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Abstract. It is proposed that the physical structure of an observer in quantum
mechanics is constituted by a pattern of elementary localized switching events. A key
preliminary step in giving mathematical expression to this proposal is the introduc-
tion of an equivalence relation on sequences of spacetime sets which relates a sequence
to any other sequence to which it can be deformed without change of causal arrange-
ment. This allows an individual observer to be associated with a finite structure. The
identification of suitable switching events in the human brain is discussed. A defini-
tion is given for the sets of sequences of quantum states which such an observer could
occupy. Finally, by providing an a priori probability for such sets, the definitions are
incorporated into a complete mathematical framework for a many-worlds interpreta-
tion. At a less ambitious level, the paper can be read as an exploration of some of
the technical and conceptual difficulties involved in constructing such a framework.
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1. Introduction.

Either there is a physical domain to which quantum theory does not apply (the
“classical regime”), or we should be able to define “measurement”, or we should be
able to define “observer”. The boundaries of any “classical regime” are notoriously
difficult to draw; especially as quantum theory contains classical theory within its
structure(1). Quantum theory may simply break down; but we have already searched
for over sixty-five years for manifestations of such a breakdown. Defining “measure-
ment” means deciding, for example, whether in a Stern-Gerlach experiment we are
measuring spin directions or atomic positions or both, and deciding just when and
how each such measurement occurs. It may be easier to define “observer” merely
because observers are less various than measurements. Such a definition is attempted
in this paper.

The fundamental definition to be given is of a set of sets of sequences of quantum
states specified by an abstract structure of a particular type. The postulate underlying
this definition is that the physical structure of any possible observer will correspond
to such a set while the abstract structure models the information processing of the ob-
server. An a priori probability for these sets, and thus for the corresponding observers,
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will also be defined. Although it will be impossible to avoid making any comments
about “consciousness” in this paper, “consciousness” is not the central issue. As an
epiphenomenalist, viewing mind and matter as distinct types of existence and viewing
mind as having no physical role, I see mind as being describable as like a “ghost in
a machine”. The problem for this paper is to define the family of “machines” which
could be “haunted” by such a ghost. I do not claim that all such machines must be
haunted, but I do propose that only such machines are.

Let us start by recalling Everett’s original many-worlds argument (Ref. 2, pp 65–
68) in its simplest form. Everett imagines a universe consisting of an observer with
wave function ψ observing a system with wave function ϕ. The total wave function of
the universe is then a sum of tensor products of ϕ’s and ψ’s. If, at the beginning of a
measurement, with the observer in some fixed initial wave function ψ, the system is in
an eigenstate ϕa (respectively ϕb) of the operator being measured, then the observer
at the end will be in some definite corresponding wave function ψa (resp. ψb) and the
final total wave function will be ϕa ⊗ ψa (resp. ϕb ⊗ ψb). On the other hand, simply
by the linearity of the Schrödinger equation, if the initial wave function of the system
is a superposition λϕa + µϕb, then the final total wave function must be

Ψ = λϕa ⊗ ψa + µϕb ⊗ ψb. (1.1)

The idea now is that the observer enters into Ψ separately in a form described by
wave function ψa and in a form described by wave function ψb and that each of these
separate forms describes independent observers experiencing different experimental
results (ϕa and ϕb, respectively).

This argument is intriguing but it raises all sorts of new problems. In particular,
it calls for an analysis of classes of suitable observer states. At least for the observer,
we need something analogous to Zurek’s “pointer” basis(3) or to Deutsch’s “interpre-
tation” basis(4). I have already commented in section 5 of Ref. 5 on the relevance to
my work of analyses like Zurek’s which provide arguments to show that interference
effects can often be negligible. On the other hand, in my view, even without the im-
mediate problems raised by Foster and Brown(6), Deutsch’s mathematics, like that of
Everett, does not generalize beyond the elementary and unphysical models on which
it is developed. Any version of the many-world’s interpretation should deal with
relativity theory, with the macroscopic nature of observers, with stability under per-
turbations, and with the temporal development of individual worlds. In the present
work, we seek an abstract characterization of sets of sequences of states suitable for
the description of individual, localized, warm observers. The theory is adapted to
relativistic quantum field theory using the mathematics of states on local operator
algebras to describe macroscopic thermal systems. Stability under perturbations is
taken account of, particularly by working with a range of states for each observer at
each moment. Observer histories are described by sets of sequences of states rather
than just by the state, or the set of states, presently attained.

This paper is a sequel to Ref. 7. In that paper, I pointed out that, if quantum
theory is correct, then the question of what it is that we are observing when we observe
our own brains is by no means straightforward. I postulated that the elementary
observation was an observation of a two-status object (a “switch”) and proposed that
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observers exist as families of such switches. I went on to give a definition of a switch
as a particular sort of set of sequences of quantum states and I argued that such
switches exist in the human brain and are structurally stable. This paper focuses on
the idea of patterns of switches; proposing conditions under which two different sets
of sequences of quantum states are alternative manifestations of the same observer
and then discussing the assignment of probabilities to such sets. In other words, this
paper is initially concerned with an index set for something like a basis of observer
wave functions, or, more generally, with a classification of observer histories and then
with computing probabilities for such histories.

This paper is also a sequel to Ref. 5. There I considered the analysis of quantum
probabilities for localized observers. However, the treatment of observers in Ref. 5 is
unsophisticated, with no details of their definition being given.

The definition in this paper will be presented in seven parts, labelled A to G.
A and B define a pattern of switching events. An observer will correspond to such
a pattern. C defines the set of possible spacetime manifestations of the switching
pattern; in particular, the possible paths along which the switches can move. D
identifies the set of local observables on which, for a given spacetime manifestation,
the quantum states of the switches will be defined. E and F define the set of sequences
of those states. E requires that the states describe identifiable entities moving along
the paths defined in C, and F specifies the switching nature of those entities. Finally,
G defines the a priori probability of existence of an observer, allowing for all spacetime
manifestations compatible with the given switching pattern.

One major purpose behind this paper is to argue that it is possible to define a
probability measure on the futures of an individual observer, given a fixed bound on
complexity. The central step towards this will be taken by arguing that there are, in
fact, only a finite number of possible futures within a given bounded complexity. It is
in order to do this that the extra level of abstraction represented by looking for a set
of sets of sequences of states is introduced, whereas in Ref. 5 an observer was taken
to be defined by a set of sequences of states.

Fundamental to Refs 7 and 5 was a generalization of the idea of “wave-packet
collapse” or “reduction”. In working with localized, non-isolated, thermal systems
like a human brain, there are strong arguments for using density matrices rather
than pure-state wave functions. This means generalizing von Neumann’s projection
postulate, according to which the wave function of a system during a measurement
changes discontinuously to an eigenstate of some measured operator. According to
Refs 7 and 5, “measured operators” become switch statuses, quantum states are
never assumed to be pure, and a succession of “collapses” gives rise to, and has a
priori probability determined by, a set of finite sequences of such states.

Everett developed his theory as a version of quantum mechanics without a “col-
lapse processs”. By this he meant that, for example, after the observation discussed
above, the total wave-function Ψ of equation (1.1) was assumed to continue to be
the true total wave-function of the universe. However, “collapse” creeps back into his
theory at the level of appearance for an individual observer. Apparent collapse has
also been described as “world-splitting”, and, as several authors have warned(8−11),
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it is tempting to take world-splitting as a physical process and thus effectively re-
turn to the Copenhagen interpretation. In the present explicit analysis of a many-
worlds theory, observer-dependent collapse becomes a central focus. Nevertheless,
the temptation mentioned is avoided. It has to be because the states collapsed to are
observer-dependent and neither unique nor globally defined. There remains a univer-
sal background state (denoted by ω). Individual observers collapse the sequences of
locally-defined states that form their “worlds” out of ω, and it is relative to that state
that the a priori probability of such sequences is determined.

The probability of a given sequence of states for an individual observer will be
defined by a function which has been analysed in detail elsewhere(5,12), and which
is a generalization of conventional quantum probability. In particular, it generalizes
the idea that the probability of observing a component of a mixture is the coefficient
of that component, to the situation where the state which may be observed is not
an exact component of the given mixture. This is just what is needed for a spatially
localized analysis of Everett’s universal wave function. Using these fundamental prob-
abilities, we can define relative probabilities for a given individual observer to observe
given future events – at least, in as far as we can define such “events”. Empirically
observed textbook probabilities calculable in an “objective” physics shared between
many observers will be related to these probabilities by arguments along lines devel-
oped in Ref. 5. It will also be argued that the frequency that a given type of event
will be observed by any observer will be close to the textbook probability for the typ-
ical manifestation of that observer, where “typical” is defined using the fundamental
probability.

The philosophical objection to the idea of mind as a “ghost in a machine”, is
that if the mind has no physical power and neither more information nor more com-
putational ability than follow directly from the physical structure of the brain, then
one has gained little by the invention of the ghost. This objection, in my view, was
reasonable in classical physics as long as one was not thereby led to deny any distinc-
tion between subjective existence and the existence of objects – a haunted machine
does exist as a subject, an unhaunted machine does not(13,14). In quantum physics,
however, we cannot take the physical structure of the brain as a simple given(7). The
mind-brain distinction becomes interesting. Faced with a quantum mechanical picture
of the state of the world as being globally some horrendous superposition of different
observer histories and locally some, just as horrendous, approximate mixture, and
faced with the problem of defining or extracting the elements of such a superposition
or mixture, it is appropriate to use the simplest possible philosophical language.

In such philosophically unsophisticated terms, one can think of this paper as
presenting the following picture of reality: There is a fundamental initial state ω of
the universe – the horrendous superposition/mixture. There are many possible ways
in which this universal state can be experienced by observers. Each possible way
corresponds to a certain abstract structure, which is the structure required to define
the information processing of a particular observer. These abstract structures each
have possible physical manifestations which are patterns of sequences of quantum
states. The manifestations have their own a priori probabilities of existing as a part
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of ω and the a priori probability of an observer is the supremum of the a priori
probabilities of his possible manifestations. Observers like us, have an accurate picture
of reality. This is, firstly, in the sense that such observers define themselves through
a consistent narrative(15) with a relatively low rate of loss of a priori probability.
Secondly, it is in the sense that there is, in the main, a correspondence between the
way a part of the universe appears to such an observer and the states of highest a priori
probability assigned to those parts of the universe, given the observer’s existence. For
each such observer, all his physical manifestations of relatively high a priori probability
are closely similar and constitute his “machine”, “body”, or “brain”. The ghosts
haunt their machines making sense of them and of the world they interact with entirely
through their abstract information processing structures. The a priori probabilities
define likelihoods for each of their possible futures.

At the level of speculation, this sort of picture has been around for many years.
What I am interested in exploring here is the technical and conceptual difficulties in
giving explicit definitions to the ideas involved. As far as I am aware at the time of
writing, the definitions given below could be correct, and, at one level, the point of
this paper is nothing less than the formulation of a complete set of definitions, with
details open to critical analysis and development. At this stage however, I do not
expect many readers to have the enthusiasm to follow all of the details. Nevertheless
I hope that even those who skim the paper will gain a clearer understanding of what
the technical and conceptual difficulties are and of the possibility that they might not
be insuperable. I hope also that between the level of vague speculation and the level
of technical detail, there is a discernable intermediate level. This is the level at which
the importance of finiteness becomes apparent. It is the level of the decision to work
with density matrices rather than pure states; the level of the idea of interpreting
the functioning of a brain as a pattern of switching between sets of quantum states
linked to neural firing; the level of the idea of an abstract characterization of an
observer. Developing the technical detail is worthwhile, perhaps, mainly because
there is no other way of discovering, understanding, justifying, and revising a coherent
intermediate level.

