The chimera state in colloidal phase oscillators with hydrodynamic interaction
Evelyn Hamilton, Nicolas Bruot, and Pietro Cicuta

Citation: Chaos 27, 123108 (2017); doi: 10.1063/1.4989466
View online: https://doi.org/10.1063/1.4989466
View Table of Contents: http://aip.scitation.org/toc/cha/27/12
Published by the American Institute of Physics

Articles you may be interested in
Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 123101 (2017); 10.1063/1.4986401

Experiments with arbitrary networks in time-multiplexed delay systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121103 (2017); 10.1063/1.5016047

Robustness of coupled oscillator networks with heterogeneous natural frequencies
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 123105 (2017); 10.1063/1.4991742

Ininsensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 126702 (2017); 10.1063/1.5010304

Solitary states for coupled oscillators with inertia

Dynamics of delay-coupled FitzHugh-Nagumo neural rings
The chimera state in colloidal phase oscillators with hydrodynamic interaction

Evelyn Hamilton,1 Nicolas Bruot,2,a) and Pietro Cicuta1,b)
1Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
2Institute of Industrial Science, University of Tokyo, Tokyo, Japan

(Received 9 June 2017; accepted 5 December 2017; published online 26 December 2017)

The chimera state is the incongruous situation where coherent and incoherent populations coexist in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydrodynamic forces at low Reynolds number, previously studied as a simple model of motile cilia supporting waves, we find concurrent incoherent and synchronised subsets in small arrays. The chimeras seen in simulation display a “breathing” aspect, reminiscent of uniformly interacting phase oscillators. In contrast to other systems where chimera has been observed, this system has a well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposition of eigenstates, whilst considering the mean interaction strength within and across subsystems allows us to make a connection to more generic (and abstract) chimeras in populations of Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental observations of oscillators coupled through hydrodynamic forces. Published by AIP Publishing.

https://doi.org/10.1063/1.4989466

A group of oscillators can form two distinct subsets—one synchronised and the other asynchronous. This state with incoherent and coherent subsets is called a chimera state and even forms when the oscillators are identical.1 It is usually recognised by a subgroup developing disparate frequencies and losing synchrony. This unique state has been attributed to a variety of phenomena, including unihemispheric sleep cycles in birds and lizards as well as consensus in social groups.2,3 We focus on oscillators coupled through hydrodynamic force, which is a common mechanism by which various biological systems coordinate, including motile cilia.4 Cilia are hair-like growths of a cell, the structure of which is highly conserved across species. The coordination of motile cilia is responsible for symmetry breaking during foetal development, as well as fluid transport in the brain and lungs.4–6 We find chimera states in simulations of small arrays of driven non-linear oscillators, which were based on motile cilia. These states are surprisingly robust, and we interpret them in terms of each subset mean interaction and by considering symmetries of the underlying interaction tensor. We expect this robustness to translate to experimental observations of the chimera state in oscillators with hydrodynamic coupling. Furthermore, the chimera state may play a part in understanding collective dynamics of motile cilia.

INTRODUCTION

Synchronisation is a general phenomenon in nonlinear dynamical systems and is connected to a breadth of applications.7 The coordination between oscillators is an important paradigm for modelling systems across biology, physics, and chemistry: the flashing of fireflies, pendulum clocks, and the Belousov-Zhabotinsky (BZ) reaction being common examples in these disciplines.8

A “chimera state” is a state with simultaneous incoherent and coherent subsets, and is receiving increasing amounts of interest. It has been observed in phase, amplitude, and chaotic oscillators, using a variety of different models including Ginzburg-Landau, Kuramoto, Lorenz, Stuart-Landau, and FitzHugh-Nagumo oscillators.9–13 The types of coupling leading to the formation of these states include uniform, nonlocal, and time-delayed interactions.10,14,15 Though once thought to be a theoretical anomaly, it has now been observed experimentally.16–18 The systems involved vary in terms of scale and oscillator type, with optical, chemical, and mechanical oscillators all exhibiting the chimera.1 The state is being related to a range of natural phenomena,1,2,19–25 It has been linked to many biological systems that involve complex and often competing interactions, from internal processes such as epilepsy and heart fibrillation to ecological predator and prey systems.1,26–30

