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Abstract. We present a method to completely characterize the viscoelasticity of Langmuir monolayers.
In contrast to existing techniques, both the compression and shear moduli are determined at the same
time, in a single experiment and with a standard apparatus. This approach relies on the measurement of
anisotropy in the surface pressure: the tension is measured in orientations perpendicular and parallel to
the compression direction. We apply this technique to the study of β-lactoglobulin spread monolayers, a
system that has been shown to develop a shear modulus at high concentration. β-lactoglobulin monolayers
are interesting both because of their importance in food science and because they exhibit universally slow
dynamical behavior that is not fully understood. Our results confirm that the compressional modulus
dominates the total viscoelastic response and also provide a complex shear modulus, emerging above a
critical concentration. We are able to describe how each of the dynamical response moduli is related to the
surface concentration and to the equilibrium osmotic pressure.

PACS. 83.60.Bc Linear viscoelasticity – 68.18.-g Langmuir-Blodgett films on liquids – 64.70.Pf Glass
transitions

1 Introduction

Experimental probes for the study of monolayer rheol-
ogy have not yet been developed as fully as rheometers to
characterize complex fluids in the bulk. This has caused
a lag in the study of these systems, and in particular of
polymer dynamics in two dimensions (2d) as compared to
bulk polymer solutions. The restricted dimensionality of
the interface strongly reduces the available configurations
for these systems. This can be expected to affect the me-
chanical and viscoelastic properties in a dramatic way. For
this reason we are interested in the dynamics of insoluble
macromolecules confined to two dimensions.

In this paper we present a new method for probing the
linear viscoelastic response of a monolayer. Our approach
has the main advantage of being very simple and relying
only on a standard apparatus available in any surface sci-
ence laboratory: the Langmuir trough and Wilhelmy plate
tensiometer, however used in a non-standard way. We ap-
ply this method to study of β-lactoglobulin monolayers,
finding surprising results for the elastic response moduli as
a function of the surface concentration: we interpret these
effects as a liquid to solid transition that occurs through
steric jamming.

a e-mail: pc245@cam.ac.uk

There are excellent reviews on the mechanical behav-
ior of proteins at interfaces [1–3] and also specifically on
spread protein films [4]. The protein we study here is
the archetypical β-lactoglobulin. It contains 162 amino
acids and has a molecular weight of about 18 kDa. The
molecule contains 2 disulfide and 1 free sulfhydryl groups,
and in the bulk it is globular with a well-defined secondary
structure. In solution at room temperature β-lactoglobulin
can be found in diversely aggregated forms depending on
the pH. A reason that motivates extensive interest in β-
lactoglobulin is its relevance in food science: it accounts
for 58% of the whey proteins in milk. It is strongly am-
phiphilic, therefore, its presence plays an important part
in determining the interfacial properties in milk-based sys-
tems. An example of practical importance is the control
of droplet coalescence in oil/water emulsions. This is a
process that reduces the interfacial area, so coalescence
can occur only if the film is compressed or the molecules
are forced out of the interface. Since both these effects re-
quire energy, protein films provide a very efficient, cheap
and bio-compatible emulsion stabilizing mechanism. Their
surface properties also play a role in other physical pro-
cesses like foaming, thickening and gelling.

In recent work we have studied a number of aspects of
equilibrium and dynamical behavior in the two main pro-
teins present in milk: β-casein [5] and β-lactoglobulin [6].
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These proteins generally unfold to a considerable degree
when they adsorb at the air/water or oil/water inter-
faces [1]. In monolayers of these proteins, at low concentra-
tion, we found a polymer-like 2d semidilute regime, and
verified that the mechanical properties of these systems
are in many ways analogous to the behavior of monolay-
ers made of neutral synthetic homopolymers [6]. In the
present work we focus on high concentrations of protein
adsorbed on the interface, near close packing. The cen-
tral result is the emergence of complex shear modulus
above a certain critical concentration, prompting ques-
tions about the mechanisms of aggregation in 2d. We dis-
cuss our findings in context of the existing knowledge on
polymer monolayers. In particular very slow stress relax-
ation is seen in many polymer monolayers and the reasons
for it are not fully understood. This has been motivating
a lot of recent work addressing polymer dynamics on slow
timescales (frequencies ω � 1 Hz) [7,8].

This paper is organized as follows. Section 2 contains
a brief recap of principles of 2d rheology and its particular
application for our method of measurement of anisotropic
surface pressure, the analysis of which allows us extraction
of new information about the system. Specific descriptions
of the materials, the experimental techniques and analysis
are the subject of Section 3. The results, presented in Sec-
tion 4, are divided into groups for compressional and shear
response, at low and high concentrations of surface pro-
tein. Here some discussion accompanies the results, how-
ever it is in Section 5 (Discussion) that we attempt to
bring all the results and our understanding together, as
well as to make contact with other studies and results in
the literature. Finally, in Conclusions we summarize the
work and outline the questions for future work.

2 Viscoelasticity in monolayers

In a classical Langmuir trough experiment, the surface
tension γ is measured as a function of concentration Γsurf

of the polymer adsorbed on the interface. As the concen-
tration increases the tension falls, and this change can be
seen as a lateral osmotic pressure Πeq = γ0 − γ, where γ0

is the tension of the free interface [9].
The response to a deformation in an isotropic 2d ma-

terial is characterized in general by two elastic moduli:
changes in area are controlled by the compression modu-
lus ε (often referred to as dilation modulus in the trade)
and changes in shape by the shear modulus G [10]. In or-
der to introduce our particular measurement technique,
we now very briefly review the notation and experimental
methods used in surface rheology, pointing to the reviews
by Miller et al. [10] and Joly [11] for further detail.

The mechanical response to compressions is propor-
tional to the compression elastic modulus ε. If the com-
pression is very slow (quasi-static) then an equilibrium
modulus is probed, which can be measured from the slope
of a pressure-area isotherm

εeq = −A
∂Πeq

∂A
, (1)

where A is the surface area and εeq is the inverse of a
compressibility. If the compression speed is finite, then
there might be friction resisting the compression flow, and
the resistance is characterized by the compression (dilata-
tional) viscosity ηd, defined as:

ηd = A
Π − Πeq

d
dtA

. (2)

In effect, equations (1–2) define the real and imaginary
parts of the complex dynamic compression modulus.