I am not concerned here with the question of whether the sort of picture of
the world presented here is necessarily true or not but merely with whether it could
conceivably be true. It could conceivably be true if it is possible to provide suitable
definitions compatible with our general knowledge of quantum physics. I attempt to
do this here. One might begin to believe that it actually is essentially true, if one
eventually became convinced that it provided a complete and consistent interpretation
of quantum mechanics and one could not find any plausible alternatives.

From the outset, two vital constraints on any postulated physical structure for
observers should be noted:
1.2) Humans possess such structure.
1.3) The only entities which can with significant a priori probability possess such

structures, at the human level of complexity, are entities which we would be
prepared to believe might be physical manifestations of consciousness.
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2. The light bulb model and the translatability claim.

Some things are observers and some things are not. Of course, one could deny
even that, saying instead that all interactions lead to, or are in themselves, obser-
vations. However, I propose that things like books, sand beaches, stars, and vats
of liquid helium are not observers while things like humans are. The problem is to
decide what in this context makes a thing “like” a human. It might be the possession
of some “vital fluid”, but anatomists have long since given up their search for this.
It might be a level of complexity, but I cannot see how to define complexity in such
a way as to rule out stars, sand beaches, and books (even very, very long books). It
ought to involve the possession of a functioning brain, but not the facts, for example,
that that brain in constructed through a carbon-based biochemistry, is about 1.5kg
in weight, and functions at around 310◦ K. It ought, in other words, to involve some-
thing about the brain which can be abstractly characterized, and, I propose, that it
is the existence of the brain as an information processor processing a finite amount of
information through a finite number of two-status elements or “switches” which have
a particular quantum mechanical description.

It is possible to disagree, as Penrose(16) does, with the very first step in this
proposal. This is the claim that humans as observers could be arbitrarily well mod-
elled by finite information processors. In my opinion, even flashes of mathematical
insight have physical structures describable, quantum mechanical refinements apart,
by patterns of electric fields across neural membranes, and such descriptions can be
approximated by a finite amount of information sufficient to encode the insight. A
similar opinion is expounded, at length, by Hofstadter (Ref. 17, chapter 17). Other
parts of Ref. 17, in particular chapter 6 on “the location of meaning”, provide useful
discussions of issues related to this section.

A geometrical pattern of switches is a set of two-status objects which move along
defined physical trajectories changing status at defined times. Two distinct concepts
are involved in defining such a pattern. On one hand, we need a simple, natural,
abstract definition of “two-status” in quantum mechanical terms. This is treated in
Ref. 7, and we shall leave the definition arrived at there to one side for the moment.
On the other hand, we have the idea of a geometrical array of moving objects which
acts as, or can be interpreted as part of the hardware of an information processor.
The suggestion is that this part is all that is relevant to the information processing
structure of the observer. This can be modelled as follows:

The Geometrical Light Bulb Model The information processing structure of
any observer can be perfectly modelled by a finite set of light bulbs moving through
space-time along well defined finite paths and turning on and off a finite number of
times.

Switches are referred to as “light bulbs” in this model, partly to underline that
this is not itself a quantum mechanical model, and partly as a metaphor stressing how
much of the hardware, which would be necessary for the construction of a functioning
model, is being postulated here to be irrelevant to the mirroring by that model of
a possible observer. In particular, all the structure which “causes” the switches to
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switch or the light bulb to flash is viewed as irrelevant. The light bulb model is
exemplified by the following model of information processing in the human brain:

The Geometrical Neuronal Model The information processed by a brain can be
perfectly modelled by a three dimensional structure consisting of a family of switches,
which follow the paths of the brain’s neurons, and which open and close whenever
those neurons fire.

In Ref. 7, this model (referred to there as the “neural model”) was ultimately
replaced because it was argued that neurons are not elementary quantum switches.
The replacement in Ref. 7 has similar information processing content but involves the
sodium channel molecules which, according to Ref. 7, can function as such switches:

The Geometrical Sodium Channel Model The information processed by a
brain can be perfectly modelled by a three dimensional structure consisting of a
family of switches, which follow the paths of the brain’s sodium channels, and which
open and close whenever those channels open and close.

Ref. 7 focuses on sodium channels in order to show that at least some quantum
switches do exist in the brain. However, I shall indicate in section 6 of this paper
that a switching structure involving every such channel might be of such low a priori
probability, in the sense of Ref. 5, that if that level of a priori probability is taken
as significant then constraint 1.3 would not be satisfied. Such a structure might,
therefore, not be appropriate as a model of an observer. Nevertheless, the techniques
developed in Ref. 7 remain relevant and will be used, in section 6, to discover more
suitable alternative sets of quantum switches – one candidate being the set of immo-
bilized sodium channels. We shall denote by “neural switches” any of the possible
quantum switches:

Definition A “neural switch” is any entity in the human nervous system which
satisfies the definition of a quantum switch given in Ref. 7 and which has switching
behaviour determined by the firing of a particular neuron.

Mobile sodium channels, for example, however improbable the structures to which
they give rise, are neural switches, but entire neurons are not.

The Geometrical Neural Switch Model The information processed by a brain
can be perfectly modelled by a three dimensional structure consisting of a family of
switches, which follow the paths of a sufficiently large collection of neural switches,
and which open and close in unison with those switches.

The notion of a sufficiently large collection will be discussed below.
None of these models say anything about the meaning with which the observer

invests his pattern of switches. That meaning, indeed, does not inhere in the physical
structure, it is just that physical structure of a certain kind is needed before meaning
can inhere. Return to the light bulb model as the simplest example. No attempt has
been made to classify patterns of light bulbs. A small set of light bulbs could not be
given a very interesting meaning, and a random sequence of flashing presumably has
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no meaning. However, the claim made by the model is not affected by the suggestion
that some sets of light bulbs are not models of observers.

What the model does suggest is that there should be some method of translating
a suitable pattern of flashing lights into a meaning which, at least in outline, should be
unique. This is to claim that another observer, a “reader”, given arbitrary computing
power but no prior knowledge of the life history he is to deduce, would be able, by
considering the pattern of flashing from its beginning, to come up with a statement
about the current flashing like “Ah, he’s complaining because he thinks the train is
going to be late again”.

If this “translatability” claim were not true, then the characterization of physical
structure of observers given in this paper could still be valid, but only if physical
structure was only a part of the observer’s information processing structure. This is
conceivable. I see an observer as needing physical structure only in order to deter-
mine the a priori probability of his existence and of his possible futures. Sufficient
structure is given in this paper to yield a theory of a priori probability compatible
with observation and with relativistic quantum field theory (Ref. 5 and below).

Nevertheless, I think that the translatability claim is plausible when applied to
neural switch models. Indeed, the statement that we understand the world purely
through the functioning of our brains, seems to me to be the statement that, for some
sort of brain model, some version of the translatability claim holds. The novelty here
is the suggestion that that model could be as simple as a geometrical light bulb model.
Such a suggestion would be of little interest in classical physics because every aspect
of the total state of the brain could be assumed to be given. In quantum theory,
however, we must choose which variables we wish to observe. Here we are looking
for a minimal and finite description of the observer as observer of his own brain. We
shall use the translatability claim as a guide to strip even the geometric light bulb
model of structure.

The translatability claim can be made with different strengths. The strongest
form is:

STC) Any light bulb model can be translated uniquely and by a natural algorithm
which can be found by the exercise of reason.

Even if this claim were true, it would not reduce mind to matter, nor make any
physical exemplification of a quantum switching model necessarily conscious. I view
STC as being implausible.

A much weaker form is:

WTC) Members of the class of light bulb models which could correspond to human
neural switching models, could be translated by a reader with a sophisticated knowl-
edge of general human biology but no prior knowledge of the specific life histories to
be deduced.

I believe that the following intermediate version is also plausible:

TC) Members of the class of light bulb models which could correspond to human
neural switching models, could be translated by an extra-terrestial reader with no
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knowledge of Earth’s biology, given only one example and, at most, some general
hints.

If a human neurophysiologist was given a pattern of neural firings and asked to
find its meaning then he would start with a knowledge of neural anatomy, interconnec-
tivity, and function. He would know, for example, that visual information is carried
by the optic nerve to the back of the brain. The extra-terrestial reader is assumed
to have none of that knowledge. He must deduce interconnectivity from statistical
measures of the extent to which one light bulb flashing tends to follow or proceed an-
other. In fact, if he is to translate the sort of models to be introduced below, he will
need to start by identifying groups of neighbouring bulbs, corresponding to groups of
switches on particular neurons. Statistical analysis will eventually allow him to dif-
ferentiate between “input” groups and “output” groups. This, of course, depends on
the contingent fact that for a pattern of neural firing such differentiation is possible.
Repeated patterns on some of the input groups leading to repeated output patterns
could be given names and analysed for interconnections at a higher level.

Does the pattern of neural firing experienced in the first year of life allow the
names “mother” and “hungry” to be distinguished meaningfully without a prior la-
belling of some internal neurons as “happy” and “unhappy”? Certainly, the corre-
lations made to “mother” and to “hungry” are different. “Mother” tends to follow
closely after “hungry”, but not vice versa.

Our ability to see how such translations should be made is helped enormously
by our knowledge of what human brains have evolved to do and how they tend to
do it. Initially, the extra-terrestial reader has none of that knowledge. All that he
has is correlation. If he is to be able to make a complete translation working purely
on the basis of the correlations, then he has to define “train”, for example, in terms
of correlations to patterns with other correlations. TC states that this can be done,
although it allows for the reader to be given some help: for example, by the hint that,
in the earlier stages of life, calm, regular patterns of excitation could be translated
as “happy” and disquiet, random, violent patterns of excitation as “unhappy”. TC is
a claim about the existence of sufficient correlations between identifiable patterns of
excitation, or, in other words, about richness of structure. Without hints, the reader
would have to guess his starting point. As there is a possible translation, it would
be possible for him to guess right. It is plausible that no wrong guess could give a
coherent story.

3. Minimal structure and the plurality problem.

Although much of the apparent structure has been stripped out of the brain
in reducing to the geometrical neural switching model, that model surely retains
unnecessary structure. It seems implausible that the detailed path of, for example, an
ion channel or a piece of neural membrane, should really be relevant to the information
processing done by the brain. Irrelevant structure is a particular problem in a many-
worlds interpretation of quantum theory, because it is difficult to avoid the assumption
that all the physical structures which can be observers are equivalent and that all may
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exist with their own a priori probability. A slight alteration in a switch path should
not correspond to a new observer. This metaphysical problem is reflected in the
physical problem of defining an a priori probability measure on sets of observers. A
solution, sufficient at least for the second problem, lies in defining an equivalence
relation between instances of a geometrical light bulb switching model to determine
when two instances may be assumed to correspond to the same observer.

The metaphysical problem, which I shall refer to as the “plurality problem”, is
not entirely resolved in this paper. There may be many different physical observer
structures, as defined below, all corresponding to what we would (naively?) think
of as the same human at the same moment. Nevertheless, this paper does take the
essential step of reducing to only a finite number of such structures, at least for any
given bound on improbability. Some people find any “many-worlds” interpretation
unacceptable because of the suggestion that we may have many different futures.
The plurality problem makes that suggestion in the strong form that some of these
different futures may be indistinguishable to external observers over extended periods.

