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Abstract In his long 1957 paper, “The Theory of the Universal Wave Function”,
Hugh Everett III made some significant preliminary steps towards the application and
generalization of Shannon’s information theory to quantum mechanics. In the course
of doing so, he conjectured that, for a given wavefunction on a compound space, the
Schmidt decomposition maximises the correlation between subsystem bases. This is
proved here.

Let H1 and H2 be separable Hilbert spaces and H = H1 ⊗ H2 be their tensor
product. Let Ψ ∈ H be a wavefunction – by which I mean simply that ||Ψ|| = 1.
Suppose that H1 has dimension D1 ≤ ∞ and H2 has dimension D2 ≤ ∞. Without
loss of generality, suppose that D1 ≤ D2.

A Schmidt decomposition (von Neumann 1932, Everett 1957, and many modern

textbooks) of Ψ is an expansion of the form Ψ =
∑D1

n=1

√
pnϕnψn where (ϕn)D1

n=1 is

an orthornormal basis of H1, (ψn)D2
n=1 is an orthornormal basis of H2, 0 ≤ pn ≤ 1 and∑D1

n=1 pn = 1. Schmidt decompositions always exist. They are unique, up to phase
factors, as long as D1 = D2 and the pn are all distinct.

Mixtures of notations from both mathematics and physics will be used and abused
throughout this note. For example, ϕnψn is written here for ϕn ⊗ ψn. In notation
used later, the same wavefunction would appear as |ϕn, ψn> or simply as |n, n>.

Set σ = |Ψ><Ψ|. σ is a pure state on the algebra B(H) of bounded operators
on H and for B ∈ B(H) we shall write σ(B) = <Ψ|B|Ψ> = tr(|Ψ><Ψ|B).

Define σ1 to be the reduced density matrix of σ on H1. In other words, σ1 =
trH2

(σ) is the partial trace of σ overH2 , and, for all B1 ∈ B(H1), σ1(B1) = σ(B1⊗12)
where 12 is the identity operator on H2. σ2 = trH2

(σ) and 11 are defined similarly.

The Schmidt decomposition gives

σ1 =

D1∑
n=1

pn|ϕn><ϕn| and σ2 =

D1∑
n=1

pn|ψn><ψn|.

Suppose that Z1 = (Pi)
I
i=1 (respectively Z2 = (Qj)

J
j=1) is a sequence of orthogo-

nal projections in B(H1) (resp. B(H2)) such that
∑I

i=1 Pi = 11 (resp.
∑J

j=1Qj = 12).
We shall write PiQj for Pi ⊗Qj ∈ B(H1 ⊗H2).

In particular, write P̃n = |ϕn><ϕn| for n = 1, . . . , D1, Q̃n = |ψn><ψn| for

n = 1, . . . , D2, Z̃1 = (P̃n)D1
n=1, and Z̃2 = (Q̃n)D2

n=1.
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In all cases,
J∑

j=1

σ(PiQj) = σ(Pi⊗12) = σ1(Pi) and
I∑

i=1

σ(PiQj) = σ(11⊗Qj) = σ2(Pj). (1)

When discussing relative entropies, we shall also use Z1 and Z2 to denote the
abelian von Neumann algebras generated by (Pi)

I
i=1 and (Qj)

J
j=1, while Z will denote

the abelian von Neumann algebra Z1 ⊗Z2 ⊂ B(H) generated by (PiQj)
I
i=1

J
j=1.

Define

{Z1,Z2}Ψ =
∑
i,j

[
σ(PiQj) log σ(PiQj)− σ(PiQj) log(σ1(Pi)σ2(Qj))

−σ(PiQj) + σ1(Pi)σ2(Qj)
]
. (2)

Of course
∑

i,j σ(PiQj) =
∑

i,j σ1(Pi)σ2(Qj) = 1 so that the final terms in
definition (1) are redundant in the finite-dimensional case. They are added for the
general case, however, because, then, by the standard inequality

s ≥ 0, r ≥ 0⇒ s log s− s log r − s+ r ≥ 0,

each term in the sum is non-negative, and the sum is well-defined even if it is infinite.
Note that with the convention that 0 log 0 = 0, each term in the sequence is finite
because

σ1(Pi)σ2(Qj) = 0⇒ σ(PiQj) = 0.