In practice, and traditionally in the field of study of
adsorbed monolayers, one is more interested in looking
at concentration dependence. The surface concentration
on the interface is simply related to the area, through
Γsurf = M/A, with M the total mass of the material
deposited on the interface (assumed constant for “in-
soluble” monolayers). Obviously decreasing the area in-
creases the surface concentration, and the measurement
of ε = −A(∂Π/∂A), equation (1), directly translates into

ε = Γsurf(∂Π/∂Γsurf).

2.1 Linear viscoelasticity

When a monolayer is both elastic and viscous, a com-
mon measurement consists in oscillating the surface area
(this being the strain variable in the problem) sinusoidally
around A0, so

A(t)/A0 = 1 + δA(t)/A0 = 1 + ∆A/A0 cosωt, (3)

where ∆A is the amplitude and ω the frequency of im-
posed area oscillation. The pressure Π is measured as
function of time. If the response is linear, then Π will
be found to oscillate with a certain phase shift compared
to the area oscillation:

Π(t)/Π0 = 1 + ∆Π/Π0 cos(ωt + ϕ). (4)

If the layer is purely elastic, then area and pressure are in
phase; if it is purely viscous, then they are 90 degrees out
of phase. It is a common notation to define the frequency
dependent complex modulus ε∗(ω):

ε∗(ω) = ε′(ω) + iε′′(ω) = ε′(ω) + iω ηd(ω). (5)

Here the real part is the elastic storage component of the
modulus: ε′ = |ε∗| cosϕ; the imaginary part is the dissi-
pative component: ε′′ = |ε∗| sinϕ.

As in bulk rheology, the shear elastic modulus G is de-
fined as the ratio between the increment of shear stress in
response to the shear strain increment; the shear elastic
viscosity ηs is the ratio between the shear stress and the
rate of shear. In the same way, in an oscillatory measure-
ment one can measure the complex shear modulus:

G∗(ω) = G′(ω) + i G′′(ω) = G′(ω) + iω ηs(ω). (6)

In principle, measuring the stress relaxation Π(t) follow-
ing an instantaneous step of strain also provides a com-
plete characterization of the rheology of a material, equiv-
alent to a set of measurements of the complex modulus in
oscillatory strain as a function of frequency.
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2.2 Measuring the compressional modulus

In important processes like emulsification and foaming,
the main deformations are compression and expansion
of the interface [12]. For this reason a lot of effort has
gone into developing experimental geometries to probe
this elastic modulus specifically. One approach is the de-
sign of Langmuir troughs with custom-made compression
barriers to achieve isotropic compressions [13]. Another
method has become popular and relies on assembling the
layer on a pendant drop and on varying the volume of liq-
uid in the drop. This is assumed to achieve the isotropic
expansion and compression of the surface, and by imag-
ing the gravity-distorted profile of the pendant drop, the
surface tension can be recovered as a function of area.

The simplest, and also the most common method of
studying the complex dilational (compression) modulus is
to perform oscillatory compressions of the film with the
Langmuir trough barriers, measuring the surface pressure
and the phase shift between the tension signal and the
surface area. It is well known that by performing such
uniaxial compressions the film is actually subject to both
compression and shear. Indeed it can be shown that the
response is nominally determined by the sum of the com-
pression and shear moduli. The contribution from the
shear modulus is usually overlooked, under the (often well-
justified) assumption that it will be negligible compared to
the compression modulus. For example in polymer mono-
layers in the semidilute regime, both the real and imagi-
nary components of the dynamic shear modulus are indeed
negligible, at least at low frequencies [14,15].

Techniques exist that rely on studying the dynamics of
surface waves. These waves may be either externally gen-
erated, like Excited Capillary Waves (ECW), or thermal,
like in Surface Quasi-Elastic Light Scattering (SQELS).
Both these techniques are probing the response to uni-
axial compressions and thus measure the combined com-
pression and shear modulus.

2.3 Measuring the shear modulus

The shear modulus describes the response of the system
to changes in shape that occur at constant area. A com-
mon geometry relies on detecting the angular displace-
ment and torque on a rotating disk sitting in the plane of
the surface. There are commercially available instruments
to measure surface shear with this method. One impor-
tant limitation is that it is very difficult to accommodate
this geometry into a Langmuir trough, making concen-
tration dependent studies difficult in practice. Adsorbed
protein films, very similar to the ones investigated in the
present work, have been recently studied in [16] with a
device of this type. There are also numerous other cus-
tom built designs. A particularly successful surface shear
rheometer images the linear displacement of a thin nee-
dle in a linear open-channel geometry [17]. This device
can be integrated into a Langmuir trough, and also has
the advantage of minimizing the contribution of the sub-
phase on the motion of the moving elements, making the

Fig. 1. Geometry of the compression in the Langmuir trough.
The two barriers compress the monolayer symmetrically with
small oscillatory movements in the x-direction. The distance
between the barriers and the Wilhelmy plates is typically
around 8 cm. A microbalance measures the force f that the
monolayer exerts on the Wilhelmy plates, corresponding to the
surface pressure parallel (Π‖) and perpendicular (Π⊥) to the
compression direction.

apparatus particularly sensitive. Another instrument was
described recently, in which the motion of a rigid disk
dragged through a monolayer is interpreted through the
solution of this corresponding hydrodynamic problem [18].

We have developed a method that does not require two
different experimental geometries for the separate mea-
surement of the compression and shear modulus. On the
contrary, we choose a uniaxial compression geometry, Fig-
ure 1, where the response is a combination of these mod-
uli, and then show how each component can be recovered.
It was recently demonstrated by Petkov et al. [19] that in
dense monolayers an anisotropy in surface pressure can be
detected through surface tension measurements performed
with different plate orientations. It is this effect that can
be used to measure the shear modulus of monolayers.