Hydrodynamic interactions are common in biology and the fundamentals are well understood. An example involving these forces is motile cilia, which are highly conserved microscopic hair-like growths of cells, that push fluid and interact through hydrodynamic forces. Their oscillations are responsible for the transport of fluid in the brain, lungs, and reproductive systems of most mammals.4,6,31

We have worked on models of motile cilia with minimal, geometrically updated traps, where each oscillator, or rower, is a sphere driven in a low Reynolds regime, i.e., an over-damped system.32–34 The model is designed to capture generic features of non-uniform oscillators interacting via a fluid, and arrays of oscillators can be simulated numerically.

a)https://www.bruot.org/hp/
b)http://people.bss.phy.cam.ac.uk/~pc245/
Chimera-like features have been noted in another minimal model inspired by ciliated tissue, where the oscillators were heterogeneous.\(^5\) In this work, we control the emergence of subsets by varying array geometries, changing the layout of identical rowers. Our numerical simulations show that for an appropriate interaction range and rower spacing, synchronised and incoherent populations coexist. For long range interaction, rowers all oscillate in-phase together, but when the range is restricted, phase-locked states are observed. We find that in an intermediate range, chimeras develop with the synchronised population’s geometry depending on the system layout. The different states are considered in the context of the Oseen eigenmodes, which are derived from the normal mode relaxation rates.\(^35,36\) We see the chimera state is a combination of different modes and can predict its emergence by considering appropriate combinations of the normal mode relaxation rates. Alternatively, the chimera states can be interpreted using the mean interaction of the normal mode relaxation rates.\(^14,37\)

THE ROWER MODEL

Forces acting on a rower

Simple models to understand coordination of motile cilia have been proposed in the last decade and are reviewed in Ref.\(^4\). In the rower model, a bead oscillates along \(x\), driven by geometrically updated potential traps. We consider here the case where the driving potential is a simple power law \(k x^y\), where \(x_r\) is the distance relative to the vertex of the side parabola. At the vertex, \(x_r = 0\), the gradient of the potential diverges [see Fig. 1(a)]. To create oscillations, the trap is updated once the bead is at a distance \(\delta\) from the vertex. The new potential is a reflection of previous along the central axis \(x_r = A/2 + \delta\); the red and blue curves in Fig. 1(a) illustrate this. The update point \(\delta\) prevents \(x_r = 0\), where the force would diverge. The exponent of the power law was chosen to guarantee in-phase synchronisation between pairs of rowers and follows directly from the implementation in Ref.\(^38\). The \(y\) position of the rowers is maintained by a harmonic trap, which depending on the row has a minimum at 0 or \(d_R\). These traps restrict the rower oscillations to one-dimension, along the \(x\)-axis. The velocity of the \(i\)th rower is

\[
\frac{dr_i}{dt} = \sum_{j=1}^{N} H_{ij} F_j + f_i, \tag{1}
\]

where \(f_i\) is a stochastic noise term, \(F_j\) is the trapping force, and \(H_{ij}\) captures the hydrodynamic interaction between the \(N\) rowers. From Brownian dynamics, the noise has zero mean and \(\langle f_i(t) f_j(t^\prime) \rangle = 2k_B T H_{ij} \delta(t - t^\prime)\).\(^39\) We define the interaction tensor as

\[
H_{ij} = \begin{cases}
\frac{1}{\gamma} : i = j \\
\frac{3}{4\gamma} \left(\frac{a}{r_{ij}} \right) \left[I + \frac{r_{ij}}{\lambda} \right] : i \neq j
\end{cases} \tag{2}
\]

where \(a = 6\pi\eta a\) is the drag (\(\eta\) is the viscosity of the fluid), \(r_{ij}\) and \(r_{ij}\) are the direction and distance between rowers. The parameter \(\xi\) is introduced as a simple control for the interaction range and takes some value between [1, 3]. In the far-field limit when the rower radius \(a\) is much smaller than the distance separating them and \(\xi = 1\), \(H_{ij}\) is the Oseen tensor. At the other extreme where \(\xi = 3\), \(H_{ij}\) is akin to the limit of the Blake tensor near a wall. The interval of \(\xi\) creates an interaction decay rate somewhere between being far from any impendenc \(\xi = 1\) and being near a no-slip boundary \(\xi = 3\). The tensor allows the coupling between the rowers to be altered in two ways. Changing \(\xi\) from 1 to 3 increases the decay of the interaction, so the rowers no longer interact over a long range but only with their close neighbours. The second way to adjust the coupling is to vary the distance between rowers. The rowers are arranged to encourage
separation into two subsets, with the eight beads placed in two rows as shown in Fig. 1(b). To alter the coupling through position, the distance between the rows \(d_R \) is varied.

