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ABSTRACT The technique of differential dynamic microscopy is extended here, showing that it can provide a powerful and
objective method of video analysis for optical microscopy videos of in vitro samples of live human bronchial epithelial ciliated
cells. These cells are multiciliated, with motile cilia that play key physiological roles. It is shown that the ciliary beat frequency
can be recovered to match conventional analysis, but in a fully automated fashion. Furthermore, it is shown that the properties
of spatial and temporal coherence of cilia beat can be recovered and distinguished, and that if a collective traveling wave (the
metachronal wave) is present, this has a distinct signature and its wavelength and direction can be measured.
INTRODUCTION
Cilia are cell organelles, slender protuberances that stick
out of the surface of many eukaryotic cells (1,2). They
are covered in cellular membrane, and contain a bundle
of microtubules called the ‘‘axoneme’’. The axoneme can
have two structures: 9 þ 2, with nine doublet microtubules
arranged radially around two central singlet microtubules;
and 9 þ 0, where the two central microtubules are missing.
Their structure underpins their function. Cilia missing the
two central microtubules are called ‘‘primary cilia’’; they
are not motile and have been reported to act as chemical
or mechanical sensors (3–5).

The motile cilia are structurally conserved, allowing
motility in single cell eukaryotes and transport of fluids along
cell epithelia in multicellular organisms (6). Understanding
cilia motility requires concepts and a deep understand-
ing from many fields, from cell biology and medicine, to
fluid dynamics, soft matter, and nonlinear physics (7). Ques-
tions range over many scales: at the level of the individual
organelle, we want to know the metabolic path in ciliary
motion, the molecular structures involved in this organelle’s
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assembly and function, and howa ciliawaveform for efficient
beating is achieved (8,9); at the level of tissues, how many
of these beating filaments coordinate with each other, the
importance of arrangement, density, fluid physical parame-
ters, and then the role played by cilia-generated flows in
key biological processes such as symmetry breaking and
onset of planar cell polarity in development (10–14). The
medical community has parallel questions in understanding
how cilia malfunction is related to various pathologies
(15–18), and very practically how to relate imaging of ciliary
beating to the diagnosis of such pathologies. Finally, cilia
are studied in engineering to replicate biomimetically their
capacity of creating flow in low Reynolds number environ-
ments (19), or even to try and build microrobots (20).

A crucial element from the scenario described above
is how the coordinated motion of cilia arises, and how the
collective state (e.g., traveling wave) properties relate to
the mechanisms and mechanics of the individual beating
filaments. This can be addressed either with a bottom-up
approach, modeling each cilium with something simpler
and studying synchronization of a few model cilia (our
group’s previous work in that direction is reviewed in (7)),
or with a top-down approach, i.e., characterizing the collec-
tive motion in real systems and trying to infer some informa-
tion about the properties at the single cilium level. In either
case, one needs to appreciate that the single cilium itself
is a complex nonlinear dynamical system functioning out
of thermal equilibrium, and described by many degrees of
freedom (21). Cilia within the same cell are mechanically
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connected through the cytoskeleton (6), and are immersed
in a fluid that, in the case of the airways, displays visco-
elasticity and complex heterogeneous composition critical
for mucociliary clearance (22). The conclusion that can be
drawn from model experiments in our group so far (7) is
that hydrodynamic coupling is sufficient to promote strong
synchronization through various mechanisms, and in simple
systems it is possible to link the emergent behavior to the
details of how each cilium is driven (23,24), and how cilia
are spatially arranged relative to each other (25,26). In gen-
eral, we do not fully know how the collective dynamics
yield such a fascinating emergent behavior at a tissue scale.

When cilia are arranged in a tight 2D array as in human
airways, or on the outer surface of Paramecium, a particular
type of collective motion has been observed: neighboring
cilia beat with a constant small phase difference. This yields
without a central organizing node (i.e., just out of local
rules) a propagating pattern called a ‘‘metachronal wave’’
(27–30). Cilia beat is optimized for fluid transport (9), and
according to recent theoretical studies (31), metachronal
waves are retrieved when trying to optimize the net flow
generated by a cilia array, suggesting that hydrodynamic
coupling plays a fundamental role in the swimming of
microorganisms and in mucociliary clearance in human
airways. Other studies also strongly suggest hydrodynamic
coupling to be the mechanism through which cilia meta-
chronality arises (32,33).

Understanding the physics of how the coordinated
behavior of cilia emerges is still an open question, currently
studied both on model organisms (34), and on model sys-
tems (7,35,36).

The lungs and airways are kept pathogen- and dust free
thanks to the process of mucociliary clearance (37). The
walls of the airways are covered by an epithelium composed
by two types of cells: ciliated cells (�60–80%) and mucus-
producing goblet cells. Cilia are immersed in the periciliary
layer (PCL), �6 mm thick. According to a study in 2012
(22), the periciliary layer is occupied by a brushlike struc-
ture of macromolecules, namely membrane-spanning mu-
cins and tethered mucopolysaccharides, with a mesh size
that depends on the distance from the surface of the ciliated
cells; the PCL is then topped by a layer of mucus, with a
lower osmotic modulus ensuring a stable hydration level
of the PCL (and therefore its constant height) over a
range of dehydration states of the airway surface. From a
rheological point of view, the mucus is a gel whose visco-
elastic properties are strongly dependent on its state of
hydration (37).

Mucus is transported out of the airways by mucociliary
clearancemechanisms,which rely on the interaction between
cilia, the rheologically complex PCL, and the gel-like layer
of mucus. It was observed (38) that ideal condition for muco-
ciliary clearance is a temperature of 37�Cwith 100% humid-
ity. The velocity of mucus in human airways is not known
exactly; measurements using different techniques reported
110 Biophysical Journal 113, 109–119, July 11, 2017
3.6–25 mm/min for mucus in the trachea, whereas the only
measured value in bronchi is 2.4 mm/min (39).