Starting from the general expressions for a homoge-
neous viscoelastic medium, and within the limits of a lin-
ear viscoelastic response, Petkov et al. showed explicitly
how to obtain the principal components of the stress ten-
sor τxx and τyy, as a function of the uniaxial strain applied
in the x-direction:

τxx = Π‖ − Π0 = (ε′ + G′)α + (ηd + ηs)α̇

τyy = Π⊥ − Π0 = (ε′ − G′)α + (ηd − ηs)α̇, (7)

where α is the relative dilation:

α = ln
A(t)
A0

� δA(t)
A0

and α̇ =
∂α

∂t
. (8)

For the oscillatory deformation δA(t)/A0 =
∆A/A0 cosωt considered above, equation (7) becomes:

δΠ‖(t) =
∆A

A0

[
(ε′ + G′) cosωt + ω(ηd + ηs) sin ωt

]

δΠ⊥(t) =
∆A

A0

[
(ε′ − G′) cosωt + ω(ηd − ηs) sin ωt

]
.

(9)
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In [19] this theoretical description was used to show that
adsorbed protein films develop a finite shear modulus. The
experiments were performed at a single frequency, and
were aimed at studying the fluidizing effect of added sur-
factant. Neither the frequency dependence or the dissipa-
tive components of the elastic moduli were investigated.
We apply the framework of equation (9) to study both
the real and dissipative components of the compressional
and shear moduli, within the range of frequencies allowed
by our experimental setup. By choosing to study a spread
monolayer system we can vary the area per monomer, thus
identifying several critical concentrations at which the sys-
tem undergoes major dynamic transformations.

3 Experimental methods

3.1 Materials

β-lactoglobulin (Sigma, L-0130, bovine milk, mixture A
and B types, min.90% pure, lot. 91H7005) is used as sup-
plied. 1 mg/ml solutions in deionized water are prepared
from the dried, powdered protein, stored in a refrigera-
tor and used within 4 days. Buffer solutions are made up
using deionized (Elgastat UHQ, Elga, U.K.) water. Phos-
phate buffer 0.02M is used to control the pH at 7.1, and
NaCl 0.02M is added to control ionic strength. Monolayer
material is spread on the liquid/air interface by careful
dropwise addition (�0.5µl) of the spreading solution with
a Hamilton syringe. β-lactoglobulin is spread in dilute con-
ditions, and left to equilibrate for 10−15 minutes.

3.2 Langmuir trough

We control the monolayers within a Langmuir trough
(mod. 610, Nima Technology, U.K.) and measure the sur-
face pressure using a microbalance sensor (type PS4, Nima
Technology, U.K.). We have measured the response time of
these sensors by instantaneously loading them with 10 mg
and 2 mg weights. This response time is between 0.1 s and
0.2 s, which is negligible compared to the timescales of the
slow dynamics that will be discussed in the remainder of
the paper. We use a Wilhelmy plate of 1 cm width, made
of filter paper. Once the filter paper is pre-soaked in the
subphase liquid, a very reproducible contact angle (�0◦) is
established and confirmed visually. The whole apparatus
is enclosed in a draught proof enclosure. Before spread-
ing, the surface is compressed and the top layer of the
subphase is aspirated with a pipette. We verify that the
surface is clean by checking that the pressure rise between
fully expanded and fully compressed is �0.1 mN/m.

In all of the experiments discussed in this paper,
proteins are spread in dilute conditions or at very low
pressures (�2 mN/m). This is to ensure that the initial
amount of overlap between different chains, which might
become permanent and could act as cross-links, is neg-
ligible. The concentration is then increased by using the
Langmuir trough barriers to reduce the available surface
area [20]. In this way, given that the chains are effectively

irreversibly adsorbed to the interface, proteins remain seg-
regated from each other. Figure 1 shows the geometry
of our setup. Notice in particular that the compression
is achieved with two symmetrical barriers, and that the
pressure sensors are positioned at the mid-distance. To
minimize dynamical effects and get the closest possible to
an equilibrium measurement, we compress the monolayer
at the slowest continuous speed enabled by our hardware:
the area change is ∼5 cm2 per minute, corresponding to
a strain rate of between 2 and 8 × 10−4 s−1.

A special rigid hook holding the Wilhelmy plates en-
sures that their orientation does not change in time. An
effect of the orientation of the plate with respect to the
barrier motion is sometimes reported in the literature,
usually for very concentrated films. This may be purely
an artifact, indicating a wrongly conducted measurement.
For example, in reference [21] it is noted that for concen-
trated β-casein films the surface pressure measured with
the parallel plate was smaller than with a perpendicu-
lar plate (Π‖ < Π⊥). This was done with a one-barrier
trough, and this geometry cannot prevent that for a suffi-
ciently rigid film the concentration around the Wilhelmy
plates may become inhomogeneous. The film has stopped
flowing “behind” the plate, and the pressure reading loses
significance. In our own laboratory, we clearly saw this
effect in preliminary experiments on β-lactoglobulin con-
ducted with a one-barrier trough (“asymmetric” com-
pression). We even observed that at high concentration
(Π � 8 mN/m) the film became sufficiently rigid to drag
the plate along. It is clear that as soon as the monolayer
compression modulus becomes high, or a shear modulus
develops, it becomes necessary to perform symmetric com-
pressions, with two-barrier troughs.

3.3 Oscillatory measurements

As described in Section 2.3, by performing dynamical ex-
periments we can probe both the storage and dissipa-
tive components of the compression and shear moduli.
A typical measurement is illustrated in Figure 2. Here
the surface pressure is recorded as function of time, as
the area is changed by imposed oscillatory barrier move-
ments. The surface pressure is measured with two Wil-
helmy plates at orthogonal orientations, giving the values
in directions parallel (Π‖) and perpendicular (Π⊥) to the
compression axis. It can be clearly seen from the plot that
|Π‖ − Π0| > |Π⊥ − Π0|. This is the signature of a finite
shear modulus, cf. equations (9). It can also be seen that
the surface pressure preceeds the strain, as expected for
a material with a finite dynamic viscosity (loss modulus).
In this example the oscillation frequency is 0.016 Hz, the
average pressure Π0 = 15.6 mN/m, ∆Π‖ � 0.5 mN/m,
∆Π⊥ � 0.4 mN/m, ∆A/A0 = 0.6% and the phase lag is
δt = 2.9 s.