This holds by the Cauchy-Schwarz inequality, or alternatively because, σ(PiQj) ≥ 0
for each j and so, by (1),

σ1(Pi) = 0⇒ σ(PiQj) = 0 for all j.

(2) is the mutual information of random variables X on {i = 1, . . . , I} and Y
on {j = 1, . . . , J} with joint distribution Pjoint(i, j) = σ(PiQj) (Cover and Thomas
1991). In other words, with the convention in which relative entropy is negative,
it is the absolute value of the relative entropy of the joint distribution Pjoint(i, j)
with respect to the product distribution of the marginals Pmarg(i, j) = σ1(Pi)σ2(Qj).
This means that the greater the mutual information, the more different the joint
distribution is from the product distribution, and thus the more that X and Y are
correlated.

Generalizing to the quantum case, Everett considers operators A =
∑

i aiPi on
H1 and B =

∑
j bjQj on H2 and calls {Z1,Z2}Ψ the correlation between A and B

on Ψ. He then conjectures theorem 3.

Theorem 3
0 ≤ {Z1,Z2}Ψ ≤ {Z̃1, Z̃2}Ψ = −

∑
n

pn log pn.

proof Begin by assuming that dimH1 = dimH2 = D <∞.
Using (1), we can write the result in the form

−
∑
j

σ2(Qj) log σ2(Qj)−
∑
i

σ1(Pi) log σ1(Pi)

≤ −
∑
n

pn log pn −
∑
i,j

σ(PiQj) log σ(PiQj). (4)
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Inequalities of this sort between quantum entropies involving sequences of oper-
ators which need not commute such as the (Pi) and (P̃n) and the (Qj) and (Q̃n) can
be difficult to prove (even when they are true). The fundamental result in this area
is strong subadditivity conjectured, in a statistical mechanical context, by Lanford
and Robinson (1968) and proved by Lieb and Ruskai (1973). This says that if we
have a state ρ on a Hilbert space H = Ha ⊗Hb ⊗Hc and we define ρb = trHa⊗Hc(ρ),
ρab = trHc

(ρ), and ρbc = trHa
(ρ), then

S(ρ) + S(ρb) ≤ S(ρab) + S(ρbc) (5)

where, for any state ω, S(ω) = −tr(ω logω).

Suppose that dimHa = D < ∞, and let τa be the totally mixed state on Ha.
For σ and ω any states on a Hilbert space H, the relative entropy of σ with respect
to ω is defined as

entB(H)(σ |ω) = tr(−σ log σ + σ logω).

This definition uses the convention that relative entropy is negative. In Donald
(1986) and Donald (1992), I explain that exp{entB(H)(σ |ω)} can be interpreted as
the probability per trial of information given by operators in B(H) of mistaking the
state ω for the state σ. To apply this to understand why equation (5) should be true,
note that, using the definition of the partial trace,

entB(H)(ρ | τa ⊗ ρbc) = S(ρ)− S(ρbc)− logD

and

entB(Hab)(ρab | τa ⊗ ρb) = S(ρab)− S(ρb)− logD.

This means that (5) is equivalent to

entB(H)(ρ | τa ⊗ ρbc) ≤ entB(Hab)(ρab | τa ⊗ ρb). (6)

(6) can be interpreted as saying that we are more likely to mistake the state
τa ⊗ ρbc for the state ρ if we can look at all the operators in B(H) than if we just
get to look at the operators in B(Hab). In other words, (6) is an example of the
monotonicity of the relative entropy; a fundamental result with a wide variety of
proofs and extensions (Ohya and Petz 1993).