I suspect that if one could construct a coherent theory from a many worlds
theory like Everett’s using a splitting into elementary orthogonal basis vectors, then
one would also have a plurality problem. I also suspect that the degree of plurality in
such cases, would be much worse than that contemplated here, as one would be using
a much finer splitting.

In its most difficult aspect, the plurality problem is a sort of converse of the
translatability claim. Instead of asking for the meaning of a pattern of neural switch-
ings, we must ask for a specification of the class of patterns of neural switchings which
could underlie physical structures for an observed observer. In particular, dropping
a single switch, or altering its switching sequence, should not essentially change the
translation of a pattern of switchings on, say, 1015 switches. Would dropping 1010

switches make a significant difference? Reducing the number of switches tends to
increase a priori probability, so there does not seem any way of finding a natural
maximal number of switches to associate with “an” observer.

The specific problem that it may often be possible to remove switches from
observer structures I shall refer to as the “trimming problem”. Although this warrants
a name because of its simplicity, I think that it can be left unsolved without destroying
the rest of the paper. Once again, it is sufficient as a first step to argue that some
switching structures are observers, even if we do not have any theory about which, if
any, possible structures are not observers.

Returning to the problem of identifying minimal information processing struc-
tures, note that in considering the translatability claim, correlations between repeated
patterns of switchings were fundamental. The minimal structures to be assigned to
an observer must retain these correlations and patterns. One important source of
information is the time-ordering of the switchings both for individual switches and
between separate switches. If each switch switches sufficiently often, then this in-
formation will contain the correlations, and it may also contain patterns, albeit in a
different form. In the geometric model, patterns are naturally found by looking for
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repeated groupings of switchings on neighbouring switches. If we discard the geomet-
rical information, then we need a new definition of “neighbouring”, or, equivalently,
of “similarity”. Just given a time-ordering on a large set of long-lived switches, we
can define degrees of similarity between a pair of switches by counting, for example,
the number of times which one switch switches exactly once within a switching cycle
of the other switch. Other degrees of similarity can be assigned using the strength of
correlations between groups of switches similar in the first sense.

The problems with this approach are that, not only are neural switchings too
widely-spaced and too numerous to be strictly time-orderable, but also switches in the
human brain of high a priori probability tend to have short lifetimes. Both problems
can be solved by using a more general relation than a time ordering to express the
space-time arrangements of a sequence of events.

The more general relation, to be presented in the next section, will have equiv-
alence classes called “dockets”. The docket of a sequence of events will depend on
which pairs of events are timelike and which are spacelike and will also carry some
topological information. Once we have the definition of a docket and have dealt with
various subtleties connected with the labelling of switches the models of section 2 can
be modified. This yields for example:

The Minimal Light Bulb Model The information processing structure of any
observer can be perfectly modelled by the suitably labelled docket of the space-time
sets where a finite number of light bulbs flash on and off a finite number of times.

The Minimal Neural Switch Model The information processed by a brain can
be perfectly modelled by a structure consisting of the suitably labelled docket of the
space-time sets of switchings of a family of switches, which follow the paths of a
sufficiently large collection of neural switches, and which open and close in unison
with those switches.

The versions of the translatability claim should now be taken to refer to these
models. The minimal models provide much less information than the geometrical
models, so that the plausibility of TC and WTC depend all the more on contingent
facts about human neural switchings.

4. Definition and properties of dockets.

A docket is a geometrical structure in space-time defined as an equivalence class
of ordered sequences (Ai)

M
i=1 of suitable space-time sets. Two such sequences (Ai)

M
i=1

and (Bi)
M
i=1 will have the same docket if they have the same space-time, or causal,

arrangement – in other words, if, for every pair i, j, Bi is in the past of/spacelike to/in
the future of Bj exactly when Ai is in the past of/spacelike to/in the future of Aj – and
if one sequence can be continuously deformed into the other while the arrangement
is essentially unaltered. Much of the geometry is lost if we only consider space-time
arrangements, but readers with no prior contact with algebraic topology may wish at
first to concentrate on definition 4.2. There is some interesting mathematics arising
from the definitions in this section, but I shall merely outline some results here.
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Definition 4.1 A function r from pairs of path connected space-time sets to
{p, s, f, p ∧ s, f ∧ s, p ∧ s ∧ f} is defined by
r(A1, A2) = p if every point in A1 is in the strict timelike past of every

point in A2

r(A1, A2) = s if every point in A1 is strictly spacelike to every point
in A2

r(A1, A2) = f if every point in A1 is in the strict timelike future
of every point in A2

r(A1, A2) = p ∧ s if A1 ∩A2 = ∅ and there is a point in A1 in the null past
of a point in A2, but there are no points in A1

in the null future of any point in A2

r(A1, A2) = f ∧ s if A1 ∩A2 = ∅ and there is a point in A1 in the null future
of a point in A2, but there are no points in A1

in the null past of any point in A2

r(A1, A2) = p ∧ s ∧ f in any other case.

An elementary lemma, using the assumption of path connectedness, shows that
r(A1, A2) = p∧ s∧ f if and only if either A1 intersects A2, or there is a a point in A1

in the null past of a point in A2 and a point in A1 in the null future of a point in A2.

Definition 4.2 A space-time arrangement for M sets is a map

γ : {(i, j) : 1 ≤ i < j ≤M} → {p, s, f, p ∧ s, f ∧ s, p ∧ s ∧ f}.
The sequence (Ai)

M
i=1 has arrangement γ if r(Ai, Aj) = γ(i, j) for i < j.

Not all maps γ correspond to possible arrangements of sets. For example,
γ(1, 2) = p and γ(2, 3) = p requires γ(1, 3) = p. The set of possible arrangements
characterizes the dimension of space-time(18,19).

Definition 4.3
i) Let M denote Minkowski space. A ⊂ M is a space-time retract if there exists a

continuous map f : M→ A such that f(a) = a for all a ∈ A.
For example, any closed convex set is a retract, and if A1, A2, and A1 ∩ A2 are all
retracts then so is A1 ∪A2.

ii) Let ΞM denote the set of ordered sequences (Ai)
M
i=1 of space-time retracts.

iii) For an arrangement γ let

ΞMγ = {(Ai)Mi=1 ∈ ΞM : r(Ai, Aj) = γ(i, j) for all i < j}.

iv) Define γ by taking p = {p}, s = {s}, f = {f}, p ∧ s = {p, s, p ∧ s}, f ∧ s =
{f, s, f∧s}, and p ∧ s ∧ f = {p, s, f, p∧s, f∧s, p∧s∧f}. Thus if r(Ai, Aj) = γ(i, j)
then γ(i, j) is the set of possible relations between path connected subsets of Ai
and Aj .

v) For (Ai)
M
i=1, (Bi)

M
i=1 ∈ ΞMγ define (Ai)

M
i=1Rγ(Bi)

M
i=1 if and only if there exists a

continuous map F : [0, 1]× {1, 2 . . . ,M} ×M→M such that F (0, i, x) ∈ Ai and
F (1, i, x) ∈ Bi for all x ∈ M, F (0, i, a) = a when a ∈ Ai, F (1, i, b) = b when
b ∈ Bi, and, for 0 < t < 1 and i < j, r(F (t, i,M), F (t, j,M)) ∈ γ(i, j).

13



Proposition 4.4 Rγ is an equivalence relation.

proof
i) Let (Ai)

M
i=1 ∈ ΞMγ and let fi : M→ Ai be a retract of Ai.

Set F (t, i, x) = fi(x) to show that (Ai)
M
i=1Rγ(Ai)

M
i=1.

ii) If (Ai)
M
i=1Rγ(Bi)

M
i=1 with the map F then (Bi)

M
i=1Rγ(Ai)

M
i=1 with the map

(t, i, x) 7→ F (1− t, i, x).
iii) Suppose that (Ai)

M
i=1Rγ(Bi)

M
i=1 with the map G and (Bi)

M
i=1Rγ(Ci)Mi=1 with the

map H. Choose bi ∈ Bi. Define F by
F (t, i, x) = G(4t, i, x) for t ∈ [0, 1

4 ]

= G(1, i, 4( 1
2 − t)x+ 4(t− 1

4 )bi) for t ∈ [ 1
4 ,

1
2 ]

= H(0, i, 4(t− 1
2 )x+ 4( 3

4 − t)bi) for t ∈ [ 1
2 ,

3
4 ]

= H(4(t− 3
4 ), i, x) for t ∈ [ 3

4 , 1].

Then F has the properties required to show that (Ai)
M
i=1Rγ(Ci)

M
i=1.

Definition 4.5 The docket of (Ai)
M
i=1 ∈ ΞMγ is its equivalence class under the

relation Rγ .

Once the idea of using arrangements is accepted, the extension to dockets is
inevitable because exactly the same kind of barrier is passed in changing docket as in
changing arrangement.

Proposition 4.6 The number of dockets on M sets is finite.

sketch of proof Let |γ| denote the number of dockets with arrangement γ. Call an
arrangement γ strict if γ(i, j) ∈ {p, s, f} for all pairs i, j. For a non-strict arrangement
γ, let

N (γ) = {γ′ : γ′ is a strict arrangement with γ′(i, j) ∈ γ(i, j) ∀i, j}.
The first step in the proof is to show that |γ| ≤

∑
γ′∈N (γ) |γ′|. This is done

by constructing a map, like those defining Rγ , to relate (Ai)
M
i=1 ∈ ΞMγ to a point

(ui)
M
i=1 ∈MM with strict arrangement γ′ ∈ N (γ). The next step is to deal with strict

dockets. These correspond to components of

{(ui)Mi=1 ∈MM :
∏

1≤i<j≤M (ui − uj)2 6= 0}
so that the result follows from a theorem due to Whitney (Ref. 20, theorem 4).

By using more sophisticated techniques in real algebraic geometry, in particular,
the “Milnor-Thom bound”, (Ref. 21, Théorème 11.5.2), it is possible to show that
the number of strict dockets on M sets in 3 + 1 dimensional space-time is less than
or equal to 220M (M !)5.

From a mathematical point of view, the strict arrangements which are possible
in a space-time of s+ 1 dimensions, form an interesting class of finite posets(19).

Postulate 4.7 Two instances of a light model bulb will correspond to the same
observer if the sequences of regions occupied by the light bulbs when they flash have
the same docket.

14



Lemma 4.8 Let X = (Am)Mm=1 and Y = (Bm)Mm=1 be two ordered M -tuples of
space-time regions. Then X and Y have the same docket if
A) Bm = α(Am) for m = 1, . . . ,M , where α is a transformation in the identity

component of the Poincaré group or a space-time dilation.
B) X and Y are any pair of M -tuples of space-like separated regions.
C) X and Y are any pair of strictly time-ordered M -tuples.

Example 4.9 Suppose that (A1, A2, A3) has the unique docket defined by the
relations r(A1, A2) = p, r(A3, A1) = s, r(A3, A2) = s. Let ai ∈ Ai i = 1, 2, 3, and
chose co-ordinates so that a1 = (0,0), a2 = (x0,x), a3 = (y0,y).

Then y2+(y−x)2 > c2(y2
0 +(y0−x0)2) ≥ 1

2c
2x2

0, so that A3 is spatially distanced
from at least one of A1 or A2 by a distance depending on the temporal separation
between A1 and A2.

