dimensional non linear system

is more rigorous than other attempts. Previously the change from in-phase to anti-

phase behaviour was interpreted as a preference for the decay or growth of an eigenstate

between trap updates. While this does capture the change, there is no obvious method

to interpret different levels of the decay rate in terms of synchronisation strength. In

contrast this new approach captures the change in the steady state, and measures the

coupling strength by predicting the relaxation time. This allows direct comparison of

the synchronisation strength of different potentials. Further, it ties rower systems to the



15

larger body of work involving bifurcations and fixed point analysis, which was previously

inaccessible

The mean interaction technique can be applied to any monotonically increasing

driving potential. Here we included a cubic potential with varying levels of positive

and negative curvature. The mixture of slow and fast regions is more similar to the

potentials based on resistive force theory applied to actual flagella. Through the mean

interaction it is again possible to predict the equilibrium behaviour and relaxation time

of these more complex potentials. As this analysis can be applied to any potential, it is

possible to explore the sensitivity of the steady state and relaxation time to changes in

the interaction.

The benefits of the mean interaction framework become even more apparent when

applied to larger systems of rowers. With more rowers, more diverse behaviour can be

exhibited. In this case the trap potential is no longer the only defining feature of the

equilibrium state. The coupling relative to other rowers, the direct consequence of their

physical positions, also has a key role in determining the type of behaviour. The mean

interaction can be used to explore both the relative coupling as well as the effect of the

trapping potential. The separation of the hydrodynamic coupling and the trap means

the average interaction can be used as a predictive technique. The relative coupling can

be varied to find specific behaviour, and then the rower configuration can be designed to

produce the desired outcome. This can be of assistance when building blocks of rowers

that are sensitive to changes of a single, control rower.
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Appendix A. Including interactions in the phase velocity

Deriving the expression for the evolution of the natural phase from the x velocity.

Equations (3) and (4) are used for the velocity and coupling,

dφi
dt

=
dφi
dxr

dxr
dxi

dxi
dt

(A.1)

=
dφi
dxr

dxr
dxi

N∑
j=1

H x
ijF (xj) (A.2)

=
dφi
dxr

dxr
dxi

1

γ
F (xi) +

∑
i 6=j

H x
ijF (xj)

 . (A.3)

Approximating the distance between rowers using the separation between their trap

centres removes the time dependence from the hydrodynamic coupling, and the tensor
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becomes constant. This new tensor is labelled with µij and explicitly defined in equation

(5). The phase velocity is then,

dφi
dt
≈ dφi
dxr

dxr
dxi

1

γ
F (xi) +

∑
i 6=j

µij
dφi
dxr

dxr
dxi

F (xj) (A.4)

The Oseen tensor assumes far field interaction for a sphere, i.e. d > a, ensuring weak

coupling with µij small. The weak coupling allows the interaction to be approximated

by its average over one period.

dφi
dt
≈ dφi
dxr

dxr
dxi

1

γ
F (xi) +

∑
i 6=j

µijGint[φi − φj], (A.5)

Gint[φi − φj] =
1

2π

∫ 2π

0

dφ

dxr

∣∣∣∣∣
x(φi+ϑ)

dxr
dx

∣∣∣∣∣
x(φi+ϑ)

F [x(φj + ϑ)] dϑ

=
1

2π

∫ 2π

0

dφ

dxr

∣∣∣∣∣
x(φi−φj+ϑ)

dxr
dx

∣∣∣∣∣
x(φi−φj+ϑ)

F [x(ϑ)] dϑ. (A.6)

To simplify the purely self-interacting component (only i dependent), the explicit

expression for dφi
dxr

is substituted into the equation,

dφi
dt

= − Ω

∣∣∣∣∣ γ

F (xi)

∣∣∣∣∣ dxrdxi

F (xi)

γ
+
∑
i 6=j

µijGint[φi − φj]

= Ω +
∑
i 6=j

µijGint[φi − φj], (A.7)

∣∣∣∣∣ γ

F (xi)

∣∣∣∣∣ F (xi)

γ
=

{
−1 : xt < 0

1 : xt > 0
,

dxr
dx

{
1 : xt < 0

−1 : xt > 0
. (A.8)

The natural phase has a constant velocity when µij = 0, but this is no longer true when

the rowers interact.