In a typical experiment, data points are recorded ev-
ery 0.5 s. Traces comprising around 20 oscillation cycles
are saved for each frequency. This data is then analyzed
by finding the set of times {tA,i} at which the area value
is A0 and the set of times {tΠ,i} at which the pressures
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Fig. 2. The surface pressure recorded as function of time, as
the area (�) is changed by oscillatory barrier measurements.
The surface pressure is given in two orthogonal orientations,
(Π‖, �) and (Π⊥, �) with respect to the compression direction.
Note that |Π‖ − Π0| > |Π⊥ − Π0|, indicating a finite shear
modulus, as discussed in the text.

are Π0. Then the value of δt is calculated as the aver-
age of the difference between each of the time-set values:
δt = 〈tA,i − tΠ,i〉i. A set of {tΠ,i} is acquired for orthog-
onal and parallel orientations of the barriers, from which
two values δt⊥ and δt‖ are obtained. These are so close
that their difference cannot be detected by eye in the raw
signals of Figure 2. The value of the frequency is calcu-
lated as ω = 0.5/〈tA,i+1 − tA,i〉i. This approach is better
suited to our data as compared to a Fourier-analysis of
the traces, because it does not require a long term stabil-
ity (coherence) of the oscillations.

Given that each value of time will have an error
of ±0.25 s and that the set of times contains around
40 values, we estimate that the resolution in δt is around
±0.05 s. We hold the amplitude of oscillation at a con-
stant value, with ∆A/A0 between 0.6 and 1.5%. Martin
et al. [16] have shown that the response is linear up to 4%
in adsorbed β-lactoglobulin films. The range of barrier ve-
locities in our present experimental setup is limited: at
a fixed oscillation amplitude of around 2%, a frequency
range between 0.01 and 0.25 Hz is possible. This corre-
sponds to oscillation periods T between 4 s and 100 s.
Given the experimental conditions discussed above, the
theoretical resolution in determining δt/T is then 1%, in
the worst case. This can be improved by averaging over
more oscillation periods.

The values of ∆A and ∆Π are then extracted from the
data traces by calculating the average of the difference be-
tween the maximum and minimum values. We define the
maxima and minima as the mid-points between passing
through the average value. The uncertainty in our analy-
sis is calculated from the standard deviations in each of
the averaging procedures described above.

From these values we calculate:

|ε∗ + G∗| = A0

∆Π‖
∆A

|ε∗ − G∗| = A0
∆Π⊥
∆A

. (10)

The phase angle ϑ is equal to 2π ω δt and the elastic
and dissipative components of the response are obtained

from:

ε′ + G′ = |ε∗ + G∗| cosϑ

ε′ − G′ = |ε∗ − G∗| cosϑ

ε′′ + G′′ = |ε∗ + G∗| sin ϑ

ε′′ − G′′ = |ε∗ − G∗| sin ϑ. (11)

We have first performed the experiments with two
pressure sensors measuring at the same time, as shown in
Figure 1. This is how our experience could be described.
We have repeated every experiment after having rotated
both the Wilhelmy plates by 90o, taking care to match all
other experimental parameters (spreading amount, age of
layer, frequency values, etc.). To our surprise it was found
that one of our two sensors had a slower response time and
thus the comparison of the dynamical data between two
sensors was impossible. In this paper we report results ob-
tained with the single sensor, from repeated experiments
in two different geometries. It is clear that with two iden-
tical sensors, the simultaneous measurement of pressures
would result in a technique that is both more practical
and precise.

3.4 Analysis of time scales

While of course a driving system could be constructed to
extend the frequency range towards higher frequencies, it
is worth pointing out that there are fundamental problems
that would then complicate the experiments considerably.
Indeed the simple treatment of the monolayer, as summa-
rized in Section 2.3, treats the film like a homogeneous
material, implicitly assuming that propagation of strain
occurs on much faster timescales than the dynamical pro-
cesses described above. To consider the validity of this
approximation, an estimate of the time necessary to prop-
agate the strain over the entire monolayer is required. The
speed of the compression wave is surprisingly low in mono-
layers, and we shall see that the higher frequencies of our
experiments are already at the limit where the propaga-
tion time has to be taken into account. This is illustrated
in Figure 3, where the “raw data” time intervals δt (de-
fined as explained in Fig. 2) are plotted as a function of
the barrier oscillation period. It can be seen that as the
period becomes shorter, the values of δt fall and would
eventually reach zero. A part of this trend is due to the
finite time that the compression wave takes to travel from
the barriers to the pressure sensors. This gives rise to a
delay that erodes the phase difference between pressure
and area oscillations. This delay becomes more important
the higher the frequency.

Quantifying this effect is not trivial. Lucassen and van
den Tempel [22] have studied the propagation of com-
pression waves in monolayers. This requires a complex
experiment in which the surface pressure oscillations are
monitored as a function of the separation from the barri-
ers. They have shown that in the case of a purely elastic
surface the wave velocity is

v � ε′
√

ω

ηρ
. (12)
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Fig. 3. The “raw” values (•) of the time-shift between the
pressure and area curves, for a set of experiments at the same
monolayer conditions but different oscillation frequencies. Also
shown (×) are the compression wave propagation times τprop,
obtained from equation (12). The comparison shows that for
long oscillation periods it may not be necessary to consider
τprop, but it does become important at higher frequency. The
data shown here correspond to the conditions indicated in
Figure 2.

This formula is the dispersion relation that describes a
wave of frequency ω, driven by the surface elasticity (com-
pression modulus ε′) and damped by a subphase of vis-
cosity η and density ρ. It applies to waves propagating
away from an oscillating barrier in an infinite half-plane.
Typical velocities v are between 5 cm/s and 30 cm/s for
the conditions used in this work. The approximation of a
purely elastic layer is closely satisfied by most monolayers,
because the elastic components of the elastic modulus are
usually much larger than the dissipative ones. Knowing
the distance between the barriers and the pressure sen-
sors, we can use equation (12) to calculate the propagation
time τprop. Unfortunately equation (12) cannot be directly
applied to our experiments because in our geometry the
compression is symmetric, hence the monolayer velocity
relative to the subphase is zero in the middle of the trough.
For this reason the dissipation due to the subphase is over-
estimated by equation (12), so τprop is also overestimated.
We can consider the propagation time predicted by equa-
tion (12) as an upper bound, knowing that in our geometry
the propagation time will be smaller. In Figure 3 τprop is
plotted together with the experimental “raw” values of δt.
It can be seen that the correction due to the wave propa-
gation speed is almost negligible at low frequency and be-
comes important only at the higher frequencies. However,
because of the linear dependence on the elastic modulus
in equation (12), any phase difference between the signals
will eventually be dominated by the propagation time for
a low enough modulus. For the lowest frequency of our ex-
periments, we find that the two timescales become similar
around Π0 � 4.5 mN/m. Below this pressure, we cannot
use the simple treatment described here. From calibra-
tions with other samples (DMPC phospholipid monolay-
ers) that exhibit little dissipation at low frequencies [10],
we estimate that in our geometry the propagation time
is between a third and a half of the value given by equa-
tion (12). We apply τprop/3 as correction to the values
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Fig. 4. Typical values of the total elastic response of the
monolayer: ε′ + G′(�); ε′ − G′(�); ε′′ + G′′(�); ε′′ − G′′(�).
The monolayer conditions are the same as in Figures 2 and 3.
As described in the text, the mean of the filled symbols is
the compression modulus elasticity, and the mean of the open
symbols is the compression modulus dissipation. The semi-
difference of the symbols are respectively the shear elasticity
and dissipation.