The proofs of 4.8 and 4.9 are straightforward. In lemma 4.8B, we have a docket
essentially without structure. In lemma 4.8C, we have correlations. Example 4.9
begins to indicate that when we have mixed spatial and temporal separations, we
are given non-trivial topological information. The use of dockets rather than simply
space-time arrangements makes this topological information quite rich. For exam-
ple, there is a space-time arrangement on 25 sets which is only possible in four (or
more) dimensions of space-time. The spatial co-ordinates of 4 of the sets define the
vertices of a tetrahedron with strictly positive volume. Pairs of distinct dockets with
this arrangement correspond to inversions of the tetrahedron. There is one set in the
arrangement which is spatially separated from all the other sets. Different dockets
correspond to that set having spatial co-ordinates either inside or outside the tetra-
hedron. Thus, in the mixed regime, dockets can express such fundamental spatial
information as handedness and containment. It will be argued in section six that
neural switching comes within this mixed regime. Indeed, with the enormous num-
bers of mixed-regime switchings in a human neural switching model, there will be a
vast amount of detailed topological information available from the switching docket.

There are many ways of quantifying this information. As an elementary example,
suppose that we have M switchings with switching docket d and arrangement γ.
Suppose that a pair of sets of switches correspond to index sets A,B ⊂ {1 . . . ,M}. If
there are few pairs a, a′ ∈ A such that γ(a, a′) = s and few pairs b, b′ ∈ B such that
γ(b, b′) = s, while there are many pairs a ∈ A, b ∈ B such that γ(a, b) = s, then we
have a numerical measure of the extent to which A and B are pairs of geometrically-
small spatially-distant sets.

The final definition of this section will allow us to impose a time-arrow on ob-
servations. Time ordering of state collapses or of measurements is a crucial problem
in reconciling relativity theory with any interpretation of quantum mechanics. In
the present theory, we shall avoid making an arbitrary choice of time-ordering by
maximizing a priori probability over all re-orderings of sequences of collapses which
are future-directed – or, more precisely, are never strictly past-directed. It is only
because we are considering individual localized observers that this process will give
us an adequate time-arrow.
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Definition 4.10 An arrangement γ is ascending if

i < j ⇒ γ(i, j) ∈ {p, s, p ∧ s, f ∧ s, p ∧ s ∧ f}.
A docket is ascending if the corresponding arrangement is.

Any arrangement can be re-indexed to give an ascending arrangement. It should
be noted that this would not be true if f ∧ s was not included in the set of possible
values.

5. The formal definition of a minimal switching structure.

The first three steps (A, B, and C) in giving a mathematical definition for the
concepts introduced so far, are fairly straightforward; indeed, they do little more than
introduce notation.

A A minimal ordered switching structure SO(M,N, d, ϕ) is given by:

A1) Two positive integers M (the number of switchings that have occurred) and N
(the number of switches).
A2) An M -component ascending docket d. (This defines the spacetime relations
between switchings.)
A3) A function ϕ : {1, . . . ,M} → {1, . . . , N}. (ϕ(m) = n is to be interpreted as
meaning that the mth switching is a switching of switch n.)
A4) Write ϕ−1(n) = {jn(k) : k = 1, . . . ,Kn}, where jn(1) < jn(2) < . . . < jn(Kn).
(Switching number jn(k) is the kth switching of switch n. We shall write j(ϕ)n(k) in
place of jn(k) in B to display the dependence on ϕ.) Then, for each n ∈ {1, . . . , N},
Kn ≥ 4. (A switch must open and close at least twice if all the constraints imposed
below are to be brought into play.)

As it is assumed that each switching is a change of switch status, it is not neces-
sary to refer explicitly to switch status in this definition – one switch status will be
labelled by jn(k) for k odd and the other by jn(k) for k even.

Next, we consider the various allowable re-orderings of switchings in such a struc-
ture.

Definition 5.1 Let π ∈ SM – the permutation group of degree M , and let d be a
docket on M sets. Then dπ is the docket defined by

(Am)Mm=1 has docket d ⇐⇒ (Aπ(m))
M
m=1 has docket dπ.

B Given M , N , d, and ϕ as in A, the minimal switching structure S(M,N, [d, ϕ])
is defined by

S(M,N, [d, ϕ]) = {SO(M,N, d′, ϕ′) : d′ is ascending and ∃π ∈ SM with d′ = dπ,

ϕ′ = ϕ ◦ π, and π(j(ϕ′)n(k)) = j(ϕ)n(k) for each n and k}.
(Any re-ordering is allowed which is ascending and which, for each n and k, assigns
the same possible sets to the kth switching of switch n.)
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The label n attached to the switches is arbitrary, but it is not necessary to
consider re-orderings over this label as it has no effect. The switching label m, on the
other hand, is used to order the state collapses when a priori probability is computed.

The next step is to consider the idea of a switch as a two-status “object” moving
through space-time and changing status in specified regions. An object will be defined
to be an entity which follows a path x(t) through space-time. The regions occupied by
the object will be a set {Λ(t) : t ∈ [0, T ]} of Poincaré transformations of some initial

region Λ with x(t) ∈ Λ(t). We shall have a path L(t) in L↑+ (the restricted Lorentz
group) such that Λ(t) = {x(t)+L(t)(x−x(0)) : x ∈ Λ}. We shall assume that L(0) is
the identity transformation, so that Λ(0) = Λ. As in Ref. 7, this path will eventually
be chosen as being that along which the change in local quantum state is minimal;
except, of course, when the object changes status. Nevertheless, even at the single
switch level, Ref. 7 is now being extended, as only time-translations were considered
in that paper. We shall require that x(t), L(t), and Λ(t) are continuous, but we shall
allow for discontinuities in the four-velocity of the switch and in the derivative of L(t)
when changes in status occur.

A Poincaré transformation (x, L) ∈ P↑+ (the restricted Poincaré group) has two
components. x is a space-time translation and L is a Lorentz transformation. (x, L)
acts on y ∈M by

(x, L)y = x+ Ly. (5.2)

In particular, a transformation sending x(0) to x(t) is (x(t) − L(t)x(0), L(t)). This
also sends Λ to Λ(t). It is necessary to impose a consistency relation on the action
of these components on Λ. Assuming that t is proper time on the path x(t) (i.e.

that

(
dx

dt

)2

= −1), x(t) will have four-velocity u(t) =
dx

dt
. The consistency required

is that changes in this four-velocity should determine changes in the velocity, up to
spatial rotation about x(t) in the co-moving frame, given to the region Λ by the
Lorentz transformation L(t). Suppose that switchings occur at parameter times tk.
Then, for t ∈ [tk, tk+1) we shall require that

u(t) = L(t)u(tk). (5.3)

The transformation L(t)−1 makes Λ(t) look like a translation of Λ and makes
u(t) look like u(tk).

(5.3) can be integrated to give x(t) = x(tk)+

∫ t

tk

L(t′)u(tk)dt′. The paths x(t) and

Λ(t) then are determined by x(0), by the path L(t), and by the set of four-velocities

u(tk).

(
dx

dt

)2

= −1 will be a consequence of (5.3) as long as (u(tk))2 = −1.

The arbitrariness apparently introduced by the choice of x(0) will be resolved
later by maximization of a priori probability over all choices. There is also arbitrari-
ness in the choice of Λ. We shall allow Λ to be any spacetime retract (definition 4.3),
again maximizing a priori probability in due course.
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C The geometrical manifestations of SO(M,N, d, ϕ) comprise the set
GSO(M,N, d, ϕ) of all sequences

((tm)Mm=1, (x
n(t), Ln(t),Λn, Pn, Qn)Nn=1) such that

C1) tm ∈ R for m = 1, . . . ,M . We shall write tnk for tjn(k) and Tn for tnKn . The tnk
satisfy 0 = tn1 < tn2 < . . . < tnKn

= Tn. ( tnk is the parameter time at which the
kth switching of switch n occurs.)
C2) The xn(t), n = 1, . . . , N , are continuous paths in M defined for t ∈ [0, Tn] and
with xn(0) ∈ Λn.

C3) The Ln(t), n = 1, . . . , N , are continuous paths in L↑+ defined for t ∈ [0, Tn],
having a right derivative Ln ′(t+) for t ∈ [0, Tn), and with Ln(0) = 1.
C4) For n ∈ {1, . . . , N}, k ∈ {1, . . . ,Kn − 1}, and t ∈ [tnk, tn(k+1))

xn(t) = xn(tnk) +

∫ t

tnk

Ln(t′)un(tnk)dt′ where un(tnk) is

a four-vector. (This implies that
dxn

dt
(t) = Ln(t)un(tnk).)

C5) The un(tnk) are timelike, future directed, and (un(tnk))2 = −1. (It follows from 4

that un(t) =
dxn

dt
(t) has the same properties and that the path xn is timelike, future

directed, and parametrized by proper time t.)
C6) The Λn, n = 1, . . . , N , are space-time retracts.

Set Λn(t) = {xn(t) + Ln(t)(x− xn(0)) : x ∈ Λn} for t ∈ [0, Tn].
Set Ajn(k) = Λn(tnk).
C7) (Am)Mm=1 has docket d.
C8) For n 6= n′, t ∈ [0, Tn], and t′ ∈ [0, Tn′ ], Λn(t) ∩ Λn′(t′) = ∅. (If disjointness
of Ajn(k) and Ajn′ (k′) were not imposed then a human neural switching model with
infinitely many switches and positive a priori probability could be possible. Disjoint-
ness of the paths Λn(t) and Λn′(t′) prevents the same physical switches being used in
many different abstract switches, each at slightly different times.)
C9) Pn and Qn are projections in A(Λn) with Pn orthogonal to Qn. (For a space-time
set Λ, A(Λ) denotes the local algebra of Λ – the algebra of all observables measurable
within Λ (Ref. 5, section 3, Ref. 23). Pn and Qn are observables defining switch
status. Although they are part of the quantum mechanical structure, it is convenient
to introduce them at this point.)

6. Neural switches.

In Ref. 7, I proposed an abstract definition of a quantum mechanical switch.
I demonstrated that certain neural ion channel proteins could satisfy that defini-
tion. This section returns to the neurophysiological analysis of that paper with some
substantial extensions and revisions. Like Ref. 7, the purpose of this section is to
raise possibilities: to argue that there are ways of interpreting neural functioning as
quantum switching. Nevertheless, again like Ref. 7, this section does not provide a
definitive identification of any class of entities as being the precise elements in the
human brain which function as neural switches.
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One reason for this is that there are, at present, too many open questions about
the intimate details of molecular motions in the living brain. At a more fundamental
level, however, the goal is to demonstrate that an abstract definition is satisfied,
but not to supersede that definition. If there was only one type of entity in the
human brain which functioned as a quantum switch, and if there was only one way
in which the functioning of that entity could be interpreted as switching, and if that
functioning was always perfect, then we would not need the abstract definition. As
it is, the aim here is merely to identify some of the mechanisms involved in neural
switching and to argue that there is at least one sufficiently probable set of sufficiently
many neural switches. There is certainly no reason why all the switches in such a
set should be of the same type. Given any such set, variations in its definition will
undoubtedly be possible. Such variations will include, in the first place, variations
in the Pn, Qn, Λn, and other geometrical elements of definition C. This type of
variation is straightforwardly dealt with in the abstract framework of definitions A–
G; in particular, the supremum in G4 focuses on the variations of maximal a priori
probability. This is a major motivation for such an abstract framework. There is
also a finite number of possible variations in the minimal switching structures – the
S(M,N, [d, ϕ]) – to be associated with a given brain. These variations are part of the
plurality problem discussed in section 3.