The ciliated tissue of the airways is studied also from
a medical point of view: conditions such as cystic fibrosis
and primary cilia dyskinesia can disrupt the airway clearance
mechanism, causing severe consequences such as lung infec-
tions and respiratory insufficiency. Also, the very common
asthma is linked to altered airway clearance (40).

This article presents, to our knowledge, a new method for
the characterization of collective cilia dynamics, focusing
on epithelial cell arrays that are typically grown at the air-
liquid interface (ALI) condition. In Video Analysis of Cilia
Dynamics, an overview is given of existing image anal-
ysis approaches. Cell Culture and Imaging describes the
cell culture and imaging protocols. The core method is pre-
sented in Development of a New Video Analysis Procedure:
Differential Dynamic Microscopy, where the differential
dynamic microscopy (DDM)-based approach is tested on
cell cultures. Results and Discussion goes over the quanti-
ties measurable by DDM. In Appendix A: Testing DDM
on Synthetic Datasets, the potential of the method, beyond
what we can show given current experimental data, is tested
against computer generated datasets.
MATERIALS AND METHODS

Video analysis of cilia dynamics

Airway cells from human patients can be obtained by biopsy or nose scrape,

and then either observed directly or cultured to grow as an in vitro epithe-

lium, typically as the air-liquid interface. The latter is the most relevant

model system for investigating collective dynamics (coordination across

many cells) and mucociliary clearance.

The tools that physicians can use to analyze microscopy videos

of ciliated cells are limited. A standard is the commercial software

Sisson-Ammons Video Analysis (SAVA; Ammons Engineering, http://

www.ammonsengineering.com/SAVA/sava.html) (41), which measures

the cilia beat frequencies (CBF) in a user-selected area. The selected area

is small (typically 4 � 4 px), and CBF is measured by Fourier transforming

the signal of the pixel intensity over the video. The software thus requires

input from the user, i.e., a human resource and possible introduction of

bias (e.g., the human eye is naturally drawn toward fast-moving objects).

More importantly, and unlike the method presented in this work, this

type of analysis does not probe the spatial correlation in the phase of

beating cilia, thus ignores information about metachronal coordination.

Historically, a few approaches have been explored for quantitative

measurements on ciliated cells. Initially, CBF would be measured using a

photomultiplier or a photodiode, analyzing the changes in the intensity of

the light passing through beating cilia (42–44). With high-frame-rate

cameras it became possible to record high-speed videos of beating cilia,

for subsequent analysis. The most straightforward method to measure

CBF became therefore to measure the period over a few beating cycles

(45). This was done by visual inspection of the slowed-down video. The

ability to record and store high-speed microscopy video of beating cilia

encouraged development of new algorithms for CBF measurement: most

extract the CBF via fast Fourier transform (FFT) analysis of pixel intensity

over time, either in user-selected regions of interest (41,46,47) or in the

entire field of view (48). This method, however, only performs a temporal

analysis. An alternative approach is to use an optical flow algorithm:

After mapping the movements of objects in-between subsequent frames

http://www.ammonsengineering.com/SAVA/sava.html
http://www.ammonsengineering.com/SAVA/sava.html
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on a vector field, one can obtain the CBF from the displacement signal via

FFT (49,50) or peak detection (51). Other tools, also based on optical flow,

try and extract more than just the CBF from microscopy videos in which

cilia are seen from the side: in Mantovani et al. (52), the beating direction

is retrieved, whereas Quinn et al. (53) even attempts an automatic diagnosis

of primary cilia dyskinesia based on the decomposition of ciliary motion as

measured in a location chosen by the user into quantitative elemental com-

ponents. Phase-correlation measurement between physically separated

points in the sample are instead at the base of methods aimed to measure

the parameters of metachronal waves (27,54–58). A very thorough work

by Ryser et al. (59) showed that reflected light microscopy videos of excised

mammalian and aviary ciliated tissues can be analyzed to measure both the

CBF and the direction and wavelength of metachronal wave. The analysis

presented in Ryser et al. (59) and employed successively in Sch€atz et al.

(60) is very well suited to study samples in which the metachronal coordi-

nation is well developed: first, the sample’s CBF is measured via FFT,

then the metachronal coordination is characterized using space-time corre-

lation functions and the time evolution of the phase of the recorded signal.

A different approach is, however, needed when working with ALI cultures,

which is the standard condition for culturing in-vitro human airway epithe-

lial cells. Here cilia are usually not aligned and often only show isolated

patches of good metachronal coordination on the scale of a few cells.

This is where the method we suggest can be very powerful, in that it per-

forms simultaneously and in a completely automated fashion both a tempo-

ral and spatial analysis on top-view high-speed microscopy videos of a

layer of ciliated cells. Without requiring any input from the user, DDM

can not only 1) reliably measure the CBF of a sample, but also 2) quantify

to what extent the cilia are synchronized across the field of view, 3) identify

metachronal waves (if present), and 4) measure their wavelength and direc-

tion of propagation.
Cell culture and imaging

Culture of ciliated cells at the air-liquid interface. Commercially available

Normal Human Bronchial Epithelial cells provided by Lonza (Cat. No. CC-

2540; Walkersville, MD) were grown at the ALI following a protocol issued

by the selling company. After defrosting, 9.5 � 104 cells were seeded into

6.5-mm collagen-coated polyester Transwell inserts (12-well inserts with a

pore size of 0.4 mm; Corning, Lowell, MA) with basal ALI media (Cat. No.

B-ALI-BulletKit; Lonza). When confluent, the transwells were shifted

to ALI culture by removing the apical media and maintaining 800 mL

ALI media in the basal compartment. The media were exchanged every

other day. Mucociliary differentiation and cilia beating occurred within

4 weeks.