The difficulty now is to equate each of the terms in (4) with the entropy of a
state restriction as in (5). But first some preliminaries:

σ(P̃nQ̃m) = pnδn,m and σ1(P̃n) = σ2(Q̃n) = pn so that

{Z̃1, Z̃2}Ψ =
∑
n

pn log pn/(pn)2 = −
∑
n

pn log pn.

This determines the right hand side of theorem 3, and shows that, like the sequence
(pn), it is independent of the choice of Schmidt decomposition of Ψ.

remark It is tempting to try to prove Everett’s conjecture using the monotonicity
of the relative entropy under quantum operations (Lindblad 1974, Uhlmann 1977),
with the quantum operation E : B(H)→ B(H) defined by E(B) =

∑
ij PiQjBPiQj , or

alternatively, by using monotonicity under restriction to the subalgebra Z. Everett’s
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conjecture, however, seems remarkably strong in the sense that a direct use of these
theorems just gives

entB(H)(σ |σ1 ⊗ σ2) ≤ entB(H)(σ ◦ E | (σ1 ⊗ σ2) ◦ E) ≤ entZ(σ |σ1 ⊗ σ2) ≤ 0.

The useful terms here work out as

2
∑
n

pn log pn = entB(H)(σ |σ1 ⊗ σ2) ≤ entZ(σ |σ1 ⊗ σ2) = −{Z1,Z2}Ψ ≤ 0.

The problematic factor of 2 arises because σ is a pure state on the algebra B(H).

−entB(H)(σ |σ1 ⊗ σ2) = S(σ1) + S(σ2)− S(σ)

is also the quantum mutual information in this situation, so various inequalities in-
volving that property are also not quite as strong as Everett’s conjecture. {Z̃1, Z̃2}Ψ
is in fact the negative of the relative entropy entZ̃(σ |σ1 ⊗ σ2) (or in strict notation

entZ̃(σ|Z̃ |σ1|Z̃1
⊗ σ2|Z̃2

)) where, as von Neumann algebras, Z̃ = Z̃1 ⊗ Z̃2. Despite

this failure, the quantum operation E and its components E1 and E2, defined by
E1(B1) =

∑
i PiB1Pi and E2(B2) =

∑
j QjBQj , are central to the proof of the full re-

sult, in which we will use standard techniques to represent E1 and E2 as compositions
of unitary maps and partial traces.

There are strong similarities between the proof I shall give here, and Schumacher
and Nielsen’s (1996) proof of the quantum data processing inequality. Nevertheless,
it is not clear to me that Everett’s inequality can be interpreted as an application
of Schumacher and Nielsen’s result. On the other hand, it may well come within
the scope of exercise 12.15 of Nielsen and Chuang (2000) which begins: “Apply all
possible combinations of the subadditivity and strong subadditivity inequalities to
deduce other inequalities for [a] two stage quantum process”! Over the last twenty
years, the literature on quantum information theory has explored a vast variety of
such combinations to the point where I would quite surprised if Everett’s inequality
was not out there somewhere. As yet, however, I have failed to find it. Anyway, it
seems worth having a leisurely exposition of a direct and fairly simple proof linked to
the historical context.

lemma Suppose that Pi =
∑

k Pi,k. Then∑
i,j

σ(PiQj) log σ(PiQj)/(σ1(Pi)σ2(Qj))

≤
∑
i,j,k

σ(Pi,kQj) log σ(Pi,kQj)/(σ1(Pi,k)σ2(Qj)).

proof By the log sum inequality (Everett 1957 Appendix I.2 lemma 2, Cover and
Thomas 1991 theorem 2.71) which is a consequence of the convexity of x log x,

σ(PiQj) log σ(PiQj)/(σ1(Pi)σ2(Qj))

=
∑
k

σ(Pi,kQj) log
∑
k′

σ(Pi,k′Qj)/
∑
k′′

(σ1(Pi,k′′)σ2(Qj))

≤
∑
k

σ(Pi,kQj) log σ(Pi,kQj)/(σ1(Pi,k)σ2(Qj)).
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It follows that it is sufficient to prove the theorem for Pi and Qj one-dimensional
projections. Assume therefore that Pi = |αi><αi| and Qj = |βj><βj | where {αi :
i = 1, . . . , D} (resp. {βj : j = 1, . . . , D}) is an orthonormal basis of H1 (resp. H2).

