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Synchronization of driven oscillators is a key aspect of flow generation in artificial and biological

filaments such as cilia. Previous theoretical and numerical studies have considered the ‘‘rotor’’ model of a

cilium in which the filament is coarse grained into a colloidal sphere driven with a given force law along a

predefined trajectory to represent the oscillating motion of the cilium. These studies pointed to the

importance of two factors in the emergence of synchronization: the modulation of the driving force around

the orbit and the deformability of the trajectory. In this work it is shown via experiments, supported by

numerical simulations and theory, that both of these factors are important and can be combined to produce

strong synchronization (within a few cycles) even in the presence of thermal noise.
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Hydrodynamic synchronization can occur in a broad
range of microscale systems, interacting through low
Reynolds number (Re) flows [1]. An open question in
biological systems, such as ciliated cells and tissues, is
whether synchronization of the filaments is set purely (or at
all?) by their hydrodynamic interaction [2,3], or if other
mechanical forces, for example, acting through the cell
base are important [4,5]. In a simple model of two actively
driven spheres linked by a scaffold to a third passive
sphere, representing the swimmer algae Chlamydomonas,
it has been shown that hydrodynamic interaction between
the flagella may be negligible during swimming [4]; how-
ever, synchronization is also seen between physically
immobilized cells [6]. These are important issues, because
flows driven by motile cilia allow a local circulation to be
maintained within various organs and confer motility to a
number of organisms [7]; severe human pathologies result
from malfunction of cilia activity at various levels [8]. The
biological systems are so complex that there is a need to
work with simplified systems in order to perform con-
trolled experiments and gain a clear understanding of the
underlying physics [1,6,9–14]. These experimental model
systems might themselves be seen as prototypes for future
microfluidic technology, for example, to make micro-
mixers and micropumps with carpets of driven filaments
[15]. In addition to aiming to establish the nature and
stability of the coupling, questions of optimization and
efficiency can be addressed [16].

With current technology it is possible to build micron-
scale phase oscillators that exhibit hydrodynamic synchro-
nization and are simple to describe theoretically, allowing
quantitative studies of collective dynamics. Two simple
models have been studied recently as actively driven
units: (a) a configuration-dependent geometric-switch
system [17–19], which has been realized experimentally
with feedback-controlled optical tweezers [13,20–22], and

(b) a ‘‘force-controlled’’ model in which particles are
driven along predefined orbits with defined force profiles,
which has been studied numerically and theoretically
[23,24], and has been used to describe collective states of
many oscillators [25]. Here, we consider an experimental
realization of this latter, ‘‘rotor’’ model.
A general principle is that synchronization at low Re is

possible only by breaking time reversal symmetry
[22,26,27]. In this Letter we present an experiment on
the synchronization of two rotors, addressing the open
question of the relative importance of the two main factors
which can lead to this symmetry breaking: The radial
flexibility, which was identified in [23] as an essential
component, allowing trajectories to deform, and in contrast
to this, the modulation of the driving force, which was
proposed in [24] as a sufficient (and possibly generically
more relevant) component in enabling rotor synchroniza-
tion. The experimental findings are compared with fully
stochastic Brownian dynamics simulations [28], including
hydrodynamic interactions through the Oseen and Rotne-
Prager descriptions, and to an analytical approximation.
The motion of two externally driven spherical particles

at low Reynolds number is described by the force balance

0 ¼ Fi �
X
j

H�1
i;j _rj þ fiðtÞ; (1)

where i 2 f1; 2g indexes the bead. Fi represents the driving
force acting on bead i, and _ri its velocity. The Oseen tensor
H [29] [see the Supplemental Material (SM) [30] for a
discussion of near-field and solid boundary effects]
describes the drag, and fi is the stochastic Brownian force
on bead i. For the time scales considered here, the noise is
adequately described by hfiðtÞi ¼ 0 and hfiðtÞfjðt0Þi ¼
2kBTH

�1
i;j �ðt� t0Þ [31].