Imaging. Normal Human Bronchial Epithelial cells were imaged in

bright field using a 63� glycerol objective with a 1.5� internal magnifica-

tion on a DM IRBE inverted microscope (Leica Microsystems, Bannock-

burn, IL) on a vibration-dampened table. An area scan high-speed

monochromatic digital video camera (model No. A602f-2; Basler, Ahrens-

burg, Germany) was used for image and video acquisition, recording a

�2.56 s video with a resolution of 720 � 480 pixel (px) and 100 fps frame

rate. At this 94.5� magnification, 1 px ¼ 0.161 mm. The inverse pixel size

k ¼ 6.2 mm�1 and the frame size L ¼ 480 px (the algorithm was coded to

work on square images, therefore L is the size of the shortest side of the im-

age) define the spatial sampling frequency qmin ¼ 2pk/L ¼ 0.081 mm�1.

All imaging was done at 37�C in ALI media. At each time point of the

experiment, �40 fields of view of each sample were imaged. All samples

were kept at 37�C and 5% CO2 and in ALI media throughout the experi-

ment and imaging.

Commercially available assay and imaging thereof. The videos

analyzed for DDM-based Detection of Metachronal Waves and Length

Scale of Synchronization: Real Data were obtained from different samples

than those described in Culture of Ciliated Cells at the Air-Liquid Inter-

face, and imaged differently than described in Imaging. A healthy human

airway epithelium reconstituted in-vitro (MucilAir) was purchased from
Epithelix Sàrl (Geneva, Switzerland) and maintained following the proto-

col provided by the company. The layer of ciliated cells (much more

densely ciliated than was possible via the method of Culture of

Ciliated Cells at the Air-Liquid Interface) was then imaged in bright

field on a Ti-E inverted microscope (Nikon, Tokyo, Japan) equipped

with a 40� dry objective (NA ¼ 0.95; Nikon). High speed videos were

then recorded using a CMOS camera (model No. GS3-U3-23S6M-C;

Point Grey Research/FLIR Integrated Imaging Solutions (Machine

Vision), Richmond, British Columbia, Canada) connected to a LINUX

workstation running a custom video grabbing software developed in

house. The videos have a resolution of 1024 � 1024 pixel and 150 fps

frame rate. This magnification yields a 0.146 mm/px ratio and, together

with the frame size L ¼ 1024 px, a spatial sampling frequency qmin ¼
0.042 mm�1.
Development of a new video analysis procedure:
differential dynamic microscopy

This section describes, to our knowledge, a new approach for user-indepen-

dent characterization of cilia collective dynamics. The code has been imple-

mented in MATLAB (The MathWorks, Natick, MA), and the DDM

algorithm is applied to analyze videos from the dataset described in Imag-

ing. The first goal of the analysis is to obtain an unbiased measurement of

the ciliary beat frequency, which can be compared to previous analysis

approaches.

A discussion on how to perform a more thorough analysis on the sample

to retrieve additional parameters will be carried on in the Results and Dis-

cussion and Appendix A: Testing DDM on Synthetic Datasets. Figures that

illustrate the analysis all refer to the same video.

The technique of DDM was invented fairly recently to characterize

dynamics in colloidal suspensions (61,62) and relies on Fourier analysis

of difference images. Here we build on this approach, developing what

might be called a ‘‘multiscale-DDM’’. This offers significant improve-

ments over SAVA and other single-point FFT approaches for analysis

of in vitro ciliated cells: first, it requires no user input, thus removing

the most important source of bias and reducing significantly the time

required for analysis; second, as will be detailed in the following

sections, it is a technique that intrinsically extracts physical quantities

averaged over the sample, improving statistics over single-point tech-

niques (it can be easily tuned to maintain the spatial information,

if this is desired). However, the most notable advantage of multiscale-

DDM over point-FFT approaches is that DDM measures various phys-

ical quantities of the cilia dynamics that might be related to diseases,

thus providing doctors and researchers with full information for

diagnostics.

What is DDM? DDM is a near-field (or deep-Fresnel) technique that

relies on the Fourier analysis of difference images to retrieve informa-

tion about dynamics in a sample (61). In some simple conditions, such as

colloidal particle diffusion, this technique delivers the same information

usually accessed by dynamic light scattering. This is possible because, as

derived in Ferri et al. (63) and Giavazzi et al. (64), in near-field conditions

the light intensity measured by the microscope gives direct access to the real

part of the scattering field.

In a typical imaging experiment a microscope video is acquired via a

camera. The raw input data are thus time-lapse images Fð~r; tÞ, where~r is
the position vector in the image plane. Let Fð~r; t0Þ, the frame recorded

at time t0, be the reference image, and Dð~r; t0; tÞ be the algebraic difference
between the reference frame and the frame recorded at time interval t (i.e.,

lag time) after t0, as follows:

Dð~r; t0; tÞ ¼ Fð~r; t0Þ � Fð~r; t0 þ tÞ: (1)

Then let Dð~q; t0; tÞ be the 2D Fourier transform of the differential image

Dð~r; t0; tÞ. Assuming a stationary and ergodic sample (i.e., the dynamics

do not depend on the reference time t0) it is possible to average over all
Biophysical Journal 113, 109–119, July 11, 2017 111
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difference images with the same time t, obtaining the image structure func-

tion (ISF) as follows:

Ið~q; tÞ ¼ �jDð~q; t0; tÞ j 2�t0: (2)

If the sample is also isotropic, then the ISF will have a circular symmetry

in ~q. It is therefore possible to perform an azimuthal average: the image

structure function I(q,t) now depends only on the magnitude of the

scattering vector ðq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
Þ and on the lag time t. It is worth noting

that the 2D scattering vector, ~q is the projection of the 3D scattering

vector ~Q.
Information about the system dynamics is then obtained by looking at

how the amplitude of the Fourier modes (related to q) changes with t, which

is the time separation between the two subtracted images. More specifically,

the ISF is fitted with the following theoretical expression:

Iðq; tÞ ¼ AðqÞ½1� f ðq; tÞ� þ BðqÞ; (3)

where B(q) is a background term that takes into account detection noise, and

A(q) is the product between the intensity scattered by the sample and a

transfer function that depends on the microscope. A(q) and B(q), as it

will be shown later, do not need to be known, and can be retrieved as param-

eters of the fit. The system dynamics are contained in f(q,t), which has been

shown (65,66) to be none other than the intermediate scattering function

usually measured in scattering experiments, which is in turn the Fourier

transform of the van Hove function Gð~r; tÞ (67). It is worth noting

that because of the very definition of f(q,t), a decay of the latter to zero

(f(q,t / N) / 0) reflects the fact that sample configurations separated
a b

e

FIGURE 1 DDM allows a complete characterization of collective dynamics

lapsed, bright field microscopy images. (b) Images separated by a time interva

the differential images is then computed. (d) Assuming a stationary and ergodic

with given t. (e) If sample dynamics is isotropic, then the 2D power spectrum can

color, go online.
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by a progressively larger lag time t become more decorrelated due to

motion in the imaged sample (68).

As a side note, exploiting the linearity of the Fourier transform, one can

rearrange Eq. 2 as follows:

Ið~q; tÞ ¼ �jFðFð~r; t0ÞÞ � FðFð~r; t0 þ tÞÞ j 2�
t0
; (4)

where F denotes the Fourier transform. This is computationally advanta-

geous: in a video with N frames, one can compute only N Fourier
transforms and store them in the memory to be reused as needed,

whereas, using Eq. 2, the number of FFTs to computed can be as high

as N(N � 1).

DDM on videos of ciliated cells. Fig. 1 shows all steps of DDM analysis.

As outlined above, the first step is to take difference images between a refer-

ence frame Fð~r; t0Þ and a frame recorded a time interval t later.

2D power spectra of differential images are then calculated. All 2D po-

wer spectra obtained by the difference of images separated by the same

value of t are averaged, as the system dynamics is assumed to be stationary.

The next step is the azimuthal average q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
, possible when the

2D power spectra show radial symmetry (i.e., the system dynamics is

isotropic). This is clearly not the general case in samples with planar cell

polarity and metachronal waves. Nevertheless, in vitro cultures often lack

directionality. Here, the anisotropy is disregarded as a first approximation,

as the primary goal of the analysis outlined in this section is just the assess-

ment of the ciliary beat frequency. An example of radially averaged power

spectra I(q,t0) is shown in Fig. 1 e. As the image structure function I(q,t) is a

function of the two variables spatial frequency q and lag time t, to indicate a

cross section of I(q,t) at a fixed value of either variable, such variable will
c

d

in ciliated cells. The technique relies on the Fourier analysis of (a) time-

l (lag time) t are subtracted, and (c) the absolute value of the 2D FFT of

sample we average over all the Fourier transforms of the differential images

be azimuthally averaged yielding a 1D power spectrum. To see this figure in
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be primed: I(q0,t) is a cross section at fixed spatial frequency, whereas

I(q,t0) is a cross section at fixed lag time.

Interpreting motile cilia DDM results. System dynamics are accessible in

the ISF by studying how the amplitude of the Fourier modes changes with t.

The data in each I(q0,t) (some examples shown in Fig. 2 b) behave like a

damped oscillator, and can therefore be fitted with an empirical function

as follows:

Iðq0; tÞ ¼ A½1� expðcosð2pntÞÞ�expð�t=tcÞ þ B: (5)

The meaning of the fitting parameters A and B has already been discussed in

What is DDM?, but for this section of particular interest are n and tc.

The parameter n is the frequency of the oscillations of the amplitude of

the Fourier component q0, and this is the ciliary beat frequency of the sam-

ple. As shown in Fig. 2, such frequency does not depend on the spatial

frequency q. This is not (yet) a robust estimate of CBF, as in many videos

the DDM signal was dominated by some high contrast impurity that would

either move randomly or oscillate with a different frequency. The solution

to this issue is addressed in Results and Discussion.

The other interesting parameter is the decay time tc, as this is related to

the coherence of cilia movement. It is sensible to expect that two factors

might contribute to the decay time tc. The first is a spatial factor, related

to how different cilia (or cells) can beat at slightly different frequencies,
a

b

FIGURE 2 DDM measures the system dynamics. A 1D power spectrum

can be computed for all possible values of the lag time t by repeating the

steps described in Fig. 1, thus yielding (a) the image structure function

I(q,t). (b) The system dynamics can then be investigated through the depen-

dence of the amplitude of each Fourier mode on the lag time t. In the case of

a layer of ciliated cells, the Fourier mode amplitudes undergo damped

oscillations, and are fitted with a suitable functions (see Eq. 5). Only three

Fourier modes are shown in (b) as an example. To see this figure in color, go

online.
therefore not being perfectly phase-locked. This is especially due to the

fact that in most of the videos in the dataset, the cilia coverage of the sample

surface was patchy, with only small clumps of ciliated cells surrounded by

nonciliated cells. In the hypothesis that the synchronization among cilia

comes from hydrodynamic coupling (which decays as the reciprocal of

the separation in the bulk, and as the reciprocal of the separation cubed

close to a wall (7)), we expect to see cilia extruding from the same cell

to be better synchronized than cilia belonging to different cells because

of a distance effect. The second factor is that the beating cycle of one cilium

might be not always identical to itself (at least because of thermal noise),

and this might affect the decay time as well. A more detailed analysis of

this is carried out in Appendix A using simulated data.

DDM-based detection of metachronal waves. Arguably the most promi-

nent feature of a ciliated tissue is that phase-locking among beating cilia

yields a metachronal wave. It is thus essential that DDM can provide insight

into the metachronal wave for it to be deemed suitable for the analysis of

ciliated tissues. Unfortunately, almost the entirety of in vitro samples

analyzed in this article do not display long-range metachronal waves (as

discussed in Interpreting Motile Cilia DDMResults, instead of a continuous

carpet of cilia, the samples described in Culture of Ciliated Cells at the Air-

Liquid Interface are constituted of small regions of only few ciliated cells).