Now return to the problem of finding a way to express each term in (4) as the
entropy of a state restriction. Note first that there is a similarity between the two
terms on the left of (4) which does not seem to be matched by the form of the spaces
used in (5). This issue can be dealt with by introducing a fourth space Hd and a pure
state on the total space Ha ⊗Hb ⊗Hc ⊗Hd. Using a Schmidt decomposition shows
that the entropy of the partial trace of that pure state over Hd will equal the entropy
of its partial trace over Ha ⊗Hb ⊗Hc.

Introduce auxiliary spaces H′1 and H′2 with dimH′1 = dimH′2 = D and orthonor-
mal bases {|i> : i = 0, . . . , D − 1} and set

|Ψ0> = |0>⊗ |Ψ>⊗ |0> ∈ H′1 ⊗H1 ⊗H2 ⊗H′2.

Define a linear map U on H′1 ⊗H1 by linear extension from

U(|n>⊗ |αi>) = |n⊕ i>⊗ |αi>

where ⊕ is addition modulo D. U is defined on an orthonormal basis, which it maps
to another orthonormal basis:

<m⊗ αi′ |U∗U |n⊗ αi> = <m⊕ i′|n⊕ i><αi′ |αi> = <m⊕ i′|n⊕ i>δi,i′ = δm,nδi,i′

and so U is unitary. Note that, for ϕ ∈ H1,

U(|0>⊗ |ϕ>) = U(
∑
i

|0>⊗ Pi|ϕ>) =
∑
i

|i>⊗ Pi|ϕ> =
∑
i

<αi|ϕ>|i, αi>.

Similarly, define a unitary map V on H2 ⊗H′2 by

V (|βj>⊗ |n>) = |βj>⊗ |n⊕ j>

and note that

V (|ψ>⊗ |0>) =
∑
j

Qj |ψ>⊗ |j> =
∑
j

<βj |ψ>|βj , j>.

Set |Ψ′> = (U ⊗ V )|Ψ0>. Then

|Ψ′> =
∑
n

√
pnU(|0>⊗ |ϕn>)⊗ V (|ψn>⊗ |0>) (7)

=
∑
ijn

√
pn|i>⊗ Pi|ϕn>⊗Qj |ψn>⊗ |j> =

∑
ij

|i>⊗ PiQj |Ψ>⊗ |j>.

Now set ρ = |Ψ′><Ψ′|. It is straightforward to calculate all of the partial traces
of this state, either directly, or by identifying Schmidt decompositions. Note that as
that ρ is pure, if A ⊂ {1′, 1, 2, 2′} and Ac is its complement, a Schmidt decomposition
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of |Ψ′> will show that S(ρA) = S(ρAc). The results give

S(ρ1) = S(ρ1′) = S(ρ1′22′) = S(ρ122′) = −
∑
i

σ1(Pi) log σ1(Pi)

S(ρ2) = S(ρ2′) = S(ρ1′12′) = S(ρ1′12) = −
∑
j

σ2(Qj) log σ2(Qj)

S(ρ1′2) = S(ρ12) = S(ρ12′) = S(ρ1′2′) = −
∑
i,j

σ(PiQj) log σ(PiQj)

S(ρ1′1) = S(ρ22′) = −
∑
n

pn log pn.

Several choices are now available to apply (5), including a = 1′, b = 1 and c = 2,
and so the theorem is proved in the finite-dimensional case.

To confirm that the entropies of the partial traces are as given, first note that,
as U and V are unitary, (7) provides the Schmidt decomposition of |Ψ′> with respect
to the decomposition

(H′1 ⊗H1 ⊗H2 ⊗H′2) = (H′1 ⊗H1)⊗ (H2 ⊗H′2).