The topic of thermal and environmental fluctuations in the brain is central in
Ref. 7. Because of these fluctuations, no localized neural entity ever returns to pre-
cisely the same quantum state. Thus, a quantum switch is defined to be an entity with
states moving between two circumscribed neighbourhoods, where a precise, abstract,
and natural definition of “circumscribed neighbourhood” is given. A given element of
the brain may have two functionally distinct modes which are correlated to the firing
and non-firing of a particular neuron. For an ion channel, these modes are, in the
simplest analysis, open and closed; for a piece of neural membrane, they are levels of
polarization due to ambient electric field. Such an element may or may not satisfy
the definition of a quantum switch. In particular, the longer an element is considered,
the greater the range of fluctuations which it has encountered, and the smaller it has
to be if that range is not to have been sufficient to have made the variations in its
quantum state too extreme for the required circumscription.

In Ref. 7, I made the assumption that switch lifetimes should be as long as
possible. Ion channels are regularly replaced with a half-life of several days (Ref. 24,
p. 514, Ref. 25, §6.5). On that time-scale, the most significant type of environmental
fluctuation, not affecting function, which is likely to be encountered by a molecular
structure within the brain, will be variation in ambient temperature. Allowing for a
maximum temperature range implied a nanometre scale for the quantum switch and,
on that scale, while ion channels are quantum switches, arbitrary pieces of neural
membrane are not.

There is, however, a problem with some ion channels. Some channels appear
to diffuse fairly rapidly in the plane of the neural membrane(26). If these channels
were to be used in the structures being developed, it would be necessary to “collapse
out” the diffusions at each switching in order to re-localize the switch. Each such
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collapse would imply a decrease in probability of the switching structure, depending
on the area over which a switch may diffuse between switchings. When the diffusion
coefficients (103 – 10 (nm)2 (ms)−1) of mobile membrane proteins are appropriate,
there could be an average loss of probability by a factor of at least 10 per switching.
10 corresponds to a switch with switching activity identifiable over a cross-sectional
area of 100 (nm)2, diffusing with coefficient 10 (nm)2 (ms)−1 and switching at an
average rate of 10 times per second.

The resulting rate of loss of a priori probability would be so high that the test
imposed by 1.3 would be failed. It is always possible to find a geometric model
of essentially any given minimal switching structure with M switches, which has
a priori probability smaller than roughly 2−M . Indeed one can use the details of
the theory with its allowance for fluctuations in switch states to construct arbitrary
switching structures with a priori probability around (1.14)−M . Such models can
be constructed by imposing, by fiat, the required sequence of collapses on a spin- 1

2
system with independent spins which return to the appropriate thermal equilibrium
between collapses. A concrete model might be given, for example, by independent
nuclear spins in a large rock - for example, a dead planet. There will, of course,
be some upper bound of the M for which suitable rocks can be found, but human
complexity can probably be encompassed. The scale invariance of a docket is used
in finding spins with the right space-time relations. Switching structures of this
kind will be referred to as “artificial perturbed-equilibrium structures”. I intend to
provide an analysis of such structures elsewhere. They are artificial in the sense that
there is no correlation either between any of the switchings or, except fortuitously,
between the physical structure of the system and any pictures of reality which the
pattern of switchings might be interpreted as presenting. When we do have such
correlations, they ought to yield higher probabilities. The question for this section is
how the manifest correlations of a human brain can be expressed in a high probability
switching structure.

It might be possible to circumvent the problem of rapidly diffusing ion channels by
altering the definition of a priori probability to allow integrals over diffusion processes.
I have considered ways of doing this, but none seem entirely satisfactory. On the
other hand, many ion channels do appear to be “immobilized” according to recent
experiments (Ref. 24, pp 514–519, Ref. 26). Such immobilization, due to links to
the cytoskeleton or to clustering in structures like synapses, (Ref. 24, pp 519–522,
Ref. 27), may be sufficient to obviate this problem, particularly if we allow a larger
size for each switch.

A larger switch size is allowed if we drop the earlier assumption about switch
lifetimes. Indeed, dropping this assumption yields significant progress over the anal-
ysis of Ref. 7. Ion channels, certainly, have lifetimes shorter than those of the brain
in which they exist. Only the minimal constraint A4 is imposed on the lifetime of
a switch by the definition given in section 5. It is, therefore, permissible to consider
minimizing the number of switchings made by any given switch.

Suppose, for example, that we take a specific switch with a long lifetime from a
given switching structure and re-label its switchings as the switchings of a succession
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of new switches each with a shorter lifetime. In doing this, we shall lose information.
That information could be reconstructed, however, if, for example, we were able to
say that all of the new switches were identifiable because of some sort of strong
geometrical similarity. In a neural switching model, such a complete reconstruction
may not be possible, but it should be possible to identify the neuron to which all
our switchings belong, and this will be adequate. In general, if a switching docket
is sufficiently complex, then it may be quite rare for any pair of switchings to be
“adjacent” in the sense – which can easily be made mathematically precise – that the
docket obtained by omitting one of them is equal, after the appropriate re-ordering,
to the docket obtained by omitting the other. Then if two switchings from different
switches are adjacent, that may be taken as valuable evidence that the switches can
be identified.

With this idea in mind, we can return to Ref. 7 and ask what entities might
function as neural switches if we consider a typical switch lifetime to be only four
switchings, which is only two neural firings (on-off, on-off). This is as short as is
allowed by A4. According to Abeles (Ref. 28, p. 120), the average firing rate for
cortical neurons is approximately five spikes per second, but the firing pattern of
these cells is highly irregular and about half the cells fire at less than two spikes per
second. This implies an average switching lifetime of less than one second. As long
as we are prepared to ignore some firings – and the whole point of the trimming
problem (section 3) is that there is no fundamental reason why we should not – then
we could even insist, if necessary, that lifetimes had to be under, say, five seconds. The
firings we would be ignoring, in this case, would probably not be carrying significant
information.

Over an interval of five seconds, changes in the sheltered environment of the
brain will mainly be very small. The most dramatic short-term change possible under
normal physiological conditions of which I am aware will be the rise in extracellular
potassium concentration due to a sustained period of firing in neighbouring neurons
(Ref. 29, pp 358-359, Ref. 30). Because this is extracellular, it is significant mainly in
that it places a bound on the degree of transverse, whole-membrane, diffusion which
can be allowed within a relatively large switch in such circumstances.

On the other hand,if we look for environmental changes which necessarily affect
every switch then, once again, temperature changes are the most relevant. Benzin-
ger(31) has measured temperature at the eardrum in such circumstances as entering or
leaving hot and cold baths, eating sherbet ice, and performing muscular exercise. His
figures show temperature changes as small as 0.1◦K take at least 30 seconds. Using
the methods of Ref. 7 tells us that the maximum size of a switch subject to a 0.1◦K
fluctuation in temperature will be about (32 nm)3. Rewriting this as about 3 nm ×
(100 nm)2 – with 3 nm representing membrane thickness – we have a size so large
that channel diffusion could become irrelevant because, at least in some systems, an
average patch of membrane of area (100 nm)2 will have a high probability of containing
at least one channel (Ref. 24, chapter twelve).

Even without channels, the electric polarization change across a relatively large
patch of neural membrane due to neural firing can be used to indicate neural switching.
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For example, if we consider the polarization change corresponding to a change in
potential of 50 mV across a 3 nm membrane of susceptibility χ = 2, then the lower
bound provided by Ref. 7, Lemma 8.10 tells us that a patch of volume 3 nm ×
(34 nm)2 could function as a suitable switch. This is well within the limit imposed
by short-term thermal fluctuations.

A membrane patch will undergo the transverse diffusion mentioned above. This
is limited by membrane elasticity and by internal and external cellular structures.
The quantum state to be assigned to such a patch should allow for that diffusion. For
example, probability maximization might assign a constant quasi-equilibrium state
over the entire switch lifetime to the transverse degree of freedom. In view of the close
packing of nerve cells and the supporting neuroglia, which are separated by distances
of only 20 nm (Ref. 29, p.364), it seems plausible that we could find a suitable shape
for the switch such that it would not be possible, with significant probability, to find
within the switch volume a sufficiently large portion of the exterior of the membrane
to encounter difficulties with the concentration fluctuations mentioned above.

We now have two candidates for neural switches: anchored ion channels and
patches of neural membrane. The comparatively high probability of artificial per-
turbed equilibrium structures has led us to drop the assumption made in Ref. 7 that
diffusing switches can be constantly re-localized by collapse. For the same reason, we
need to be more cautious about the assumption that we can use collapse to take us
from a state averaged over a switching cycle to a state at a particular phase of the
cycle. Indeed, some of the detailed suggestions in Ref. 7, which rely on this assump-
tion, may well require an excessive amount of collapse. Nevertheless, even in normal
circumstances, a neural firing time is by no means determined by the times of earlier
firings. In the present framework, this implies that a priori probability must be lost
in establishing a firing time. Contradiction can only be avoided, if the probability
lost can be shared between many switches. A limited amount of state collapse is
certainly permitted at each switching and more in unusual circumstances. After all,
some decrease of a priori probability with time is inevitable in a many-worlds theory,
not least, because of observations of quantum systems, but, in order to satisfy 1.3,
the cumulative average loss per switching must be small.

It follows that we must have many strongly-correlated switches on each neuron.
The switch candidates proposed above are therefore assumed to be restricted to parts
of the neuron which exhibit all-or-nothing firing. They must switch between an av-
erage state for the entity concerned in a membrane around resting potential, and an
average state in a membrane around firing potential. Possible difficulties with this
for sodium channels are raised in Ref. 7, but are probably irrelevant in the present
context, because of the allowance for larger switches. The larger the switch, the more
polarization by itself will be sufficient to indicate switching status.

Other candidates would be patches of synaptic membrane – either pre- or post-
synaptic. The advantages of these candidates are that synapses are comparatively
rigid structures which in functioning undergo more dramatic changes than arbitrary
pieces of neural membrane. However, the behaviour of post-synaptic membrane may
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be too complex for our purposes in that it is affected by the firing both of the pre-
synaptic neuron and of the neuron to which it belongs.

It is not necessary to choose between these candidates. As long as the abstract
definitions are satisfied with sufficiently high probability, a human observer could exist
with different switches corresponding to different candidates.

There are many complex issues involved in finding the switches of highest a priori
probability in particular circumstances. Some of these issues have been touched on
here, but others have been left in the details of Ref. 7. Many of these issues are open
questions. How large is the uncertainty in transverse membrane position? How tightly
are channels anchored? What are the details of membrane polarization and of channel
functioning? The physical models developed in section 8 of Ref. 7 are simplistic and
the numbers derived from them are, at best, orders of magnitude. Nevertheless, these
numbers do suggest that definitions A–G can apply to the human brain.

It would be a mistake to become so concerned with neurophysiological detail that
we lose sight of the fact that a brain functions through information carried in digital
form. Definitions A–G are written precisely in order to accomodate that fact. It is
conceivable, for example, that, so far, we have stayed too close to the conventional,
non-quantum mechanical, picture of the brain. Even in this case, however, it is still
possible that quantum switches exist in the brain and that 1.3 is satisfied. As was
explained in Ref. 7, it is not appropriate to imagine ball and stick models of the
molecules in a quantum switch. The suggestion now is that we may still be under-
estimating the richness of the range of possible quantum states on a local algebra.
For example, there are so many observables in a local algebra which would be rele-
vant for a thermal neural membrane state, that when one allows for some imposed
collapse, it is quite plausible that one could minic the sort of perturbed-equilibrium
structures sketched above but using elements sufficiently correlated to neural firing to
allow switching with a priori probability loss rate significantly smaller than the loss
rate for any artificial system. The imposed collapses in these perturbed-equilibrium
structures would allow the switches to be comparatively small, and thus problems
with background changes could be avoided. These structures also, I intend to analyse
elsewhere.