We believe that a possible reason for the lack of metachronal waves

may be the absence (unlike the in vivo case) of flow at the moment of cilia

development, and the low density of ciliated cells. Metachronal waves were

therefore studied on the commercially available cultures described in

Commercially Available Assay and Imaging Thereof, where despite the

absence of flow during ciliary development the higher density of ciliated

cells makes it possible to have some degree of long-range coordination in

the ciliary beat (see Movie S1).

We found that DDM is particularly well suited to spot metachronal

waves, as shown in Fig. 3 a: because a metachronal wave is a traveling

wave with a well-defined wavelength l, it creates a very sharp peak in

the ISF at the spatial frequency corresponding to its wavenumber qwave ¼
2p/l. The wavelength obtained in a completely automated fashion by

DDM was then cross-checked with a manual measurement, obtaining

good agreement. Details of this alternative method are in Fig. 3 b and in

the Supporting Material.

A second example of a DDM-based-detection metachronal wave is

shown in Fig. 3, c and d: we analyzed a microscopy video published as

Supporting Material in Ryser et al. (59) featuring a very well-developed

metachronal wave in ovine tracheal tissue, obtaining a measurement of

wavelength and propagation direction in good agreement with a manual

measurement. The video was analyzed manually: as shown in Fig. 3 c,

first, the slope of a line drawn along each wavefront was measured (red

lines). The wavelength is then measured along a set of several parallel

lines drawn perpendicularly to the wavefronts (an example is in white in

Fig. 3 c). A measurement of l was taken at each frame per each measure-

ment line as the distance between two peaks of the gradient of the pixel-

value cross sections along the measurement line, yielding l ¼ (70 5 2) px

for measuring lines at 30� from the horizontal axis. The DDM algorithm

was then run on the video, but without performing the azimuthal average

on ~q, to yield an image structure function Ið~q; tÞ. The metachronal wave

showed up in the Ið~q; tÞ as a pair of sharp, symmetrical~q peaks (Fig. 3 d).

The wavelength can be calculated as l ¼ 2p=j~q j , whereas the propagation
direction of the metachronal wave can be measured as q ¼ tan�1(qy/qx).

As shown in Fig. 3, the manual and DDM results are in very good

agreement.
RESULTS AND DISCUSSION

DDM can provide a robust estimate of CBF

In the experimental dataset described here, �40 videos are
analyzed. Unfortunately, in several of them there is some
Biophysical Journal 113, 109–119, July 11, 2017 113
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FIGURE 3 DDM can detect a metachronal wave and measure its wave-

length. A metachronal wave is a traveling wave with wavelength l: it shows

up as a sharp peak in the ISF, at qwave ¼ 2p/l. (a) Given here is a section of

the ISF at fixed lag time t0, showing the sharp peak at low q signature of a

metachronal wave. The green line shows a direct measurement of qwave, and

the shaded region its standard deviation. (b) The high-speed video analyzed

in (a) (Movie S1) was processed by taking the differences between subse-

quent frames, and calculating the local standard deviation of each differen-

tial frame (Movie S2). A kymograph was then built by taking a cross section

of the processed video along a manually selected line that would follow the

direction of propagation of the wave. The average slope of the characteristic

regions of high intensity in this kymograph (typical of traveling waves) is

the reciprocal of the wave velocity (c), and the wavenumber is then

qwave ¼ 2pn/c, where n is the CBF. (d) Given here is the manual measure-

ment of the metachronal wave in a microscopy video of an ovine trachea,

published as Supporting Material in Ryser et al. (59). The measuring line

(white) is defined to be perpendicular to the wavefronts (red lines). The

wavelength is then the distance between two wavefronts along the

measuring line: l ¼ (70 5 2)px at 30� from the horizontal axis. (d) The

lag-time-averaged ISF of the same video clearly shows two peaks at low

Fourier modes mx and my (red þ) symmetrical with respect to mode (0,0)

(white þ). Then l ¼ 2p=q ¼ ðL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ m2
y

q
Þ ¼ 57:3 px, and the propaga-

tion direction is q ¼ tan�1(qy/qx) ¼ 26.6�. The confidence intervals are

l ˛[50.2, 81.0]px, and q ˛[11.3�, 45�], obtained assuming a 50.5 uncer-

tainty on both mx and my. The large confidence intervals are a direct conse-

quence of the inherently poor spatial resolution at low Fourier modes. The

manual and DDM results are in very good agreement. To see this figure in

color, go online.
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dirt or some other high contrast feature moving in the field
of view, making the results of full-field DDM unreliable. To
work around this issue, the 720 � 480 px imaged region is
divided into square boxes of 80-px per side, which is
roughly the size of a cell. The DDM algorithm is then run
only on the boxes with the most activity. To select these re-
gions, first we create a movement map of the whole movie:
this is a matrix of the same size of any of the frames of the
original video, and each entry contains the standard devia-
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tion over time of the gray level of the corresponding pixels
in the original video, as follows:

svideoð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

P
t

�
Fð~r; tÞ � hFð~r; tÞit

�2s
;

where N is the number of frames and Fð~r; tÞ is the frame
recorded at time t. We then divide the field of view into
boxes of the desired size, and coarse-grain the movement
map by summing all the entries of it that lie within the
same box. A threshold is set on the coarse-grained move-
ment map via Otsu’s method. DDM is then performed on
the boxes whose movement level is over the threshold.