The rotors with circular trajectories of radius r are
implemented experimentally by using feedback-controlled
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optical tweezers, in which the position of the optical trap is
updated based on the position of the particle, and main-
tained a distance �x ahead of the particle (Fig. 1). Two
very different optical tweezer systems are used, allowing
different regimes of time scales to be explored. A time-
shared trapping laser based on acousto-optical deflection
(AOD) of a beam is used at the University of Cambridge,
which results in faster rotors (typical period, with constant
driving force, 0.7 s), whereas holographic optical tweezers
(HOT) are employed at the University of Bristol (typical
period 5 s); the setups are described in detail, respectively,
in [12,20,32]. In both cases the particle positions are
obtained by online image processing; a constant force
can be maintained on the colloidal particle if the trap
positions are updated on a time scale much shorter than
the relaxation time of the particle in the trap � ¼ �=k,
where k is the trap stiffness and � ¼ 6��a is the drag
coefficient on a sphere of radius a in a liquid of viscosity
�. Experimentally there is a limit implementing this
‘‘feedback’’; two time intervals have to be considered: the
finite sampling time and a further delay time to update the
laser position. It will be seen that these limitations do not
affect the qualitative behavior of the coupled systems, but
they change the synchronization strength compared to the
theoretical expectation. The trap potentials from a single
beam are to a good approximation harmonic, and one
clearly can obtain the same force by changing �x or k,
keeping their product constant. Interestingly, varying one

against the other results in the same orbit period (for a given
trajectory) but a different stiffness kr in the radial direction.
In the AOD rotors experiment, a ¼ 1:74 �m (silica

beads, Bangs Labs), r ¼ 3:2 �m, the distance between
rotors is d ¼ 25:4 �m, and � ¼ 6 mPa � s. In the HOT
rotors experiment, a ¼ 1:67 �m (polystyrene beads,
Corpuscular), r¼2�m, d ¼ 10 �m, and �¼85mPa �s.
In both setups, the beads are diluted in a water-glycerol
solution to set the desired viscosity. Except when stated
otherwise, the experiments described in this Letter are the
AOD experiments. Trapped beads are maintained at least
50 �m from any surface of the microscope slides in order
to minimize effects of wall interaction.
Significant efforts aremade to achieve the desired driving

force Fð�Þ and radial stiffness. Before a coupling experi-
ment is carried out, the driving force is calibrated on each
rotor individually; see Fig. 1. Force profiles of the form
Fð�Þ¼F0½1�A2 sinð2�Þ�, with F0�5:5 pN, were chosen
since they correspond to the most efficient profiles to gen-
erate synchronization in circular trajectories [26]. The force
profile is controlled by changing the distance between the
bead and the trap � depending on its angular position�. For
each set of parameters, a first profile is measured on a single
bead for which � is set proportional to 1� A2 sinð2�Þ. This
is then fine-tuned, minimizing the relative difference
between the expected and measured profiles.
The trapping force along the radial direction is tuned

by creating a line of 21 traps, scanned in a random order in
about 2 ms and perpendicular to the tangent direction. This
creates a gradient of laser intensity and a potential land-
scape that is well approximated by a harmonic potential, of
spring constant kr, in the range of the fluctuations in the
position of the particles along the perpendicular direction.
The relative phase of the two rotors can be measured;

this remains constant over successive cycles of oscillation
if there is phase locking. In the systems studied here,
synchronization is always in phase. Two measurements
of the strength of synchronization are possible: the time
required to reach synchronization from an arbitrary initial
condition or, exploiting the presence of Brownian noise,
the relaxation time scale in the autocorrelation of the phase
difference at steady state. In both cases, the ‘‘natural’’ unit
of time is the period of one rotation. When using the
arbitrary initial condition method, if A2 ¼ 0 the phase
difference decays according to Eq. (28) in [23], which,
for small phase differences, describes an exponential decay
with the same time scale as the autocorrelation function.
Figure 2 shows the effect of both parameters kr and A2.

From Refs. [23,24], it is expected that increasing the
flexibility (by decreasing kr) or increasing the asymmetry
A2 of the driving potential should lead to stronger synchro-
nization (lower relaxation time). The experiments confirm
these two theoretical predictions.
Although the trends in Fig. 2 are clear, the raw experi-

mental relaxation times, observed in both the AOD and

FIG. 1 (color online). (a) Two colloidal ‘‘rotors’’ are made by
driving particles along predefined closed circular trajectories
with optical trapping potentials. The driving force F, pointing
towards the trap’s minimum (marked by red crosses), may be
maintained constant or modulated as a predefined function of the
phase angle �. The time dependence of � is not predefined and
evolves under the net action of the driving force and any other
forces acting on the particle. (b) The orbital velocity can be
either held constant or modulated so that it is anisotropic: the
functional form Fð�Þ ¼ F0½1� A2 sinð2�Þ� has been chosen in
this work, studying the effect of the modulation parameter A2