Once we accept that neural functioning can be interpreted as quantum switching,
it is natural to try and investigate how many switchings occur in a human brain in a
given time interval. Beyond the roughest of estimates, however, any such investigation
will founder on the plurality problem. Nevertheless, we do need to make such a rough
estimate here in order to decide whether or not a human neural switching docket can
lie in the “mixed-regime” identified in section 4 where we have many pairs of spatially
separated switchings as well as pairs which are timelike separated. Light crosses a
substantial fraction of the brain in 10−10 seconds, while total neuron numbers are
usually given nowadays as 1011. There are many distinct classes of neuron varying in
size and behaviour. As mentioned above, Abeles(28) gives the average firing rate for
cortical neurons as approximately five spikes per second. Thus we would be entering
the mixed regime with as few as one switch per neuron. However, whatever kind of
switch we choose, we can expect to have many thousands or even millions per cell.
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One number which is sufficient to indicate this is the estimate (Ref. 28, p. 58) that
an “average” human cortical neuron has 40,000 synapses. Each synapse will have an
area of order 0.05 (µ m)2 (Ref. 28, p. 57) and will include many switching proteins of
various types, some of which are almost certainly anchored. On the other hand, even
if we restrict attention to the cell body as the cell region most likely to exhibit all-or-
nothing firing, we shall be dealing with a surface area of order at a minimum, perhaps,
100 (µ m)2. With thousands of switches per neuron, we should certainly be in the
mixed regime and should certainly be able to claim that “adjacency” between switches
is sufficiently rare as to suggest strong similarity between the switches involved.

Return again to the extra-terrestrial reader whose task is to translate a human
neural switching structure. Suppose that the structure he is given is the minimal
switching structure corresponding to 1011 neurons firing on average 5 times per second
with each neuron carrying an average of 2 ×103 switches at any one time. The first
step in his task may be thought of as the reconstruction of a geometrical neuronal
model from this minimal structure.

He has, in total, 1015 switchings per second. This corresponds in the brain he
is trying to reconstruct to a length scale of 3 ×10−7 m. The switching docket will
give him topological information corresponding to such a length scale. In particular,
“adjacent” switches may be expected to correspond to entities separated by such
a scale. As an elementary example, he might assign a “time co-ordinate” t(m) to
switching m, by defining t(m) to be the number of switchings in the timelike past
of m. Using this co-ordinate, he can distinguish switchings corresponding to neurons
at the perifery of the brain for which there are spacelike switchings at more different
times than there are for more central neurons at around the same time. Some of the
information he has will be statistical, so that, for example, analysis of t(m) only tells
him that a switching is probably rather than definitely periferal, but there will be so
much information that it is hard to imagine that he could consistently develop two
significantly different reconstructions. For example, by themselves, the times t(m) do
not provide the geometrical meaning of the central/periferal distinction. Nevertheless,
as explained in section 4, “inside” and “outside” are terms definable from sufficiently
complex dockets, so our extra-terrestrial can find both the distinction and its meaning.

Using all his information, it will be possible for him to divide switches into
spatially distinguishable classes corresponding to at most a few neurons. He can
refine his classes to correspond to single neurons by using the correlations between
switches on each separate neuron. As his classes are already small, this will even
be possible with short lifetime switches. It is an important contingent fact about
the human brain is that throughout its lifetime each neuron has a roughly constant
geometrical relation to most of the other neurons. Because of this, the individual
neurons that he has identified at each instant, can, in fact, be followed through time.

The extra-terrestrial has now completed his first step. He can identify, up to
scale and Poincaré invariance, the times and places of each neural firing in his model.
All he has left to do is to look at the world through this pattern of neural firing and
learn to understand it. This may seem an awesome task, but I suspect that we have
all been accomplishing something similar from infancy.
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The aim of this paper is the characterization of the physical structure of an
observer by a pattern of elementary localized switching events. In this section, suitable
events have been discovered in the human brain. This allows the essential claim that
humans do satisfy the proposed characterization. However, the choices allowed in this
section accentuate the plurality problem. Perhaps as few as 100 switches per neuron
could provide a suitable geometrical switching structure. On the other hand, switches
cannot be reduced in size beyond a certain point without increasing loss of probability
and they cannot overlap by C8. However, because of the strong correlation between
switches on the same neuron, there need not be significant probability cost per switch
in increasing their number over some considerable range. It is not necessary for all
switches to have the shortest allowed lifetime. It follows that, in general, for any given
bound on loss of a priori probability, if one minimal switching structure is possible
then a large, albeit finite, variety of different minimal switching structures will also
be possible.

7. The formal definition of a family of quantum switches.

This section defines the set N (W ) of sequences of quantum states which are
manifestations of families of quantum switches with a given switching geometry

W = ((tm)Mm=1, (x
n(t), Ln(t),Λn, Pn, Qn)Nn=1) ∈ GSO(M,N, d, ϕ).

Perhaps the most important aspect of the definition is that it is entirely abstract.
In particular, there is no explicit reference to biological concepts such as carbon
atoms or to statistical mechanical concepts such as temperature or information. This
means that the definition can be part of an axiomatic characterization of the physical
structure of an observer. Of course, it might be possible to invoke the existence
of carbon in such a characterization, but, in that case, we would need to invoke a
specific quantum field theory for the universe, and be able to characterize its low
energy structures in considerable detail.

Given (x, L) ∈ P↑+, we shall use the same notation (τ(x,L)(A) and τ(x,L)(σ))
for the dual pair of transformations which act on an observable A and on a state
σ. If A is in the local algebra A(Λ) then τ(x,L)(A) ∈ A((x, L)Λ) where, by (5.2),
(x, L)Λ = {x + Ly : y ∈ Λ}. By definition, the identity τ(x,L)(σ)(τ(x,L)(A)) = σ(A)
will hold. In E and F, we shall constantly Poincaré transform back to the local algebra
A(Λn) in order to analyse changes in quantum states along the paths xn(t).

In D, which is an implementation of ideas discussed in Ref. 5, we identify the
local observables accessible to our observer.

D
D1) Let C(W ) be the von Neumann algebra generated by

{τ(xn(tnk)−Ln(tnk)xn(0),Ln(tnk))(Pn), τ(xn(tnk)−Ln(tnk)xn(0),Ln(tnk))(Qn)

: k = 1, . . . ,Kn, n = 1, . . . , N}.
(This is the algebra of correlations of switch projections experienced by the observer.)
D2) Let B(W ) be the norm closure of the linear span of

{A1C1 + C2A2 : A1, A2 ∈ A(Λn(t)), C1, C2 ∈ C(W ), t ∈ [0, Tn], n = 1, . . . , N}.
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(This is the set of all observables accessible to the observer. Elements of C(W ) are
correlated with local observables along the paths of the switches.)

E defines the set of sequences of states for which xn(t) is the path along which
change of state is locally minimized. E1 requires that the states be such that the initial
conditions un(tnk) and Ln ′(tnk

+) are optimal and E2 requires that the continuation
at parameter t is optimal.

E N (W,E) is the set of all sequences of restrictions to B(W ) of sequences of quantum
states ((σm)Mm=1) which satisfy the following requirements for each n ∈ {1, . . . , N}
and each k ∈ {1, . . . ,Kn − 1}:
E1) Set

Xnk = {(L,v) : L is a C1 path in L↑+ on some interval

[tnk, tnk + ε) with ε > 0 and with L(tnk) = Ln(tnk), and

v is a future directed four-vector satisfing (v)2 = −1}.
For (L, v) ∈ Xnk, define fnk(s, L, v) = τ−1

(ynk(s,L,v),L(s))
(σjn(k))|A(Λn) where

ynk(s, L, v) = xn(tnk) +

∫ s

tnk

L(t′)vdt′ − L(s)xn(0).

Then we require that fnk has a right derivative at s = tnk and that

inf{ || lim
h→0+

(fnk(tnk + h, L, v)− fnk(tnk, L, v))/h || : (L, v) ∈ Xnk}

is attained when L′(tnk
+) = Ln ′(tnk

+) and v = un(tnk).
E2) For each t ∈ (tnk, tn(k+1)), set

Xn
t = {L : L is a C1 path in L↑+ on some interval [t, t+ ε) with

ε > 0, and L(t) = Ln(t)}.
(Xn

t and Xnk could be replaced by finite dimensional sets defined in terms of the Lie

algebra of L↑+.)

For L ∈ Xn
t , define ft(s, L) = τ−1

(ynt (s,L),L(s))(σjn(k))|A(Λn) where

ynt (s, L) = xn(t) +

∫ s

t

L(t′)un(tnk)dt′ − L(s)xn(0).

Then we require that ft has a right derivative at s = t and that

inf{ || lim
h→0+

(ft(t+ h, L)− ft(t, L))/h || : L ∈ Xn
t }

is attained when L′(t+) = Ln ′(t+).

F is the formal expression derived and explained in section 5 of Ref. 7 for the idea
that “A switch is something spatially localized, the quantum state of which moves
between a set of open states and a set of closed states, such that every open state
differs from every closed state by more than the maximum difference within any pair
of open states or any pair of closed states.” (Ref. 7, hypothesis III).

F N (W ) is the subset of N (W,E) consisting of sequences ((σm)Mm=1) such that,
setting

σnk = τ−1
(xn(tnk)−Ln(tnk)xn(0),Ln(tnk))(σjn(k))|A(Λn),
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for each n ∈ {1, . . . , N} and for k, k′ ∈ {1, . . . ,Kn},
F1) σnk(Pn) > 1

2 for k odd. (“a set of open states”)

F2) σnk(Qn) > 1
2 for k even. (“a set of closed states”)

F3) |σnk(Pn) − σnk′(Pn)| > 1
2 and |σnk(Qn) − σnk′(Qn)| > 1

2 for all pairs k and k′

with different parity. (“every open state differs from every closed state”)
F4) There is no triple (P, k, k′) with P ∈ A(Λn) a projection and k and k′ of equal
parity such that |σnk(P ) − σnk′(P )| ≥ 1

2 . (“by more than the maximum difference
within any pair of open states or any pair of closed states.”)

In Ref. 7, hypothesis V, there was a constraint (V(4)) aimed at avoiding the
possibility of ignoring part of a switch’s activity. This constraint has been dropped
here because the switching structure is assumed to be given in advance. An inclination
to see the set of quantum states as defining the switching structure did creep into
Ref. 7, but here priority is definitely given to the switching structure.

For a given geometry W , N (W ) may be empty. Such sets will be assigned zero
probability (by definition). Section 6 can be thought of as discussing sequences of
possible quantum states for a brain. Arbitrary sufficiently-small variations of these
states will also be permissible brain states. For appropriate neural switching struc-
tures, some of these sequences will belong to N (W ) for some geometry W . The
differentiability requirements for E will be satisfied by a dense subset of sequences,
and the paths required to define W can be constructed on elements of that subset.
The physical properties required in section 6 will then ensure that the conditions in
F are also satisfied.