Preferred population configuration

The rowers tend to synchronise in either chain or block configurations. Examples of the two geometries are shown in Figs. 1(b) and 1(c). The chain configuration is shown in 1(b), with the first population (P1) marked in blue and the second (P2) marked in orange. Blue and orange also indicate P1 and P2 for the block configuration in Fig. 1(c). The choice of most natural subset depends on the interaction range and the distance between the rows \(d_R \).

The simulation parameters are chosen to produce strong interactions between the rowers. We want high negative curvature, as defined in Ref. 38, and low noise. This ensures strong in-phase synchronisation between a pair of rowers, so any departure from this state is the result of additional rowers. The curvature depends on the force at the beginning and end of the trap, \(F_b \) and \(F_c \), as well as the average force \(F_0 \). Explicitly \(c = -2(F_c - F_b)/F_0 \), with \(F_b = -k/2(A + \delta)^{-1/2} \) and \(F_c = -k/2\delta^{-1/2} \). We set \(A/\delta = 31 \), which results in a curvature of \(c = -0.7 \) for our trap potential.

Synchronisation between a pair of rowers in the presence of noise was also explored in Ref. 38. We define the noise strength \(\xi \) in a similar way, but also include the dimensionless quantity \(D_0 \). This term scales the trap strength to maintain a given period for a chain of four rowers moving in-phase when the coupling range is varied by \(\xi \). We relate the noise to \(D_0 \), the temperature \(T \), and average trap force \(F_0 \) by

\[
\xi = \frac{2k_BT}{AD_0F_0}, \quad F_0 = \frac{1}{2}(F_c + F_b),
\]

with \(A \) the amplitude of the oscillations and \(k_B \) the Boltzmann constant. The coupling is anisotropic in our system due to its dependence on the direction of oscillation and the geometry of the system. We compare the noise to the interaction forces along \(x \) and \(y \) by scaling it using the nearest neighbour coupling in each direction. The scaled noises for \(x \) and \(y \), \(\xi_x \) and \(\xi_y \), are related to \(\xi \) by

\[
\xi_x = \frac{2}{3}\left(\frac{d}{a}\right)\xi, \quad \xi_y = \frac{4}{3}\left(\frac{d_R}{a}\right)\xi.
\]

We set the ratio \(d/a = 6.86 \), and \(d_R/a \in [6.86, 22.86] \), which results in \(d_R/d \in [1, 3.33] \). The dimensionless trap strength is \(D_0 k_T/(\gamma a^{3/2}) = 3.28 \), where \(\tau \) is the period of a single chain of four rowers moving in-phase, and \(\delta/a = 0.057 \). Unless stated otherwise, the noise is \(\xi = 2.13 \times 10^{-5} \), i.e., the noise is small when compared with the neighbouring interaction in \(x \), with max(\(\xi_x \)) = 4.58 \times 10^{-3}. \(\xi_x \) lies within the expected synchronised region when the results are rescaled appropriately. This noise should not prevent the rowers coordinating with their neighbours along \(x \). The coupling strength of vertically opposite rowers has a wider range, as both \(d_R \) and \(\xi \) vary [see Fig. 2(a)]. While the noise is initially small with \(\xi_y \approx 10^{-4} \), for larger \(d_R/a \) and \(\xi \), the noise could prevent coordination between the rows with \(\xi_y \approx 10^{-1} \).

Details of simulation

We simulated the rowers using the method of Ermak and McCammon. The Brownian noise has zero mean and is correlated by \(\langle f_i(t)\rangle = 2k_BTH_0\delta(t - t') \). When numerically solving, we used a time step equivalent to \(1 \times 10^{-4} \) s. The simulations were run for 1000 cycles unless investigating the lifetime. When measuring the lifetime, the simulations were run for 2000 cycles and then reseeded until at least 150 lifetimes were measured. The initial rower positions were randomly drawn from a uniform distribution \(U(-A/2, A/2) \), with no preference in the initial trap orientation. To link with motile cilia and experimental work, we set the bead radius to \(a = 1.75 \mu m \), the drag to \(\gamma = 0.073 \) Pa\cdot s\cdot \mu m, and the period to \(\tau = 0.49 \) s; \(\tau \) is the period of a single chain of four rowers.