of δt before calculating the phase angles ϑ as described
above.

Figure 4 shows the frequency dependence of the four
components of the response, obtained by using equa-
tions (11) and having included the correction for prop-
agation time. To summarize, it should be noted that the
phase differences found in this study are always very small
angles. Their precise determination and the issue of the
consideration of propagation time do not affect (to first
order) the values of the real components of the elastic re-
sponse (both compression and shear). This correction also
plays no role in establishing a difference between orthogo-
nal plate orientations. However it does become essential if
the frequency dependence of the dissipative components
is to be studied in detail, and we shall address this topic
in future work.

4 Results

Figure 5a presents the equilibrium surface pressure iso-
therms, obtained by very slow continuous compression of
the surface monolayer. The pressure isotherms measured
with continuous symmetric compression are independent
of the Wilhelmy plate orientation, within the experimen-
tal error, and the two separate curves for Π‖ and Π⊥ in
Figure 5a are indistinguishable. This equilibrium pressure
isotherm is taken as a reference curve, so that we can use
the value of pressure Π(A), or equivalently Π(Γsurf), to
recover the value of concentration in different experiments.

The set of results shown in Figure 4 is representative
of the frequency dependence seen at all the pressures and
concentrations explored in this work. The surface moduli
are nearly independent of frequency, at least within our ex-
perimental error which can be seen to be quite large. We
have interpolated the frequency dependent results to ob-
tain uniform data at 0.1 Hz at each concentration. These
results are shown in Figures 5b and c, as a function of sur-
face concentration Γsurf . The interpolated values shown in
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Fig. 5. (a) Surface pressure as a function of the surface concen-
tration, Π‖(Γsurf) and Π⊥(Γsurf). Two lines overlap to a very
good approximation, showing that this equilibrium modulus is
isotropic. (b) Solid lines are the equilibrium compression mod-
ulus εeq, obtained from the isotherms shown in panel (a) using
equation (1); (•) and (◦) are respectively the elastic ε′ and vis-
cous ε′′ components of the dynamic compressional response.
The dashed line is the power-law ε ∼ Γ 5.5

surf . (c) Dynamic shear
moduli as function of Γsurf , (•): G′ and (◦): G′′. The dashed
line shows that the shear elastic modulus grows approximately
linearly with the concentration, above 0.91 mg/m2.

Figure 5 are essentially an average over about 6 frequency-
dependent values, so the error (not shown) is roughly half
the error in the single measurements of Figure 4.

4.1 Compression modulus

4.1.1 Low concentrations and semidilute regime

Monolayers of β-lactoglobulin have a range of concentra-
tions, corresponding to pressures of a few mN/m, where

the surface pressure and the compression modulus εeq

both show a very clear scaling behavior as a function of
concentration. This behavior is typical of flexible polymers
in 2d, and is the evidence that the protein chains are un-
folded at the interface. In this approximation, the chain
conformation can be statistically described by the Flory
exponent ν: if the monomer size is a and the number of
monomers per chain is N then the radius of gyration of
the polymer is [23]:

Rg � aNν . (13)

Note that a random polymer coil strictly confined in 2d
has a very different topology from the usual 3-dimensional
chains, in that chain interpenetration is nearly impossible
and they generally do not share the same physical volume,
as in 3d.

At very low surface concentration the monolayer is in
a dilute regime: a gas of polymer chains confined to the
surface. The surface pressure and elasticity in this regime
are too low to be studied with our apparatus. A “semidi-
lute” regime begins above the concentration Γ ∗

surf where
individual chains would be forced to overlap. The corre-
sponding non-dimensional fraction of monomers on the
surface is Φ∗ = Γ ∗

surfa
2/[monomer mass]. From the simple

argument, that at this point all of the available area A is
occupied by chains of surface area R2

g, it follows that the
overlap concentration scales as

Φ∗ � N1−2ν . (14)

The equilibrium properties of polymers in the semidilute
regime regime are given by scaling laws, with exponents
related to ν. In particular both the osmotic pressure and
the equilibrium compression modulus scale like:

Πeq � kBT

R2
g

(
Γsurf

Γ ∗
surf

)yeq

and εeq ∼ Γ
yeq
surf ,

where yeq = 2ν/(2ν − 1). (15)

This was first demonstrated experimentally in refer-
ence [24]. Many protein systems follow the relation of
equation (15), up to a limiting pressure that lies typi-
cally between 2 and 7 mN/m [1]. This scaling behavior of
the compression modulus is shown by the dashed line in
Figure 5b, and a value of exponent yeq = 5.5 is found for
our system. This corresponds to Flory exponent ν = 0.61,
which is intermediate between an ideal (θ-condition) chain
and a chain in good solvent (ν = 0.75 in 2d).

The range of concentration where the monolayer is in
the semidilute regime and equation (15) holds is found
between 0.37 < Γsurf(mg/m2) < 0.75. From the lower
value for the overlap concentration Γ ∗

surf , and using equa-
tion (13) assuming that the proteins are chains with N =
162 (the number of residues in a β-lactoglobulin molecule),
we can extract an area per monomer of a2 � 18 Å2. This
is in good agreement with the expected monomer size,
considering that 3.5 Å is the known repeat distance in a
β-sheet motif. This confirms the picture of the monolayer
as a semidilute solution of flexible polymers with excluded
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volume constraint. We can therefore use equation (14) to
estimate that area fraction covered by monomers at the
onset of the semidilute regime is Φ∗ ≈ 0.32. Note that
while relative changes in concentration obtained by com-
pressing the layer are very precise, the absolute value of
the concentration is only known to within ±15%.