For each box the image structure function I(q,t) is
obtained, and the t-dependence of the amplitudes of the
Fourier modes is investigated by fitting I(q0,t) curves with
Eq. 5. This yields a value of the frequency nq for each value
of q, the average hnqiq of which is the estimated CBF for
the box. For each sample, onevalue of CBF for each analyzed
box of each video is measured, building a distribution as
shown in Fig. 4 b. The mean value of the distribution is the
final (and robust) estimate of CBF in the sample, its
uncertainty being the spread of the distribution. It is worth
stressing that the error on CBF is not the uncertainty with
which the DDM can assess a frequency, but it comes from
the fact that across the sample there is a distribution of
cells with different CBF, and all beating cells have been
measured. Dividing the field of view into boxes proved to
be an effective way to minimize the effect of debris on the
measurements: when a high-contrast feature moves across
a region analyzed with DDM it gives its own contribution,
difficult to separate from the cilia’s, to the ISF. This effect
is maximum when taking DDM on the entire field of view,
as the dirt will affect the only box in the video and for
many frames. When dividing the field of view into many
boxes instead, only the boxes on the trajectory of the debris
will be affected and for fewer frames. In this way we do
not need to exclude the boxes crossed by debris from the anal-
ysis, but rather we minimize the effect of this high-contrast
features on the analysis. A by-product of using an (albeit
rudimentary) motion-detection algorithm is the ability of
providing the user with a percentage of regions showing
movement. This can be useful in comparing, for example,
different culture methods or stages of development. Compar-
isons between CBF as obtained through DDM and by using
the commercial software SAVA are shown both in Fig. 4 b
for a single set of 44 videos taken on the same assay in a
limited amount of time, and in Fig. 4 c where the evolution
of CBF in a sample is followed in time after phosphate-buff-
ered saline was added to the sample. The results show very
good agreement between DDM and SAVA measurements
of CBF. It is worth stressing that CBF measurements with
DDM are completely automatic, requiring no user input
that might induce a bias toward faster beating (high
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FIGURE 4 DDM can yield an accurate and robust measurement of ciliary beat frequency. Although the analysis of the entire field of view with the algo-

rithm described in DDM on Videos of Ciliated Cells yields an accurate estimate of the average ciliary beat frequency, such measurement can be affected by

stray objects (e.g., cell debris) drifting or being transported into the field of view. (a) Robustness of the analysis can be improved by dividing the field of view

into small square boxes of approximately the size of a cell, and running the DDM algorithm only on the boxes with the most activity (selected by thresholding

the standard deviation of pixel intensity over time), yielding one CBF value for each box. Scale bars represent 10 mm. (b) A distribution of CBF arises when

running DDM (exploiting the division of the field of view into small boxes) on 44 videos, sampling different regions of the same assay. The mean and stan-

dard deviation are shown in green, and are compared with CBF values obtained by the commercial software SAVA on the same set of videos. (c) Shown here

are CBF measurements of a sample of ciliated cells, at increasing times after addition of phosphate-buffered saline. Each box shows median (central mark),

25th and 75th percentile (box), and outliers of the distribution of CBF values, extracted from �40 videos on the same assay. The same set of videos was

analyzed with the SAVA software (green circles), showing good agreement with DDM results. To see this figure in color, go online.
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frequencies). Keeping in mind that DDM can also extract
other physical quantities (as described later), this is a serious
improvement on the existing approaches for analyzing
in vitro samples of ciliated cells.
Multiscale-DDM can provide spatial information

Spatial information on how cilia are coupled can be recov-
ered from the analysis of a sample with an the extension of
the DDM algorithm. In the scope of this work, interesting
information is whether the DDM is able to give an estimate
of a length scale across which cilia beat cooperatively, if the
algorithm is able to detect a metachronal wave, and how
this shows up in the I(q,t) signal. The latter two points are
discussed in DDM-based Detection of Metachronal Waves
and Metachronal-wave detection. The case of in vitro cul-
tures, where the metachronal coordination might not be
evident, is where a DDM-based, multiscale approach can
be powerful, particularly giving valuable information about
ciliary coordination.
Length scale of synchronization: real data

The hypothesis of a better synchronization among cilia on
the same cell than across different cells is easy to verify.
The resolution of all videos in the dataset described in
Commercially Available Assay and Imaging Thereof is
1920� 1024 px. First, a square region of the largest possible
size, 1024� 1024 px, is selected in each video and analyzed
with the DDM algorithm. Then, the region is divided in
smaller subregions, and the DDM is run on each one. This
process of multiscale-DDM continues with the window in
which the DDM runs get smaller and smaller (from
1024 � 1024 px to 16 � 16 px). The I(q,t) signal of each
window is fitted as in Eq. 5, thus extracting an amplitude,
frequency, and (the one this section focuses on) decay
time as a function of q for each region (A(q), n(q), tc(q)).
Such curves are then averaged over all the regions of
same size, yielding one curve tc(q) for each size of the
DDM window. Comparing values of tc(q) as a function of
the DDM window size should give insight into the length
scale of synchronization. As the DDM algorithm was run
on regions of different size, the range of spatial frequency
q it probed is also different (although overlapping). To
compare the decay time tc(q) across different sizes of the
analyzed region, one interval in qwas selected. This interval
(q ¼ 2.35 5 0.4 mm�1) was chosen so that all tc(q) curves
(one for each size of the DDM window) have at least one
point in it. The reciprocal of the decay time, measured at
q z 2.35 mm�1 on all 30 videos in the dataset, is plotted
in Fig. 5 b against the size of the DDM window, showing
that the decay time increases dramatically when the DDM
window becomes smaller than a critical area, estimated to
be z 700 mm2 by fitting the data to an empirical sigmoidal
curve and locating its inflection point. This value is signifi-
cantly higher than the area of a single ciliated cell, whose
diameter is z 10 mm (69).
CONCLUSIONS

We have presented a new, to our knowledge, toolkit for
the analysis of ciliated tissues based on differential dynamic
microscopy, extending to multiscale-DDM, proving this to
be a valuable tool to measure the ciliary beat frequency of
in vitro human airways ciliated cells at the air-liquid inter-
face. On the one hand, this yields results in agreement
with point-FFT approaches but in a completely automated
procedure without any user input, thus reducing a source
Biophysical Journal 113, 109–119, July 11, 2017 115
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FIGURE 5 DDM can detect a characteristic length scale for synchroniza-

tion. (a) The DDM algorithm was run on computer-generated data (see

Length Scale of Synchronization: Numerical Data), using a grayscale ma-

trix with pixel intensity oscillating over time, divided into phase-locked

hexagonal tiles. This was done several times, changing the area (i.e., win-

dow) of DDM. Notably, the decay time ts hI(q,t)iq diverges when the DDM
window becomes smaller than the size of a phase-locked tile. The transition

is smooth because of the shape mismatch between the hexagonal tiles and

the square DDM windows. The green line is an empirical fit of the data to

1/ts ¼ ax/(x þ b) þ c, where x is the DDM window area normalized over

the area of the hexagonal tiles. The error on the data is comparable with the

marker size. (b) In experimental data, a similar behavior is observed when

plotting the reciprocal 1/tc of the decay time of I(q0,t) against the size of the
DDM window (following Length Scale of Synchronization: Real Data).