When classifying the simulations, the results are separated into 40 cycle intervals. The first interval is discounted as the rows start from a random position. The mean and variation of the order parameter in the remaining intervals is used to categorise the simulation results.

Measures for order

The positions of the rowers oscillate in our system. To highlight the repetitive nature of the motion, the distance is mapped to a phase or “angle” \(\phi \), a common approach in cyclic systems. To determine the mapping, we adapted the coordination to
transformation to natural angles to account for the trap
switching. This defines the phase in such a way that it grows
linearly for a single rower. The explicit relation between
the phase and position is $\phi(t) = N_0 t + \psi(x(t))$ with
$\psi(x) \propto x^3$. N_0 is the number of switches undergone by
a rower at time t; $N_0(0) = 1$ if the trap starts on the left. The
phase is used to determine two complex order parameters,
which distinguish between different states

\begin{equation}
Z^{(p)}(t) = \frac{1}{N_p} \sum_{j=1}^{N_p} \exp \left[i\phi^{(p)}_j(t) \right],
\end{equation}

\begin{equation}
Z_{PL}^{(p)}(t) = \frac{1}{N_p - 1} \sum_{j=1}^{N_p-1} \exp \left[i(\phi^{(p)}_{j+1}(t) - \phi^{(p)}_j(t)) \right],
\end{equation}

where $p = 1, 2$ labels the two populations, so $\phi^{(p)}_j$ is the
phase of jth in the pth population and N_p is the size of the
population. $Z^{(p)}$ is a measure of a population’s mean phase,
and $Z_{PL}^{(p)}$ is the measure for mean phase-difference. The magnitudes of $Z^{(p)}$ and $Z_{PL}^{(p)}$ gauge the coherence of a population,
with $|Z_{PL}^{(p)}|$ measuring the variability in the phase-difference
between neighbours and $|Z^{(p)}|$ measuring how in-phase the
rowers are in each population. The population is incoherent
when $|Z_{PL}^{(p)}| \approx 0$ and phase-locked (constant phase-difference)
when $|Z_{PL}^{(p)}| \approx 1$. $|Z| \approx 1$ corresponds to the specific
case when the phase-difference is zero, but $|Z| \approx 0$ occurs
for both incoherent and splay states; the splay state for four
rowers is $\phi^{(p)}_{j+1}(t) - \phi^{(p)}_j(t) = \frac{\pi}{2}$. We use both measures to
classify the system.

RESULTS

The interaction range ζ and row spacing d_R determine
the rowers’ behaviour. There are three states observed:
in-phase, chimera, and phase-locked. The chimera state has
three sub-categories—chimera-block and chimera-chain—
depending on the subset geometry. Figure 3 shows some
examples of these behaviours. When the interaction is long
ranged with ζ near one, there is no separation into subsets as
all the rowers oscillate in-phase. The synchronisation of the
rowers when $\zeta = 1.1$ and $d_R/a = 8$ is shown in Figs. 3(a)
and 3(b). It appears as vertical bands in the phase in Fig. 3(a)
and the convergence to one in Fig. 3(b). When the interaction
is short ranged, the oscillators settle into phase-locked states.
This appears as diagonal bands in the phase and $|Z_{PL}| \approx 1$
[see Figs. 3(g) and 3(h)], where $\zeta = 3$ and $d_R/a = 21.71$.
The total interaction $\sum_{i \neq j} H_{ij}$ tends to be weaker in these
cases, and so the rowers take longer to become coordinated.
The chimera state occurs in the intermediate range between
the in-phase and phase-locked states. In this state, one
population is in-phase, whilst the other is unable to settle with
defects developing whenever it approaches in-phase. This
causes Z to rise and fall in the incoherent population. The phase
defects in the chimera state when $\zeta = 1.6$ and $d_R/a = 10.28$ are shown in Figs. 3(d) and 3(e). The defects create

![Diagram](image_url)
the apparent “breathing” in the order parameter $|Z|$ of the unsynchronised population. The frequency distributions of phase-locked and in-phase states are symmetric, but the distribution of incoherent rowers develops a tail [see Figs. 3(c), 3(f), and 3(g)]. This leads to a reduction in mean frequency for the unsynchronised population in the chimera state.