Within the semidilute regime, the experimental val-
ues of ε′ and εeq are indistinguishable. This can be seen
in Figure 5b for Γsurf up to 0.75 mg/m2. In Figure 5
we only show data from experiments reproduced by re-
orienting the surface sensors and matching conditions. We
have much more additional data from either of the two
orientations, that can be used to measure the compres-
sion modulus while the shear modulus is negligible. This
extensive data (not shown) confirms the full agreement
between ε′ and εeq.

Figure 6a shows the compression moduli plotted as
function of the surface pressure. This representation is
particularly useful to identify any regions where the elas-
tic moduli and the pressure have the same dependence on
the concentration, because in these regions there will be
a linear relation between the variables, see equation (15).
In Figure 6a, below the pressure of 5 mN/m (that cor-
responds to Γsurf = 0.75 − 0.8 mg/m2), both ε′ and εeq

depend linearly on the pressure. A line of slope 5.5 is seen
to interpolate this data very well, indicated by the dashed
line. It directly follows from the equation (15) and the
definition of Π , that the slope of the linear relationship is
given by the power-law exponent yeq, ε = yeqΠ . This ex-
ponent is also independently obtained from the Π(Γsurf)
curve fitting. Note that, although the equilibrium modu-
lus εeq is only linear within the boundaries of semidilute
regime, the dynamic storage modulus ε′ (• symbols) re-
mains so significantly into the region of solid packing.

The compression viscosity, represented by the loss
modulus ε′′ at constant frequency (◦ symbols), does not
follow a linear function of pressure. Such a linear relation-
ship would imply viscosity values significantly larger than
zero at low pressures. This does not follow from our data,
although, as discussed above, our measurement of viscos-
ity at low pressures is affected by the compression wave
propagation time. We suggest that the data is interpolated
very well by a parabola, indicated by the second dashed
line in Figure 6a. The choice of this scaling may appear
arbitrary, however, it is motivated by the recent discovery
that for a wide range of polymer monolayers the compres-
sion viscosity scales with a power of the concentration that
is twice the exponent found for the pressure and the elas-
ticity, ηd ∼ Γ

2yeq
surf [6]. This would indeed imply that the

dynamic viscosity would be a quadratic function of the
pressure, ηd ∼ Π2, at least in the semidilute regime.

4.1.2 Moderate and high concentrations

At concentrations above Γsurf = 0.8 mg/m2, that is pres-
sures Π > 5 mN/m, the equilibrium and dynamical
moduli have significantly different values, with ε′ > εeq.
The continuing linear dependence ε′(Π), at least until
Π = 12.5 mN/m, is extremely surprising, because in this
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Fig. 6. (a) Solid lines are the equilibrium compression modulus
εeq, obtained from continuous slow compression of the mono-
layer, as a function of the surface pressure Π (the two lines
correspond to Π‖ and Π⊥ orientations). Data symbols (•) and
(◦) are respectively the elastic ε′ and viscous ε′′ components of
the dynamic compressional response. Dotted lines identify the
regimes of low, moderate and high pressures, as described in
the text. (b) Dynamic shear modulus response as a function of
Π , (•): G′ and (◦): G′′. G′ grows linearly with pressure from
Π = 9 mN/m.

same region (0.75 < Γsurf(mg/m2) < 1) neither the pres-
sure and εeq, nor ε′, lie on the same power laws of the
concentration that held at lower concentrations, as can
be seen by the deviations from the low concentration fit
shown in Figure 5b by the dashed line. We return to this
delicate point in the discussion section.

At even higher concentrations the apparent εeq begins
to decrease with concentration. Here the dynamic mod-
ulus ε′ also drops slightly, before resuming an approx-
imately linear dependence on the surface pressure. The
last data point at the highest pressure Π � 20 mN/m
is probably anomalous, very likely due to collapse of the
monolayer into the subphase.

4.2 Shear modulus

A shear viscoelastic response develops in the compressed
protein monolayer at a concentration Γsurf � 0.9 mg/m2,
just above the value where the equilibrium and dynamical
compression moduli begin to differ from each other. We
would like to emphasize that the difference of this value
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and the upper boundary of semidilute regime, albeit small,
is significant and unambiguous. We do not attribute it to
the low detection threshold, because after its emergence
the shear elastic modulus is approximately linear both in
concentration, see Figure 5c and in pressure, Figure 6b. A
linearity as a function of concentration has also been ob-
served in other soft 3D systems, like emulsions compressed
above the random close packing concentration [25].

These results on the shear modulus are in excel-
lent quantitative agreement with measurements on spread
monolayers of β-lactoglobulin conducted very recently [14]
with a customized interfacial rheometer, under very sim-
ilar conditions to this study. This is a very significant
confirmation that the method presented here for mea-
suring the shear modulus is as effective as a dedicated
instrument.

The shear modulus results presented here can also
be compared to measurements on adsorbed protein lay-
ers. Adsorbed layers are reported to have shear moduli
10 < G′(mN/m)< 21 for 54 < ε′(mN/m)< 98 [19]. An-
other very recent study shows that the ε′ vs. Π curves for
adsorbed β-lactoglobulin layers [26] are practically indis-
tinguishable from the ones obtained here in spread layers.
Also the values of the shear modulus obtained in that
study are in agreement with our work: G′ � 10 mN/m
at ε′ � 100 mN/m. The conformation of adsorbed and
spread monolayers is not necessarily the same, but their
viscoelastic response appears to be very similar.

The dissipative shear component G′′ also develops at
the same pressure as the storage modulus G′. After the
initial onset, in the regime of high compression we find
that the shear response is predominantly elastic G′′ � G′.
At present it is premature to speculate on the detailed
dependence of G′′ on concentration given the quality of
this early data.