8. The a priori probability of a minimal switching structure.

The object of Ref. 5 is to introduce and analyse a definition of a priori probability
which can be directly applied to geometrical switching structures. This definition is
based on a function appB((σm)Mm=1 |ω) of a set of operators B, a sequence of quan-
tum states (σm)Mm=1 on that set, and an initial quantum state ω. ω is the state
corresponding to the “universal wavefunction” of Everett. appB((σm)Mm=1 |ω) mea-
sures the a priori probability for (σm)Mm=1 to be observed as a sequence of generalized
“wave-packet collapses” starting from ω, by an observer who is given the information
available from B. The collapses are generalized because we are dealing with mixed
as well as pure states. app has many appropriate properties. The following pair are
particularly important.

The first shows that successive collapses are treated as independent events:

appB((σm)Mm=1 |ω) =
M∏
m=1

appB(σm |σm−1) (8.1)

where σ0 = ω.
The second shows that the function generalizes the idea that the a priori proba-

bility of seeing a state σ “collapse” out of a mixture of the form ρ = pσ + (1 − p)σd
where σd is disjoint from σ, is the coefficient p of σ:
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8.2) Suppose that ρ = pσ + (1 − p)σd for 0 ≤ p ≤ 1 and suppose that there exists
a projection Q ∈ B such that σ(Q) = 1, σd(Q) = 0.

Then appB(σ | ρ) = p.

G By using this function in accordance with Ref. 5, the following value is assigned
as the a priori probability app(W |ω) of existence of an individual geometrical mani-
festation W ∈ GSO(M,N, d, ϕ):
G1) For m = 1, . . . ,M , define

Nm(W ) = {(σi)mi=1 : ∃(σi)Mi=m+1 with (σi)
M
i=1 ∈ N (W )}.

G2) Define, by induction on m, the following a priori probabilities. Start with

app(N (W ),B(W ), 1, ω) = sup{appB(W )(σ |ω) : σ ∈ N 1(W )}.
Then, for 1 < m+ 1 ≤M , set

app(N (W ),B(W ),m+ 1, ω)

= sup{lim sup
n→∞

appB(W )((σ
n
i )m+1
i=1 |ω) : ((σni )m+1

i=1 )n≥1 is a sequence of

elements of Nm+1(W ) and, for 1 ≤ k ≤ m,
appB(W )((σ

n
i )ki=1 |ω)→ app(N (W ),B(W ), k, ω)}.

G3) Define app(W |ω) = app(N (W ),B(W ),M, ω).

This definition gives the a priori probability of W as the maximum a priori prob-
ability to which a sequence of elements of N (W ) can approximate, given that the
sequences of initial portions of those elements also approach maximal a priori proba-
bility. The inductive nature of the definition imposes a causal structure according to
which the most likely states for a given switching are influenced by states earlier in
sequence, but not by later states.

The definition is extended to an a priori probability for the whole of
GSO(M,N, d, ϕ) simply by taking a supremum. Finally, an additional supremum
takes account of the re-orderings allowed by B, to give the a priori probability for the
minimal switching structure S(M,N, [d, ϕ]) as

G4) app(S(M,N, [d, ϕ]) |ω) = sup{app(W |ω) : W ∈ GSO(M,N, d′, ϕ′)

where SO(M,N, d′, ϕ′) ∈ S(M,N, [d, ϕ])}.

The idea behind all the suprema in G2 and G4 is that we are dealing with a
range of structures between which the observer cannot distinguish.

One goal in this paper is to formulate complete and explicit definitions. These def-
initions are intended to be the simplest mathematically-coherent expression of a circle
of underlying ideas about what quantum physics may be telling us about the nature of
reality. The correctness of the details of the definitions is no more accessible to direct
test than is the correctness of the details of string theory. The present theory stands
or falls on whether more attractive alternative theories can be found and on whether
the definitions are consistent both internally and with the picture of reality being de-
veloped. For example, if the general interpretation of quantum mechanics developed
throughout this work is indeed consistent both with the axiomatic characterization of
the function app, given in Ref. 5, and with the analysis of the human brain, given in
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Ref. 7 and in this paper, then it should be the case that, for a sufficiently complex neu-
ral switching structure S(M,N, [d, ϕ]) for which app(S(M,N, [d, ϕ]) |ω) is compara-
tively large, the only geometries W ∈ GSO(M,N, d′, ϕ′) where SO(M,N, d′, ϕ′) ∈
S(M,N, [d, ϕ]) for which app(W |ω) is close to app(S(M,N, [d, ϕ]) |ω) are such that
app(W |ω) is approached, in the context of G2, by and only by sequences (σm)Mm=1

of states which are restrictions to B(W ) of local quantum states describing a human
brain. One of the most direct ways of attacking the theory would be to construct a
counter-example to a claim like this. The artificial perturbed-equilibrium switching
structures of section 6, for instance, are unsuccessful counter-examples. The claim is
a technical restatement of contraint 1.2 and a significant part of constraint 1.3.

Showing that neural switching models satisfy the definition in section 7, thus
satisfying 1.2, was one aim of Ref. 7 and its revision suggested in section 6. I now
make the further claim that constraint 1.3 is fully satisfied. This claim cannot be
proved and will also always be to open to falsification by example. Indeed, ruling
out various potential falsifications was a significant method in the development of
the theory. Ultimately, it can only be argued that it is difficult to imagine how the
definition could be satisfied, other than by a human brain, or something like a human
brain, without continual loss of a priori probability by the imposition of arbitrary
“collapses”. It is unlikely for the state of a system to change and return towards the
original state and then go back towards the second state in the way required by the
definition of a quantum switch. A pattern of such behaviour sufficiently complex to
be interpretable as a physical manifestation of consciousness, is all the more unlikely.

With a human brain, according to section 6, suitable switches can be found
for which the average loss of probability per switching is comparatively small. This
depends not only on the nature of the switches, but also on the correlations between
switches which reflect the fact that it is possible to interpret neural switchings as
being “caused” by a largely deterministic world “external” to the observer. Definition
G looks for the most probable sequence of quantum states on the limited set of
observables B(W ). The idea of an external world implies extension to a larger set.
Which larger sets are appropriate cannot be specified exactly, but they could include
sufficient observables to define the states of macroscopic objects up to the accuracy
with which they are being observed. The only fundamental sets of observables are
the sets B(W ). The idea of “external world” states in the present sense – states other
than the universal state ω – is not a fundamental and defined concept, but merely a
heuristic one (cf. Ref. 5 and section 10 of this paper).

The claim that 1.3 is satisfied suggests that if we look at local quantum states on
such larger sets, then the most probable sequences of “collapses” out of the universal
state ω in which one can identify a family of objects moving through space-time and
switching with the complexity of switching pattern of a human brain, are sequences
in which those switches are built out of patches of cell membrane and placed in a
biologically evolved organism. This is also part of the idea that a human neural
switching model has an interpretation which is an accurate picture of reality, and it is
a statement which invites an anthropic treatment of cosmology. In section 10, some of
the technical details relevant to this suggestion will be considered. These details will
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prove neither the suggestion nor the weaker form of it stated above, which referred
only to states on B(W ). Section 10 will be merely another approach in trying to
establish a consistent circle of ideas.

9. Sets of switching structures.

Only one more postulate is needed to complete the theoretical structure. G4
defines “a priori probability” for individual minimal switching structures. All this does
to give numerical values measuring the extent to which some such structures are more
“likely” than others. Such values have some intrinsic meaning, but are not sufficient as
a foundation for physical probabilities without a mechanism for calculating the relative
a priori probability of sets of observable events. We therefore postulate that G4 can be
treated as defining a classical but unnormalized probability on the space of minimal
switching structures, so that the a priori probability of an observer experiencing a set
{S1, . . . , SZ} of distinct structures should be proportional to

Prob{S1, . . . , SZ} =

Z∑
z=1

app(Sz |ω). (G5)

The application of G5 requires the ability to specify suitable sets of minimal
switching structures. Of course, it is impossible to imagine an observer specifying his
own structure. Indeed, at the human level of complexity, the idea of calculating with
G5 is fantasy. It is even doubtful whether the most obvious sets of switching structures
which one would want for the use of G5 are precisely definable. For example, how
could one possibly define precisely the set of minimal structures which would model
the event of an observer seeing a given result for an experiment? Even given the
strongest (algorithmic) form of the translatability claim in section 2, one would have
to deal with, for example, distractions of the observer and partial failures of the
experiment. The event in question is itself not precisely definable. In addition, in
applying G5, we are faced again with the plurality and trimming problems of section
3.

Nevertheless, G5 does introduce a well-defined function on sets of minimal switch-
ing structures. One could, in theory, make computations by approximating the uni-
verse by a sequence of finite lattice models with suitable finite-dimensional Hilbert
spaces on them. According to Prop. 4.6, for a bounded number of switchings, there
is only a finite number of possible dockets. Thus, even at human complexity, there is
only a finite number of different possible future extensions within bounded additional
complexity. The complete interpretation of the elements of that finite set may well be
an insoluble problem, but a partial classification adequate for accurate approximate
calculation is at least conceivable.

10. Quantum probabilities.

Using G5 the observer can theoretically estimate relative probabilities for future
events. Indeed, G5 should provide the foundation for a complete theory of physical
probabilities. In this section, elaborating on Ref. 5, we shall consider the relation
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between G5 and textbook quantum probabilities. The probability theory developed
in Ref. 5 was designed so that, in the context of observer structures of the type
proposed here, we could use the many and various arguments demonstrating that for
macroscopic systems interference effects are often negligible in practice. This idea,
expounded at length in Ref. 5, is the key to the claims made in this section. The
comments made in the previous section about the difficulties of defining events and
corresponding sets of switching structures precisely will be relevant throughout this
section, but will not be repeated.

Suppose that an observer O has experienced the minimal structure S up to time
T and wishes to discover the probability of observing a certain experiment to have
outcome a relative to that of it having outcome b. It will be assumed here that a
and b are fairly broadly defined events like whether there is a number on the screen,
or whether it is twenty, or whether it is between twenty and forty. Suppose that
O calculates that he will observe outcome a (resp. b) by time T2 if and only if his
future minimal structure is in the set Xa (resp. Xb). Elements of Xa and Xb will be
extensions defined in the obvious way of S. The relative probability sought will be

T (a|b) = Prob(Xa)/Prob(Xb). (10.1)

The analysis of section 6 of Ref. 5 provides some basis for believing that there is
agreement between (10.1) and calculations in conventional quantum theory. This has
the consequence that (10.1) can be taken to be empirically supported by the empirical
evidence for the conventional theory. In Ref. 5 a generalization of definitions G1–G3
was worked with. This allowed the definition of a function app(O, T,BS , C |ω) mea-
suring the a priori probability of an observer O, at time T , observing a subsystem,
defined on a set of observables BS , to occupy a set of states C. The idea of an ob-
server, however, was limited to something with a structure like N (W ); although even
that was not formally defined. In the context of this paper, the corresponding func-
tion will be written as app(W,BS , C |ω) and defined for a given geometric switching
structure W . We shall assume that W is chosen so that app(W |ω) is suitably close
to app(S(M,N, [d, ϕ]) |ω).