Again the decay time diverges when the DDM algorithm is run on a small

enough window; here this happens atz700 mm2. The red markers show the

median, and the error bars the 25th and the 75th percentile for each value of

the DDM window area. The green line is an empirical fit of the data to

1/tc ¼ ax/(xþ b)þ c, whereas the blue line shows the position of its inflec-

tion point with the 95% confidence interval in shaded blue. To see this

figure in color, go online.
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of bias and speeding up the analysis. This suggests DDM
analysis to be a serious alternative to commercial software
for providing a reliable, fast, and unbiased estimate of the
ciliary beat frequency, even in a clinical environment.

On the other hand, new information is retrievedusingDDM
compared to fixed-point FFTanalysis: the algorithm gives an
output signal that is closely related to the intermediate scat-
tering function, quantifying fully the system dynamics.

Guided also by simulated data, presented in more depth in
Appendix A: Testing DDM on Synthetic Datasets, we have
suggested new ways, to our knowledge, of extending the
DDM algorithm (multiscale-DDM) to extract spatio/tempo-
ral information from the samples, namely the correlation
length for cilia beating.
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The analysis algorithm was also shown able to detect the
presence of a large length-scale feature such as a metachro-
nal wave, and to measure its wavelength and direction.

Being able to estimate these quantities (a length scale
across which movement is coordinated, the angular spread
of cilia beating, and properties of the metachronal wave)
is fundamental toward a possible employment of DDM in
a clinical environment, in particular to assess the structural
and functional integrity of ciliated tissues. For example, we
are preparing a work in which DDM is used to assess how
modifying the mucus rheology affects the ciliary movement
in samples from cystic fibrosis donors. This technique could
also be of use in studying if and how ciliated airways tissues
can recover after being damaged because of a blast wave
(70), or in regenerative medicine.

The analysis scripts used during this work are available
at http://dx.doi.org/10.17863/CAM.9853.
APPENDIX A: TESTING DDM ON SYNTHETIC
DATASETS

To conclusively demonstrate the power of DDM to extract spatio/temporal

correlation, its use is explored here on datasets (synthetic videos) that have

known characteristics. In particular, it is interesting to understand what can

contribute to a decay of the ISF with the lag time t.
Phase drift yields decay of the image structure
function with the lag time

To investigate the cause of the ISF decay with the lag time, we ran the DDM

algorithm on synthetic videos of oscillators. Tweaking the properties of the

individual oscillators, we are able to get an insight into the decay mecha-

nism. All the details about the synthetic dataset are in the Supporting

Material.

In particular, we first create a synthetic video with phase-locked oscilla-

tors that start from a random phase. This was seen to yield no decay of the

ISF: as the correlation between oscillators does not decay, neither does

I(q0,t).
The second type of synthetic video is used to investigate whether, as

hypothesized in Interpreting Motile Cilia DDM Results, the ISF decays

because cilia within the same field of view beat with slightly different fre-

quencies. We implement oscillators with frequencies drawn from a normal

distribution centered in n0, and with standard deviation s, starting off at a

random phase. As shown in Fig. 6 a, the oscillations of the ISF in this

case decay exponentially with the second power of t. The characteristic

time of the decay, found by fitting the envelope of the I(q0,t) curves with
Eq. S4, is seen to be inversely proportional to the width s of the frequency

distribution (see Fig. 6, c and e).

To test our second hypothesis for the decay of the ISF, which is that

there is some drift in the phase of each cilium (imperfect coherence,

expected at least due to thermal noise), a third type of synthetic video

was devised. The oscillators here beat with the same base frequency n0,

but their phase undergoes a random walk with step probability p. As

opposed to the previous case, the oscillations of the ISF in this case

decay exponentially with t (Fig. 6 b). The characteristic time of the decay

can be found by fitting the envelope of the I(q0,t) curves with Eq. S7,

and, as shown in Fig. 6, d and f, is inversely proportional to the step

probability p.

Having established that at least two factors can affect the decay of the

ISF, the next step is understanding how the two contributions combine.

http://dx.doi.org/10.17863/CAM.9853
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FIGURE 6 The image structure function gives access to information on phase coherence and anisotropy in the sample’s dynamics. (a–f) We simulate here

(see Supporting Materials and Methods) oscillators that are not completely phase-locked. The envelopes of the Fourier mode amplitudes decay with a time-

scale t. In (a), (c), and (e), the frequencies of the oscillators are drawn from a distribution of finite width s. In (b), (d), and (f) instead all the oscillators have

the same frequency but their phase undergoes a random walk with step probability p. In both cases the lack of any special length scale in the simulated data

yields no q dependence in the DDM output. (a and b) Behavior with t of the amplitude of three Fourier modes: I(q0,t) curves are fitted (green line) with the

models in Eqs. S3 and S6. Information about the decay can be obtained simply by fitting the envelopes (red lines) of the I(q0,t) curves with Eqs. S4 and S7. (c)
The same type of simulation as in (a) was repeated changing the width s of the frequency distribution. Here the envelope of hI(q0,t)iq is drawn (dots) for

various values of s. The data are then fitted (continuous lines) with Eq. S4. (e) The decay time ts was found to be f 1/s. (d) Similarly, the envelopes of

hI(q,t)iq obtained by changing the phase-step probability p are plotted (dots), and fitted (continuous lines) with Eq. S7. (f) The decay time tp was found

to be f 1/ p. (g and h) DDM was run on synthetic data, generated so to have a traveling longitudinal wave moving leftwards (see Supporting Materials

and Methods). (g) A traveling wave shows up as a sharp peak in the DDM signal. Changing the periodicity of the metachronal wave in the simulations