4.3 Aging behavior

In many adsorbed protein layers, viscoelasticity strongly
depends on the monolayer age. We have carried out a pre-
liminary investigation of aging in the system studied here.
After spreading in dilute conditions, as described above,
the monolayer was compressed to achieve the target pres-
sure. We have chosen three points: Π = 12, Π = 14 and
Π = 19 mN/m (cf. Fig. 6). The linear viscoelastic response
of these monolayers was measured at different times after
reaching the target pressure: 10 min, 1, 3, 5 and 22 h. The
compression and shear moduli were extracted from each
data set as described in the previous sections. We found
no definite trends in these moduli as a function of age, and
in particular – no dramatic growth in the shear moduli, as
has been reported by various groups for adsorbed layers
of β-lactoglobulin [16] and other globular proteins [27].

5 Discussion

The behavior of dynamic compression modulus at low
pressures (in the semidilute regime of the monolayer) con-
firms the results on concentration dependence that have

been obtained recently with a completely different tech-
nique (SQELS) [6]. Firstly, the elastic (storage) modulus ε′
scales with the same power law of concentration as the os-
motic pressure, and we can thus conclude that the effect
is due to the entropic cost of confining the random poly-
mer chains in 2d. Secondly, the compression viscosity (loss
modulus ε′′) scales with twice this power-law exponent, a
result that is not fully understood but nevertheless is likely
determined by the statistical properties of the semi-dilute
regime. SQELS probes thermal fluctuations of very small
amplitude and high frequency, and could only be used
at low values of the elastic moduli, essentially restrict-
ing the investigated range to the semidilute regime [28].
The agreement at low pressures between these two tech-
niques is very satisfactory, as it confirms that both are
probing equilibrium properties in the regime of linear re-
sponse. The anisotropic Langmuir trough technique pre-
sented here is more robust than SQELS, and the results
extend far beyond the semidilute regime, up to very high
concentrations.

A protein monolayer develops a shear modulus, that is,
becomes a nominal solid, as a result of developing a con-
tact network. This can equivalently be thought of as the
appearance of energy barriers preventing either the whole
proteins or parts of the polymeric chain from flowing un-
der thermal excitations. In a colloidal model system, a
shear modulus can develop from one of two processes: ei-
ther the formation of links (bonds) between different par-
ticles, driven by attractive interactions and leading to a
branched percolating structure, or the dynamical arrest
due to crowding, where each particle is effectively caged
by the neighboring hard-core repulsive interactions [29].

It is known both from simulations of hard-disk objects
in 2d [30] and from experiments on confined colloidal par-
ticles [14] that at area fractions around Φ � 0.8 these sys-
tems undergo a full kinetic arrest driven by the hard-core
repulsion. In the β-lactoglobulin layers presented here, the
equilibrium and dynamical response to compression differ
above the surface density Γsurf � 0.8 mg/m2. Assuming
the simple approximation that the area of surface covered
by each polymer is a2N (simply meaning N objects of
the area a2 each), this concentration corresponds to an
area fraction Φ � 0.53. This estimate is certainly crude,
and also we do not have a physical probe to determine
the detailed molecular conformation, so it would be mis-
leading to compare this number with the results for ideal
hard-disks. We should however note that this indicates a
relatively high coverage. This means that it is quite possi-
ble that the system is undergoing a kinetic arrest because
of steric jamming; the development of a shear modulus
and the very slow relaxation dynamics may all be conse-
quences of this dynamical transition.

It should be noted that in the existing literature on
protein monolayers, and on β-lactoglobulin layers in par-
ticular, this scenario is not proposed. Slow dynamics and
relaxations are often attributed to conformation changes
or very slow desorption [31,32]. The growth of a shear
modulus, and more generally the solid-like behavior has
been previously linked to the development of a network
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of bonds, that is the formation of a gel through local
attractive interactions [33]. In the case of adsorbed pro-
teins, the surface film is often multi-layer and intermolec-
ular bonds are observed with various spectroscopic tech-
niques [34]. In a complex system like a protein monolayer
various processes will take place, and it is difficult to find
direct evidence for or against each hypothesis. In the case
of a spread layer, we would however find it difficult to
understand why a cross-linked gel should only begin to
form at Γsurf 	 0.9 mg/m2, when the proteins already
had a significant window of concentrations where they
were held in close contact under compression (staring at
Γ ∗

surf ≈ 0.37 mg/m2 in our system). Our results suggest
that no significant effect of bonds established between seg-
ments of protein molecules takes place in a compressed
monolayer. Simulations of 2d networks of spherical parti-
cles have shown that the presence of irreversible flexible
bonds can lead to the emergence of anisotropy in the pres-
sure when the system is uniaxially compressed [35]. This
pressure anisotropy is qualitatively similar to the results
of our experiments. The simulations show that it can hap-
pen even for very low values of the concentration, provided
that the bonds form a percolating structure. As already
mentioned above, our experiments only show anisotropy
above a high threshold concentration. The simulation re-
sult itself does not prove the necessity of inter-molecular
bonds, on the contrary the same simulations also show
that, at very high density of spheres, even a system of
non-bonded particles will exhibit an anisotropic stress re-
sponse. This is closer to what we believe is happening in
the protein monolayer. The simulations therefore validate
the idea that the development of a shear modulus could
be determined by the close-packing of hard-cores leading
to jamming. It would be näıve to compare quantitatively
these simulations with the experiments reported here, be-
cause within the simulation each protein is approximated
as a smooth sphere, whereas a compressed 2D polymer
is a rough object whose movements are subject to more
constraints.

We now put forwards an argument to estimate the
concentration at which we expect the emergence of a
shear modulus, above the onset of the semidilute region
of compressed chains. Classically, the scaling description
of semidilute concentrations requires that chains are no
longer regarded individually. The whole system is treated
as a collection of monomers, whose connectivity only mat-
ters at increasingly small length scales: the total length of
polymer chains does not have any effect [23]. To under-
stand shear response in a monolayer we need once again
to consider individual chains. In the 2d compressed state
it is known that chain interpenetration is low for topolog-
ical reasons. Therefore we can approximate each chain as
a (deformable) disk, that has been compressed to a radius
R < Rg. Shear is by definition an area-conserving defor-
mation. However microscopically it has to be achieved by
deformations of individual chains, that will carry a free en-
ergy cost. Let us assume for simplicity that a shear strain
σ induces a deformation that is equivalent to a local addi-
tional compression. Then each chain reduces its area from

πR2 to (1 − σ)πR2. From equation (15) we can write the
free energy per chain:

F �
(

R

Rg

)2

kBT

(
Γsurf

Γ ∗
surf

)yeq

≡ kBT

(
Γsurf

Γ ∗
surf

)yeq−1

.