When noise is present, the subsets do swap roles, but as the noise decreases the chimera intervals last for longer periods. When comfortably within the chimera-block region [see the circle marker in Figs. 4(a) and 4(c)], the lifetime of the state increases linearly with $1/\zeta$ (see Fig. 2). Although the lifetime of the chain state increases with decreasing noise, it also exhibits chaotic characteristics. This makes it difficult to make definitive claims concerning the long term behaviour.

Since we are interested in a physical system with noise, we classify the chimera state by considering 40 cycle intervals. When more than half the intervals measure one population remain synchronised whilst the other fluctuates, the state is...
labelled as a chimera. The states are classified as block or chain by comparing $|Z|$ for both configurations; it is then categorised as the geometry that measures a different spread in $|Z|$ for each population.

MEAN INTERACTION

The observed chimera state, particularly the rise and fall in incoherent population mentioned in the Results section, is reminiscent of the “breathing” seen in populations of Kuramoto phase oscillators. The Kuramoto populations are uniformly coupled, suggesting that the mean population forces encapsulate the chimera behaviour. To parallel this work, we consider the difference between the mean couplings within each subset M

$$M = \frac{\mu - \nu}{\mu + \nu},$$

$$\mu = \sum_{j \neq 1}^{P} H^{t}_{ij}, \quad \nu = \sum_{j \in P} H^{t}_{ij},$$

where μ is the sum of forces parallel along x within a population acting on a bead labelled as number one in Fig. 1. The mean cross population force ν is the sum of forces on the same rower exerted by the other population. Using the mean interaction, we find that our results are reconcilable with the Kuramoto oscillators, and the transition from block to chain subsets can be predicted.

In-phase behaviour is expected when M is small, and the cross-population forces are comparable to intra-population, i.e., $\zeta \approx 1$, and forces are long-range. In contrast, the mean interaction becomes a poor approximation for the dynamics when the interactions are short range, particularly for the chain configuration, where the difference between maximum and minimum spacing is larger. The effect of varying ζ and d_R on M is shown in Figs. 4(c) and 4(d). The expected shift from block to chain is at the cusp in the M curves. It occurs when the chain population sum μ_C exceeds the block μ_B. The chain population’s enhanced sensitivity to ζ is also apparent, seen as the section of high M when d_R increases and $3 > \zeta > 2$. Simulation results are overlaid in the map of M in Fig. 4(d). The different markers in Fig. 4(d) correspond to the in-phase, chimera, and phase-locked states. The chain-chimera states are marked with a plus. A mixture of chimera and in-phase is recorded when overlap when the simulation registers in-phase motion but there is an interval of chimera behaviour, and shown by the empty squares. If the simulation does not measure consistent high levels of $|Z_{PL}|$ in either population, then it is not classified and is marked by a grey cross. The cusp in M occurs on the navy line. The chain states begin to be observed when $\mu_C > \mu_B$. More generally, the chimera state is recorded when $0.7 > M > 0.4$. The upper bound results from the shortened interaction range, whilst the lower bound is consistent with Ref. 37. There is no direct correspondent for the phase lag from the Kuramoto model, but the boundary near 0.4 is in accord with a moderate range of phase lag. For small d_R, the intra-population forces are more uniform, so the map of M best captures results that occur in this range. In particular the dark patch where $M < 0.25$, when $6.8 < d_R/a < 11.5$, captures the transition from in-phase to block chimera behaviour.

Given its small size, our chimera is surprisingly stable. Particularly when contrasted with the uniformly interacting Kuramoto oscillators. The chimera states observed in small numbers of BZ oscillators were also noted to be oddly stable, as were small networks of amplitude-phase coupled lasers. Their stability was attributed to the differences between them and simple phase oscillators. The geometric updating traps of the rower model may be producing a similar stabilising effect here. This stability would translate to experimental realisations of rower systems and could have biological relevance in ciliated tissues.

THE EIGENMODES

Eigenstate growth rate

The behaviour of rower ensembles can be understood qualitatively from their fundamental interaction by projecting onto appropriate eigenstates. This technique has previously been applied to rings of rowers, two rows of rowers with varying oscillation direction, and a similar approach has been used to understand synchronisation in quantum oscillators coupled through dissipation.