Appendix B. The mean interaction

Appendix B.1. Power law potentials

Solving for the specific case where the force F (x) is a power law, the phase and position

are related by,

φ(x) = (Ns + 1)π + C0 −
γπ

kαατ

1

2− αx
2−α
r , (B.1)

C0 =
γπ

kαατ

x 2−α
s

2− α =
πx2−αs

(A+ xs)2−α − x2−αs

. (B.2)

The counter Ns enumerates the number of trap updates that have taken place, which

distinguishes between cases with xt > 0 and xt < 0. The constant C0 ensures the switch

point xs is at nπ, with φ ∈ [0, π) for xt > 0 (rower moving right) and φ ∈ [π, 2π) for

xt < 0 (rower moving left). The initial Ns is chosen to be consistent with φ ∈ [π, 2π)

for xt < 0.
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The trap force in terms of the natural phase is,

F (x(φ)) =


kααC

1
2−α
1 (π − C0 − φ)

α−1
2−α , 0 < φ < π

−kααC
1

2−α
1 (2π − C0 − φ)

α−1
2−α , π < φ < 2π

, (B.3)

C1 =
kαατ(2− α)

γπ
. (B.4)

The constant C1 is the negative of the coefficient xr in equation (B.1), and is defined to

increase the readability of the expression. For this particular force, the expression for

Gint[ψ] can be solved for analytically. In doing so the integral separates into four pieces,

two of which are unique, and so Gint[ψ] has four terms for each case,

Gint[ψ]=


γ

τ
(g[ψ+π, ψ+π+C0]−g[ψ+π, π+C0]+g[ψ, ψ+π+C0]−g[ψ,C0]), ψ∈ [−π, 0)

γ

τ
(g[ψ, π+C0]− g[ψ, ψ+C0] + g[ψ−π,C0]− g[ψ−π, ψ+C0]), ψ∈ [0, π)

,

with g[x, y] =
xp(−y)1−p

p− 1
2F1[1− p,−p; 2− p, y/x], p =

1− α
2− α. (B.5)

2F1 is the ordinary hypergeometric function. The average interaction depends on the

phase difference and two parameters describing the driving potential, p and C0. The

parameter p depends exclusively on the trap shape α.

Appendix B.2. Cubic potential with mixed curvature

This particular potential is also exactly solvable. The transformation to φ is,

φ =
1

b0
log

(
xR − xr
xr

)
− φ0, (B.6)

b0 =
1

π
log

∣∣∣∣∣ 1− xR/xs
1− xR/(A+ xs)

∣∣∣∣∣ , φ0 =
1

b0
log

∣∣∣∣xR − xsxs

∣∣∣∣− (Ns + 1)π. (B.7)

φ0 shifts the phase such that φ is a multiple of π when the rower reverses direction. Ns

is a counter that follows the same convention as before, with the switch point xs at nπ

and φ ∈ [π, 2π) for xt < 0. In the cubic case, the force defined in terms of the natural

phase is,

F (x(φ)) =


kx 2

R

exp[b0(φ+ φ0)]

(1 + exp[b0(φ+ φ0)])2
, 0 < φ < π

−kx 2
R

exp[b0(φ− π + φ0)]

(1 + exp[b0(φ− π + φ0)])2
, π < φ < 2π

. (B.8)

The average interaction function can be expressed in terms of both b0 and φ0, and

the phase difference ψ. The explicit form of the function does not provide further

insight beyond the Fourier coefficients. Similarly the parameters b0 and φ0 lack natural
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interpretations. For completeness the average interaction is,

Gint[ψ] =



γ

τ

(
g[eb0(ψ+π), eb0φ0 ]− g[eb0(ψ+π), eb0(φ0−ψ)]+

+g[eb0ψ, eb0(π+φ0)]− g[eb0ψ, eb0(φ0−ψ)]
)
, for ψ ∈ [−π, 0)

γ

τ

(
g[eb0ψ, eb0(π−ψ+φ0)]− g[eb0ψ, eb0φ0 ]+

+g[eb0(ψ−π), eb0(π−ψ+φ0)]− g[eb0(ψ−π), eb0(π+φ0)]
)
, for ψ ∈ [0, π)

,

g[x, y] =
1

b0x

1

1 + y

[
(x− 1)2 + (y + 1)(log y − b0φ0) + (x2 − 1)(1 + y) log(1 + y)

]
. (B.9)
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