10.2) Let BS(W ) be the norm closure of the linear span of

B(W ) ∪ {B1C1 + C2B2 : B1, B2 ∈ BS ∪ B∗S , C1, C2 ∈ C(W )}.
Define Nm(W ) as in G1, except that, in the definition of N (W ) we identify the

restriction of a state to B(W ) with the set of all possible extensions to BS(W ) of that
restriction (Ref. 5, 3.10–3.12). Then define, by induction on m, the following a priori
probabilities. Start with

app(N (W ),BS(W ), 1, ω) = sup{appBS(W )(σ |ω) : σ ∈ N 1(W )}.
Then, for 1 < m+ 1 ≤M , set

app(N (W ),BS(W ),m+ 1, ω)

= sup{lim sup
n→∞

appBS(W )((σ
n
i )m+1
i=1 |ω) : ((σni )m+1

i=1 )n≥1 is a sequence of

elements of Nm+1(W ) and, for 1 ≤ k ≤ m,
appBS(W )((σ

n
i )ki=1 |ω)→ app(N (W ),BS(W ), k, ω)}. (10.3)
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Finally, define

app(W,BS , C|ω)

= sup{lim sup
n→∞

appBS(W )((σ
n
m)M+1

m=1 |ω) : ((σnm)M+1
m=1 )n≥1 ⊂ NM (W ), (σnM+1)n≥1 ⊂ C,

and, for 1 ≤ k ≤M, appBS(W )((σ
n
i )ki=1 |ω)→ app(N (W ),BS(W ), k, ω)}.

(10.4)

With these definitions, it is argued in Ref. 5 that if the observer observes the
outcome of an experiment on a macroscopic subsystem defined on a set of observables
BS and if two of the possible results of that experiment, a and b, have conventionally
calculated probabilities pa and pb, then

app(W,BS , Ca |ω)/app(W,BS , Cb |ω) ∼ pa/pb, (10.5)

where Ca (resp. Cb) is the set of states on BS modelling outcome a (resp. b). The
justification in Ref. 5 of (10.5) depended on the claim that the function app yields
a priori probabilities which are such that the most likely states modelling a given
situation are states which conventional quantum theorists would allow to be assigned
to that situation. This claim is made more plausible now because the extra supremum
of G4, which we are implicitly applying in choosing W , makes mathematical pathology
less likely.

Using G4, (10.3), and (10.4), we can set about identifying, at a technical level,
“likely states modelling a given situation”. For example, just before the result of
the experiment is seen, the observer will assign to BS the restriction to that set
of observables of the states σM such that for sufficiently small δ > 0, there exists
(σm)M−1

m=1 with (σm)Mm=1 ∈ N (W ), where W is such that

app(W |ω) ≥ app(S(M,N, [d, ϕ]) |ω)− δ, and, for 1 ≤ k ≤M,

appBS(W )((σi)
k
i=1 |ω) ≥ app(N (W ),BS(W ), k, ω)− δ.

For each δ, this defines a set of states on BS . The basis of the argument for (10.5) is
then that all these states should be similar and should be close to the states which
conventional quantum theorists would assign to the situation in question. This is
now a technical version of the statement that a human neural switching model has
an interpretation which is an accurate picture of reality. It requires that all the
information which an observer would use to predict the state of the world on the
set BS is expressed in the minimal switching structure S(M,N, [d, ϕ]) and that the
a priori probability function defined in Ref. 5, correctly correlates that information
with the state on BS .

In order to relate (10.5) to the more fundamental statement that

Prob(Xa)/Prob(Xb) ∼ pa/pb, (10.6)

note that Prob(Xa) (resp. Prob(Xb)) can be viewed as a sum over terms like the
numerator (resp. the denominator) of (10.5) with the observer making a sequence of
observations of his own neural switches. Indeed, in this context, the problem raised
in section 6 of Ref. 5 of defining a quantum state over an extended time interval
is reduced by considering only local states within the brain. On the other hand,
one might object that in the measurement model in Ref. 5, distinct outcomes were
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distinguished by projection values differing by close to unity, while in the definition
of a quantum switch, a switching only required a change in expected value for some
projection of more than 1

2 (F3). However, these two different requirements can be
reconciled by noting that, in the situation modelled by (10.6), many switches will be
involved, so that it will be easy to achieve near-orthogonality between distinct results.
Thus (10.6) follows from the arguments for (10.5) as long as the assumption can be
made that there is nothing intrinsic to a or b which affects, for example, the number
of terms over which numerator and denominator are summed.

This event independence assumption seems entirely natural. There are two cases
in which it might fail. One case is that one of the events might have a significant effect
on the observer – the obvious example being Schrödinger’s cat experiment considered
from the cat’s point of view. In this case failure of (10.6) is only to be expected. It
is also possible that (10.6) could fail because different criteria (for example, different
approaches to the plurality problem) are applied in choosing Xa and Xb. This, of
course, would be stupid. It is mentioned only in order to emphasize that in the
interpretation of relative probabilities derived from G5, it is necessary to ensure that
like is compared with like.

The ratio defined by (10.1) is not directly observable. This brings us back to the
problem of the meaning of a priori probabilities about which some brief comments
are made in Ref. 5. If the observer wishes to measure the probability of outcome a
relative to outcome b, he will repeat the experiment many times and count outcome
frequencies. Suppose that he finds these to be fa and fb respectively. He will then
estimate the relative probability as F (a|b) = fa/fb. Under suitable circumstances,
including, for example, the event independence mentioned above, F (a|b) should be
likely to be approximately equal to theoretical relative probabilities such as T (a|b)
or pa/pb calculated using appropriate physical theories. In conventional probability
theory, the justification of such an approximate equality would depend on the laws
of large numbers. In the present situation, there remains a close relationship with
conventional probability theory expressed by (10.5) and (10.6). Thus it is possible to
claim as an example of (10.6) that there will be some ζ close to pa/pb and to T (a|b)
such that, within the bounds of practicality, for any ε > 0 and any η > 0, there will
exist N0 such that, if the experiment is repeated N0 or more times then

Prob(|F (a|b)− ζ| > ε)/Prob(|F (a|b)− ζ| ≤ ε) ≤ η. (10.7)

“Prob” in (10.7) is, of course, the unnormalized probability defined in G5.
(10.7) is not proposed as the statement of a mathematical theorem. Even leaving

aside the question of a practical bound on N0, it could not be so unless the problems
of section 9 could be solved algorithmically. (10.7) is intended as a model, of which
a variant of some kind is necessary, to give meaning to G4 and G5. In other words,
without arguments, like those given in Ref. 5 and this section, for something like
(10.7) – in appropriate circumstances, for suitable reasonably large N0 and suitable
reasonably small ε and η – part G of the definition and the phrase “a priori probabil-
ity” implicit in its notation would be empty. With such partial confirmation, however,
G4 and G5 can be proposed as defining numbers fundamental to any situation.
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11. Conclusion.

The physical structure of an observer at a given time is characterized as a min-
imal switching structure of the form S(M,N, [d, ϕ]), which defines the information
processing structure of the observer’s past, together with the corresponding quantum
switching structure, expressed by the set of sets of sequences of quantum states

{N (W ) : W ∈ GSO(M,N, d′, ϕ′) where SO(M,N, d′, ϕ′) ∈ S(M,N, [d, ϕ])}.
A primary motivation for the many worlds interpretation came from the idea

of quantizing general relativity, and, in particular, of applying quantum theory to
a closed universe with no external observer. The theory proposed here should be
satisfactory for this purpose. Indeed, there might even be more relevance for quantum
general relativists in the fact that the dockets of section 4, which lie at the heart of
this analysis of quantum theory, are both finite and deeply geometrical (cf. Refs 18,
22).

As far as cosmology is concerned, as mentioned at the end of section 8, the
present theory is particularly well adapted to an anthropic treatment. Nevertheless,
the automatic invocation of Ref. 9 in this context, should be tempered by the comment
that if consciousness requires a physical substrate of a particular kind, then it is not
purely a functional issue, and the “von Neumannn machines” of Ref. 9 may not be
truly alive.

It would be an exaggeration to pretend that applications for the present theory
might also be found in the study of history, but Hawthorn(32) has emphasized the
importance in that field of imagining alternative worlds. Having an analytical basis
for such imaginings might not be entirely without intellectual value.

Lewis(33,34) has insisted that the existence of worlds in which counterfactuals
are valid would simplify our understanding of modal logic. The present theory pro-
vides him with such worlds. It may not provide for all the possibilities that could be
imagined, but it does provide for the appearance of all the possibilities that could be
imagined as appearing to observers like ourselves. For example, this is, presumably,
a universe in which the fine structure constant is close to 1/137. There are minimal
switching structures possible in this universe (with our ω and our time propagation)
for whom experiments have always pointed to a value of 1/142. Such switching struc-
tures, presumably, have smaller a priori probability than us and, presumably, have
lost considerable probability every time they have made tests of quantum electrody-
namics, but they do exist. The advantages of the present theory over Lewis’s are; the
specification of a priori probability, the finiteness, and the connection to physics.

One crucical question posed by the many-worlds idea is “How many worlds?”. If
Schrödinger’s cat is both alive and dead at the end of its ordeal, then in how many
ways is it alive and dead? This paper presents a formalism according to which the
answer is essentially finite, but may be different for the cat and the experimenter and
the experimenter’s friend. Of course, no specific number of worlds has been given,
but we do at least have a framework. We could consider the total number of different
worlds observed by all conceivable observers with a given bounded complexity. Or
we could consider the total number of different worlds observed by all observers with
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a bound on complexity and with more than a given minimum a priori probability,
given an initial state ω for the universe. Or we could consider the total number of
different futures for a given observer at a given time given a bound on complexity and
on improbability. In thinking about such numbers it is important not to forget that
some futures are much more likely than others. Proposition 4.6 shows that each of
these numbers is finite, although, as sections 2, 3, and 9 emphasize, it does this only
by showing that corresponding numbers of all possible switching structures are finite.
Which switching structures are meaningful, or interpretable, or translatable and so
could “really” be observers is left open.

Other central questions tackled in this paper and its predecessors are, “How, in a
quantum framework, can one analyse the functioning of the warm wet brain as a fun-
damental information-carrying entity, while allowing for environmental fluctuations?”
and “How should one compute quantum probabilities for localized observers?” Some
technical questions have been left open, particularly the neurophysiological questions
raised in section 6, but the most obvious open questions are metaphysical. “What
meaning inheres in a given pattern of switching?” “What class of such patterns could
define structures for a given observer?” “Does the plurality problem matter?” “What
is probability?”

Another metaphysical question, already mentioned in the introduction, is that
of whether all possible switching structures, or all interpretable switching structures,
are “machines haunted by ghosts” (cf. Refs 10, 35, 36). Of particular relevance to
this issue, perhaps, is the existence of switching structures of very small a priori prob-
ability. As discussed in section 6, when a priori probability of about 1

2 is lost at every
switching, essentially all switching structures become possible. This is a direct result
of constructing a theory capable of dealing with fluctuations. At sufficiently low a pri-
ori probability, the fluctuations drown the messages. In my opinion, the many-worlds
interpretation is not without experimental support, because it is among the simplest
and most complete interpretations available for the mass of evidence validating quan-
tum theory. However, the problem of whether all switching structures are “machines
haunted by ghosts,” is one which is utterly beyond experimental attack. It is closely
analogous to the old philosophical problem of solipsism, which asks whether other
people are as much haunted machines as we are. Nevertheless, while it seems only
reasonable to believe in the consciousness of other people, and while this is neither
the most probable nor, even for me, perhaps, the best(37) of all possible worlds, the
idea that awareness is also immanent among low probability chaos seems undesirable.

Despite all these remaining problems, I believe that the analysis in this paper
should be sufficient to raise as a serious possibility the notion that quantum theory
is compatible with each of us being a pattern formed in time of a million billion
scintillations in each second.
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