following [24]. The velocity of a single orbiting particle is
shown here for A2 ¼ , 0.3 and 0.85 (increasing modulation).
Markers are measured velocities (proportional to force at
low Re) and lines are the expected shape, proportional to
½1� A2 sinð2�Þ�.
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HOT experimental setups, were found to be systematically
higher than predicted in the simulations; i.e., the rotors
synchronize slower than expected. This discrepancy was
investigated carefully, and it appears that several factors
act in this direction: The main contribution comes from
the delay in moving the traps ahead of the particles.
Simulations (shown in the SM) show that a realistic value
of the experimental delay (5–20 ms) leads to an increase in
the relaxation time by nearly a factor of 2. Smaller con-
tributions are attributed to wall effects, to a detuning
between the intrinsic periods of the two oscillators, and
to the uncertainty in the measurement of kr (see the SM for
a detailed analysis). We have found empirically that these
different effects can be accounted for by adjusting the

value of kr: the experiments performed for A2 ¼ 0:0
were compared with simulations, determining that simula-
tions run with a stiffness higher by a factor 2.21 than the
experimentally measured kr matched the experimental
data. This corrective factor to kr is then fixed, and applied
in all the simulation data in Fig. 2, obtaining very satisfac-
tory agreement with the other experimental data sets.
The experiments show clearly that both the radial flexi-

bility and the modulation of Fð�Þ contribute to the strength
of synchronization. A rigorous calculation of the strength
of synchronization including both parameters is presented
in the SM, adapted from [26]. Here, we simply account for
both the Lenz (�L) and Golestanian (�G) dimensionless
control parameters (known respectively from [23,24]) by
linear superposition. Then the strength of synchronization
� is the sum of the components �L and �G and describes
the evolution of the phase difference by a discrete equation
of the form

��ðiþ 1Þ ���ðiÞ ¼ ����ðiÞ; (2)

where �� ¼ �2 ��1, i indexes the cycle (counted on
either rotor), and

� ¼ �L þ �G ¼ 2�
3a

4d

�
3F0

krr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

2

q
þ A2

�
: (3)

In Eq. (3), the term 3a=ð4dÞ sets the scale of the hydro-
dynamic coupling. The two terms in brackets correspond
respectively to the contribution of the Lenz model (L)
(involving radial stiffness), in which r is the rotor radius,
and the Golestanian model (G) (based on the driving force
profile) to the synchronization. Note that the Lenz contri-
bution itself also depends on A2, since the period of the
oscillators depends on the force profile. From Eq. (2), the
relaxation time is then related to �L and �G by

1

�
¼ � ln½1� ð�L þ �GÞ�: (4)

This theoretical model combining both the L andGmodels
is plotted in Fig. 2 (solid lines) to match experiments, and
in Fig. 3 in a wider dimensionless parameters range. The
model agrees very well with simulations (with the same kr)
and experiments (with kr corrected as described above).
Depending on the choice of parameters F0, kr, r, and A0,
the synchronization can be dominated by either the Lenz or
Golestanian contribution. A threshold between these two
regions can be defined when the two terms in brackets in
Eq. (3) are the same; this boundary line is plotted in Fig. 3.
We now investigate the effect of thermal fluctuations.

Brownian motion leads to fluctuations of �� over time. In
the limit of small fluctuations, an analogy with a particle in
a confining harmonic potential can be made. The fluctua-
tions in displacement x of such a particle satisfy hx2i ¼
kBT=k, with k the harmonic trapping constant. We can then
match the relaxation time of the confined particle with the
relaxation time of the phase difference: �=k� t0=�, where
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FIG. 2 (color online). Relaxation time � depending on parame-
ters kr and A2. Experimental results (markers), simulations
(dotted line), and theoretical value (solid line) from Eq. (4),
well defined only for weak coupling. In both simulations and the
analytical formula, a correction has been applied to kr, as
described in the main text. In (a) the experimental kr is varied
for A2 ¼ 0 (plusses), 0.4 (circle), and 0.7 (square). In (b) A2 is
varied for kr ¼ 1:7 (plusses), 4.0 (circle), and 9.9 (square)
pN=�m. Decreasing kr and increasing A2 produces stronger
synchronization. The inset shows the transient to phase locking
between �1 and �2, for different initial conditions, in the HOT
setup (shown here with A2 ¼ 0, kr � 10 pN=�m, and F0 �
8 pN). It typically takes a few orbits for the phase difference
to decay into the stable in-phase synchronized state. When both
kr is small and A2 is close to 1, the strength of synchronization �
is not small compared to 1: theory becomes inaccurate and the
argument of the log in Eq. (4) can even become negative, as in
some sections for kr ¼ 1:7 pN=�m in (b).
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t0 is the intrinsic period of the rotors. We also have hx2i �
hðr��Þ2i. Rearranging, this leads to

h��2i � t0kBT

��r2
: (5)