Following the procedure in Ref. 36, where the distance between the rovers r_{ij} is approximated by the distance between their trap centres (a function of d and d_R) and noise is neglected, the system configuration at each time can be projected onto the eigenvectors of the interaction tensor. To express the trap force in terms of the projection, the potential needs to be parabolic. Earlier work in Ref. 38 showed that rower synchronisation is governed by the curvature of the potential. Consequently we use a negative parabolic potential with the same curvature as the earlier square root form to calculate the eigenmodes, i.e., the potential $-k_p x_p^2$ with $\delta_p/a = 0.37$ [see Fig. 5(a)]. To match the $x^{1/2}$ potential, the parabolic trap strength is set by $k_p = \frac{\gamma}{(A + \delta - \sqrt{\delta})} / (\epsilon + \delta)^2 - \delta^2_\epsilon$. In shifting to the new potential, the distance is now measured relative to the turning point of the parabola. The new potential means $h_j = \hat{e}_j \cdot r$, the projection of the rower positions onto the jth eigenvector, obeys

$$h_j(t) - (\hat{e}_j \cdot s) - \tau_j \frac{d}{dt} h_j(t) = 0,$$

$$\tau_j = \frac{\gamma}{2k_p} \frac{1}{1 + \frac{3}{4} (a/d)^2 \lambda_j},$$

where λ_j is the eigenvalue associated with the vector, s the trap position vector, and k_p the trap strength for the parabolic potential. This expression only holds between trap updates, i.e., s is constant.

Employing a similar argument as that in Ref. 36, but focused on divergence, predicts that the observed state will be the fastest diverging state because the state that diverges fastest experiences the greatest growth between trap updates. Using the approximation of a parabolic potential, the growth rate of the jth mode over one switch G_j is
The in-phase state occurs when a single growth rate exceeds others, whilst the phase-locked state is observed once all the rates have converged. The chimera state occurs in the range between, where the in-phase growth no longer dominates, but all the states have yet to converge.

We expect the rowers to be in-phase when G_1 is much larger than the other rates. We find the in-phase region to be the intersection of $G_4 < 0.125$ and $G_2 - G_4 > 0.012$. The eight eigenstates mean equal representation occurs at $G_j = 0.125$, with G_1, G_2, G_3, G_4 approaching this limit from above and G_5, G_6, G_7, G_8 from below. The in-phase boundary conditions ensure that all but the fastest state must be clustered at their minimum value. This is the dark region shaded in Fig. 4. To find the phase-locked boundary, the growth rates need to be comparable. The region is found as $G_1 - G_2 < G_5 - G_7$ and $G_1 - G_3 < G_4 - G_7$, i.e., using the more closely spaced, slow growth rates as the threshold for the faster rates converging. This is the pale yellow region marked in Fig. 4. The chimera occurs between these regions, with the transition between block and chain geometries reflecting a reduction in the coupling between the rows.

The growth rates when $n_t = 5$ are plotted against the interaction range ζ for the different states in Fig. 5(c). These growth rates were used when classifying the different regions for the behaviour. The general trend when ζ increases is for the states to converge to equal representation (1/8). The inset zooms in on G_5, G_6, G_7, and G_8. The difference between G_5 and G_6 (and G_7 and G_8) is small; as such, there are only six states well separated. We classify the regions using the well separated states G_1, G_2, G_3, G_4, G_5, and G_7.

Classification using growth rate

The in-phase motion is associated with the fastest diverging state, while the phase-locked state is a sequence of states involving combinations of all the different eigenstates. The in-phase state occurs when a single growth rate exceeds others, whilst the phase-locked state is observed once all the rates have converged. The chimera state occurs in the range between, where the in-phase growth no longer dominates, but all the states have yet to converge.

When in-phase $n_t = 1$, and for the chimera and phase-locked states, $n_t = 5$. Each state will be diverging, but the system prefers the state which diverges the quickest. The index j orders the states by their rate of divergence, and G_1 is the fastest growth while G_8 is the slowest. The four states fastest to diverge are in-phase, anti-phase chain, anti-phase block, and anti-phase pairs. Representations of these four states are shown in Fig. 5(b).

The in-phase state occurs when a single growth rate exceeds others, whilst the phase-locked state is observed once all the rates have converged. The chimera state occurs in the range between, where the in-phase growth no longer dominates, but all the states have yet to converge.