(see Supporting Materials and Methods) is reflected in a change of the spatial frequency of the peak, whereas the broader maximum of the spectrum

(due to the oscillating dots) is not affected. The inset shows a still frame from the synthetic videos. (h) Each curve is the average of the 2D power spectrum

over the angles labeled with the corresponding color in the inset. The peak signature of the metachronal wave shows only in the spectrum obtained averaging

the sector with w˛½�ðp=8Þ;þðp=8Þ�, w being the angle between q! and the horizontal axis. The amplitude of the broader signal due to the oscillation of the

dots has a maximum in this sector as well, and it goes to zero in the perpendicular direction. To see this figure in color, go online.
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The DDM algorithm is thus run on a synthetic video of oscillators with

frequencies drawn from a normal distribution around n0 with standard de-

viation s, and whose phase undergoes a random walk with step probability

p. As shown in Fig. S3 the two factors s and p affect the decay indepen-

dently: it is still possible to retrieve the individual decay times by fitting

the envelopes of the ISF with Eq. S9, and changing either parameter only

affects the corresponding decay time, but not the other.
Metachronal-wave detection

As we saw in DDM-based Detection of Metachronal Waves, DDM is well

suited to detect metachronal waves. A simple synthetic dataset was used to

demonstrate, in depth, how DDM-based approach can recover metachronal-

wave dynamics. The synthetic videos (details in the Supporting Material)

feature finite-size oscillating dots whose initial phases are assigned to

have a longitudinal wave along the x axis.

The DDM output I(q,t), unsurprisingly, oscillates with t. More interest-

ingly, the metachronal wave sets a spatial length scale that is highlighted

by the Fourier transform. This is particularly evident when plotting the

lag-time averaged 1D power spectrum (Fig. 6 g): apart from the broad

maximum caused by the dots oscillating, there is also a sharp peak at

smaller Fourier modes. The simulation was run changing the wavelength

of the metachronal wave, and the power spectra are shown in Fig. 6 g.
The gray thick line is obtained by having the oscillating dots start from a

random phase. This yields no metachronal wave, and it shows in the power

spectrum I(q,t0) as there is only one broad maximum. The green, light blue,

navy, and magenta lines are the result of runs in which the metachronal

wave has a wavelength of, respectively, 1/ 4, 1/6, 1/8, and 1/10 the size L

of the field of view. These spectra, in addition to the broad maximum,

show a sharp peak each, at respective modes 4, 6, 8, and 10, which corre-

spond to the metachronal-wave wavelengths. This shows that the peaks

are the signature of the metachronal waves.
Length scale of synchronization: numerical data

Further proof of the ability of the DDM algorithm in finding an estimate for

the length scale of synchronization comes from the analysis of another

specific simulation. As in Phase Drift Yields Decay of the Image Structure

Function with the Lag Time and Metachronal-Wave Detection, this syn-

thetic dataset is used to demonstrate in very controlled conditions how

the multiscale-DDM approach works. The simulation is based on a gray-

scale matrix of pixels with intensity oscillating in time as a sine starting

off at a random phase. The matrix is divided into hexagonal tiles, and

all pixels within the same tile oscillate with the same frequency. Pixels

in different tiles can have different frequencies. Tile frequencies are

drawn from a normal distribution peaked at n0 ¼ 15 Hz and with standard
Biophysical Journal 113, 109–119, July 11, 2017 117
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deviation s ¼ 0.2 Hz. As with real data, the simulated video is divided in

regions (windows) of decreasing size, and for each size all regions are

analyzed with the DDM algorithm. For each region the very same analysis

as in Section S3 applies, yielding a single value of the decay time ts. Values

of tsmeasured from different windows of the same size are averaged. Fig. 5

a shows that, as in real data, the decay time ts diverges as the size of the

DDM window becomes smaller than the size of the tile. The transition is

not sharp because of the mismatch in shape between the square DDM win-

dow and the hexagonal frequency tile (i.e., each square window can probe

pixels belonging to at least two different tiles). The simulation could have

been carried on with square frequency tiles, but the hexagonal tiles were

chosen to make the simulation closer to the real conditions, where it is high-

ly probable that a square DDM window chosen a priori will probe cilia

belonging to multiple cells.
Anisotropic dynamics

One of the approximations made when explaining the algorithm in DDM on

Videos of Ciliated Cells was to analyze the sample as if it were isotropic,

thus taking a radial average of the 2D Fourier transform of differential im-

ages. This allows us to have a power spectrum that only depends on the

spatial frequency, which is the magnitude of the scattering vector, discard-

ing the direction of the latter. In a slightly more sophisticated analysis, one

might want to maintain information about anisotropy in the sample when

using the DDM algorithm. Let w be the angle between the scattering vector
~q and the horizontal axis. An easy way of keeping the information about

anisotropy is to bin w and to do a radial average only within each bin.

Changing the bins allows us to tune the resolution in w, or to pick the signal

only for certain ranges of w (64,71).

An example of using DDM maintaining the angular information is in

Fig. 6 h, which shows a sample image from the DDM algorithm run on

the simulation described in Metachronal-Wave Detection. The direction

of oscillation of the dots, and, more importantly the direction of propagation

of the metachronal wave, are successfully retrieved.
SUPPORTING MATERIAL

Supporting Materials and Methods, four figures, and two movies are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)

30567-2.
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