The simulation data in Fig. 4(a) show h��2i plotted
against the quantity above, for a large variety of parameters
and at low temperature (ensuring small fluctuations). The
data collapse onto lines, with a slope that depends only on
A2. Since synchronization will be lost above a certain
threshold of h��2i, the scaling above gives insight into
the range of parameters that will allow synchronization
in the presence of noise. The slopes from 4(a) are plotted in
the inset graph and show a nontrivial dependence on A2,
initially constant and then growing at larger A2. We do not
have a full explanation of this, but we note that with non-
zero A2 the synchronization strength varies as the beads go
around their orbits; it would then be expected that the
variance of fluctuations is affected in a way that is not
simply described by the cycle average of the potential, as
discussed in [33]. The simulation data in Fig. 4(b) show the
applicability of Eq. (5) at higher temperatures, where
fluctuations are large. As the temperature increases, the
variance becomes superlinear, implying that the restoring
strength is less than linear for large phase shifts. At very
high temperatures, synchronization is lost and the distri-
bution of �� becomes uniform in the finite range [0, 2�],
so that the variance converges to a constant value.

To investigate experimentally the effect of noise, we
varied the distance between the rotors, as shown in the

inset of Fig. 4(b). This is equivalent to varying the tem-
perature, provided that the fluctuations are small enough
such that Eq. (5) holds. There is good agreement between
experiment and simulation (as before, with corrected kr)
for rotor separations & 30 �m (first three points), and an
increasing discrepancy at larger separations. Possible rea-
sons for this discrepancy include wall interactions, which
become more important at large d, or the other experimen-
tal problems discussed in the SM, emerging more signifi-
cantly at low coupling. Experimentally, synchronization is
lost between d ¼ 44 and 48 �m.
In the future, it should be possible to parametrize

and coarse grain complex biological cilia, or flexible
artificial systems driven by complex mechanisms, into a
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FIG. 3 (color online). Relaxation time depending on the Lenz
(�L) and Golestanian (�G) dimensionless control parameters.
Simulations (circles) are in excellent agreement with the theo-
retical model in Eqs. (3) and (4) (mesh surface). The thick line
separates the regions in which synchronization is dominated by
the flexibility of the rotor (Lenz synchronization, LS) or by the
angular modulation of the driving force (Golestanian synchro-
nization, GS). For �L þ �G close to 0, synchronization can be
lost because of thermal fluctuations; simulations were performed
in a range in which rotors are synchronized, for which the
relaxation time can be easily extracted.
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FIG. 4 (color online). Thermal noise leads to fluctuations of
�� around 0 (the in-phase state). (a) Simulations for variable
values of A2, kr, a, r, F0, d, and � in a regime of small
fluctuations (T ¼ 10 K). The variance of �� exhibits a linear
dependence on t0kBT=ð��r2Þ, with a coefficient that depends
only on A2 (as shown in the inset). (b) For a ¼ 1:74 �m,
d ¼ 35 �m, r ¼ 3:2 �m, F0 ¼ 5:5 pN, kr ¼ 12:97 pN=�m,
and A2 ¼ 0:0, the simulation temperature is varied from 0 to
1:5� 105 K. The line shows the variance from Eq. (5) multi-
plied by the coefficient obtained from (a). The inset is an
enlarged portion of the main graph (plusses), with experiment
results (square, experimental kr ¼ 5:9 pN=�m) obtained by
varying the rotor separation between 20 and 44 �m. Varying d
is equivalent to varying T when the fluctuations are well de-
scribed by Eq. (5). Synchronization was lost between d ¼
44 �m (last point on the graph) and d ¼ 48 �m (not repre-
sented: phase slips were observed and h��2i ¼ 1:7 rad2).
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corresponding system of rotors, matching the period,
radius, deformability, and angular anisotropy. The present
work will then allow a direct understanding of the synchro-
nization strength, particularly, (i) its magnitude relative to
thermal noise (thus the likelihood of phase slips, and loss of
synchronization by thermal fluctuations) and (ii) the main
mechanism determining it. Conversely, the results here also
indicate that hydrodynamic synchronization can be easily
tuned through various parameters, and can be made stron-
gest by allowing simultaneously great deformability and
significant modulation of the orbital drive. It will be fasci-
nating to explore where biological systems have evolved on
this parameter space and to understand the role of addi-
tional constraints such as optimal flow generation.
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