We expect the rowers to be in-phase when G_1 is much larger than the other rates. We find the in-phase region to be the intersection of $G_4 < 0.125$ and $G_2 - G_4 > 0.012$. The eight eigenstates mean equal representation occurs at $G_j = 0.125$, with G_1, G_2, G_3, G_4 approaching this limit from above and G_5, G_6, G_7, G_8 from below. The in-phase boundary conditions ensure that all but the fastest state must be clustered at their minimum value. This is the dark region shaded in Fig. 4. To find the phase-locked boundary, the growth rates need to be comparable. The region is found as $G_1 - G_2 < G_5 - G_7$ and $G_1 - G_3 < G_4 - G_7$, i.e., using the more closely spaced, slow growth rates as the threshold for the faster rates converging. This is the pale yellow region marked in Fig. 4. The chimera occurs between these regions, with the transition between block and chain geometries reflecting a reduction in the coupling between the rows. Increasing d_R, i.e., decoupling the rows, causes anti-phase row states to converge (e.g., \hat{e}_1 and \hat{e}_2, or \hat{e}_3 and \hat{e}_4). As with the phase-locked state, the difference between the slower states was used as the benchmark for similarity. We find the block region to be $G_2 - G_3 < G_4 - G_5$, which ensures that the difference between the block and chain growth is comparatively small. This implies that the row coupling is still strong, and as such the block geometry develops.
The simulation results are superimposed over the original image in Fig. 4(b). White square, cyan circles, and black triangles indicate in-phase, chimera, and phase-locked states. The chain-chimera sub-category is marked by the addition of a plus to the cyan circle. States unable to be classified are indicated by a grey cross, and states that are a mixture of chimera and in-phase are indicated by open squares. The growth rate captures the rowers’ behaviour well for large d_R, but some features are missing at lower d_R.

The in-phase boundary intersects with the states exhibiting a mixture of chimera and in-phase behaviour (open circles) but misses some in-phase states near $d_R/a \approx 10.3$. Similarly the phase-locking border passes through the unclassified states (grey crosses) at large d_R, but there are a mixture of phase-locked and block-chimera included by the border at small d_R. The block boundary covers most block states, but there are some inconsistencies for particularly short ranged interactions. The success of the growth rate boundaries is a good indicator that the chimera state involves a mixture of \hat{e}_1, \hat{e}_2, \hat{e}_3, and \hat{e}_4 but is less clear on the exact combination.

CONCLUSION

We find the chimera state using simulations of a simple model for non-uniform oscillators with a hydrodynamic interaction. The resulting states can be interpreted using the eigenmodes of the interaction tensor and their associated growth rates. Specifically the chimera state appears when the faster growth rates have converged but not with the slower states. The faster states converging means combination of these states is not suppressed, and the system separates into two subsets. This gives rise to the synchronised and incoherent subsets expected of the chimera state. Alternatively, the system can be analysed by assuming the existence of two subsets and considering their mean interaction. This simple approach links the rower chimera state results to chimera states in Kuramoto oscillators. Additionally, the mean interaction predicts the shift in preferred population geometry from block to chain by comparing the intra-population forces for each geometry. In contrast to the eigenmodes whose growth rates suggest which eigenstates govern the chimera, the mean interaction is a simple indicator of which geometry is preferred.

In conclusion, we have simulated the chimera state using a simple, minimal model for non-linear oscillators interacting at low Reynolds number. We would expect this to emerge in experimental observations of the chimera state in oscillators with hydrodynamic coupling, and it may play a part in understanding collective dynamics of motile cilia.

ACKNOWLEDGMENTS

This work was supported by the Winton Programme for Sustainability and the Cambridge Trust (EH), and EU-ERC-CoG HydroSync (PC).

40\[D_0 = 1 + \frac{1}{2} \frac{3}{2} \left(\frac{x_0}{d} \right)^\frac{3}{2} \] where \(K \) is the largest eigenvalue of \((I + \tilde{r}^2(\tilde{x}_j)) \) when \(\tilde{r}^2(\tilde{x}_j) \) is the distance between rowers in a chain. It was assumed the rowers were spaced parallel to their oscillation direction. We limit the chain to four rowers. The formula is an adaptation of relaxation time in Eq. (5) of Ref. 36.

41The explicit formula for the linear phase is
\[w(x_r) = \frac{1}{C_0} \left(\frac{x_3}{2} \right)^{3/2} + \psi_0, \]
where \(\psi_0 \) is a constant that sets the phase of the rower to 0 at the switch point, i.e. \(\psi(0) = 0. \)