(16)
We can now estimate the free energy cost per chain due
to a strain σ:

∆F = kBT

[(
1

1 − σ

)yeq−1

− 1

](
Γsurf

Γ ∗
surf

)yeq−1

. (17)

This expression of the free energy penalty per chain ex-
plicitly depends on the applied strain, on the concentra-
tion (relative to the overlap concentration Γ ∗

surf) and on
the Flory exponent ν (through yeq). When the chains are
compressed to the point that ∆F ≥ kBT , they can be
regarded as hard disks, no longer able to deform and
therefore jammed – hence the emergence of the shear
elastic modulus. Taking the measured values yeq = 5.5,
Φ∗ = 0.32, Γ ∗

surf = 0.37 mg/m2, together with the typical
strain of σ = 1%, we find from equation (17) that the onset
of shear should occur at Γsurf = 0.73 mg/m2. This is rea-
sonably close to the measured value (∼ 0.9 mg/m2), con-
sidering the crude level of this estimate. Let us point out
that equation (17) predicts a non-trivial emergence of the
shear modulus above a critical strain. It also follows that
for a fixed strain of 1% the shear modulus will be negligible
while Γsurf/Γ ∗

surf ≤ 7 in good solvent conditions (yeq = 3),
and in a more restricted region Γsurf/Γ ∗

surf ≤ 1.45 for θ-
solvent conditions (yeq � 8). These predictions, as well as
the dependence of critical concentration on strain, could
be tested in future on other polymer monolayers.

The difference between the equilibrium compression
modulus εeq and the dynamical elastic modulus ε′ above
Γsurf = 0.75 mg/m2 is striking and significant. It almost
certainly is the result of emerging long-time relaxation dy-
namics in the system, giving rise to an additional elastic
component at frequencies higher than the inverse relax-
ation time. However we want to point out a subtle aspect
of the observed behavior: the dynamic modulus ε′ main-
tains the linear dependence on Πeq that was characteristic
of the equilibrium semidilute regime, in a region where Πeq

itself has long lost the power-law functional dependence
on the concentration. The only picture we can suggest
to make these two facts consistent is that in equilibrium
(given only thermal excitations) the protein chains be-
come progressively trapped above Π = 5 mN/m (the end
of semidilute regime), and the system loses its ergodicity.
Then the entropic cost of further confinement does not
grow with concentration as fast as in the semidilute fluid.
The equilibrium modulus loses the classical power-law de-
pendence on concentration because of freezing-out of some
conformations. On the other hand, under the small dy-
namical strain excitations imposed by the oscillating barri-
ers, the proteins (or any 2d polymer chains) are now forced
to explore all chain configurations, even their thermally-
frozen fraction. In other words the suggestion is that under
induced oscillating deformations the free energy landscape
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still has the same concentration-determined features as in
the fluid regime.

This scenario suggests a number of connections with
other model systems where dynamical transitions are well
known, and also calls for specific experiments to look for
characteristic dependencies on perturbation length scale
and frequency that are expected for the response func-
tions.

Lastly we would like to point out that very recent work
on polymer monolayers by various authors shows simi-
lar effects to the β-lactoglobulin monolayers studied here.
In particular in poly(vinylacetate) monolayers, for which
the air/water interface is a good solvent (in terms of the
Flory exponent for the radius of gyration), Monroy et al.
reported the development of a shear modulus at low tem-
perature, above a critical pressure [36]. The pressure de-
pendence of the complex compressional modulus was also
explored. On a different system (poly(4-hydroxystyrene)),
for which the air/water interface is a poor solvent, the de-
velopment of complex relaxation dynamics was observed
by either compressing the layer above a threshold pres-
sure or upon lowering the temperature. These results are
discussed as evidence of a glass transition [8]. These ex-
periments suggest to us that there is very likely a shared
underlying physics describing the onset of a shear mod-
ulus and the appearance of complex relaxation dynamics
in protein and polymer monolayers. Conversely, the estab-
lishing of a percolating network of chemical bonds (as the
main mechanism of shear response) must be very system-
specific and not universal as the proposed connections.

6 Conclusions

We have presented a method for fully characterizing the
mechanical properties of a Langmuir monolayer, by mea-
suring both the compression and shear modulus in a single
experiment. Our approach is based on standard apparatus
and therefore we expect that it may find widespread use.
The frequency range that is accessible is relatively nar-
row (0.01 < ω < 0.1 Hz), but this is comparable to other
surface rheometers.

We have used this technique to study the compres-
sion and shear elastic response in spread layers of β-
lactoglobulin. We find quantitative agreement with ex-
isting data on similar systems, and in addition we have
found and discussed the functional dependence of each dy-
namic modulus on the concentration. Throughout the con-
centration range, the response is dominated by the stor-
age component of the compressional modulus, and also
for shear elasticity the storage component is dominant:
ε′ > ε′′ > G′ > G′′. At relatively low concentrations
we find a classical 2d semidilute regime, where the shear
modulus is zero and both the storage and dissipative com-
ponents of the compressional modulus follow characteris-
tic power laws of the concentration. This behavior breaks
down above a threshold pressure, a behavior that we have
argued is consistent with a dynamical arrest transition
whereby the system becomes progressively non-ergodic.
At a next threshold pressure, a finite shear modulus begins

to evolve, this being a further evidence that the concentra-
tion is high enough for the direct interaction between the
hard core elements of the protein chains to come into play
forming a network structure. We have argued that there
is no evidence here for attractive bond-like interactions.

We have discussed our results in the wider context
of polymer monolayers, showing that there are a num-
ber of common universal features. The fact that simpler
and more controlled synthetic homopolymer systems may
exhibit (some of) the same behavior should be of interest
for the food science community. On the other hand a more
detailed study of some of the effects described in this work
poses a renewed challenge for novel experimental investi-
gations.

We thank the IRC for Nanotechnology and EPSRC for funding
of this project.
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