This gives S(ρ1′1) = S(ρ22′) = −
∑

n pn log pn.
Next, write

|Ψ′> =
∑
ij

|i>⊗ PiQj |Ψ>⊗ |j> =
∑
i

|i>⊗ (
∑
j

<αi, βj |Ψ>|αi, βj , j>).

For i 6= i′, the vectors
∑

j <αi, βj |Ψ>|αi, βj , j> and
∑

j <αi′ , βj |Ψ>|αi′ , βj , j> are
orthogonal. Moreover,

||
∑
j

<αi, βj |Ψ>|αi, βj , j>||2 =
∑
j

|<αi, βj |Ψ>|2 =
∑
j

σ(PiQj) = σ1(Pi)

so we have the Schmidt decomposition of |Ψ′> with respect to the decomposition

(H′1 ⊗H1 ⊗H2 ⊗H′2) = (H′1)⊗ (H1 ⊗H2 ⊗H′2)

giving S(ρ1′) = S(ρ122′) = −
∑

i σ1(Pi) log σ1(Pi).
For the decomposition

(H′1 ⊗H1 ⊗H2 ⊗H′2) = (H′1 ⊗H′2)⊗ (H1 ⊗H2),

|Ψ′> =
∑
ij

|i>⊗ PiQj |Ψ>⊗ |j>

already presents a Schmidt decomposition, as for (i, j) 6= (i′, j′) the vectors PiQj |Ψ>
and Pi′Qj′ |Ψ> are orthogonal. ||PiQj |Ψ>||2 = σ(PiQj) and so

S(ρ12) = S(ρ1′2′) = −
∑
i,j

σ(PiQj) log σ(PiQj).

With the underlying symmetry of formalism under the exchange of H1 and (Pi)i
with H2 and (Qj)j , it only remains to consider the decompositions

(H′1 ⊗H1 ⊗H2 ⊗H′2) = (H1)⊗ (H′1 ⊗H2 ⊗H′2)

and
(H′1 ⊗H1 ⊗H2 ⊗H′2) = (H′1 ⊗H2)⊗ (H1 ⊗H′2).
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For these, write

|Ψ′> =
∑
ij

<αi, βj |Ψ>|i, αi, βj , j>.

For i 6= i′, the pairs |αi> and |αi′> and
∑

j <αi, βj |Ψ>|i, βj , j> and∑
j <αi′ , βj |Ψ>|i′, βj , j> are orthogonal, and

||
∑
j

<αi, βj |Ψ>|i, βj , j>||2 =
∑
j

|<αi, βj |Ψ>|2 =
∑
j

σ(PiQj) = σ1(Pi).

This yields S(ρ1) = S(ρ1′22′) = −
∑

i σ1(Pi) log σ1(Pi).
For (i, j) 6= (i′, j′), the pairs |iβj> and |i′βj′> and |αi, j> and |αi′ , j

′> are
orthogonal, and

|<αi, βj |Ψ>|2 = σ(PiQj)

so that S(ρ1′2) = S(ρ12′) = −
∑

i,j σ(PiQj) log σ(PiQj).

Before dealing with the extension to infinite dimensions, note that the restric-
tion dimH1 = dimH2 has only been used for notational convenience. Considering
subspaces of such a situation is sufficient to yield the result for any pair of finite
dimensional spaces.

lemma The theorem holds whenever the sequences (Pi)
I
i=1 and (Qj)

J
j=1 are finite,

and there are only finitely many pn > 0.

proof Suppose pn > 0 for n = 1, . . . , N <∞.
Let K1 be the Hilbert space spanned by the vectors

{Piϕn : i = 1, . . . , I;n = 1, . . . , N}.
K1 is finite-dimensional. Let P ′i be the restriction of Pi to K1.
Define K2 and (Q′j) similarly.
Then Ψ =

∑
n

√
pnϕn ⊗ ψn =

∑
ijn

√
pnPiϕn ⊗Qjψn ∈ K1 ⊗K2 and the finite-

dimensional result can be applied, giving

−
∑
n

pn log pn ≥
∑
i,j

σ(P ′iQ
′
j) log σ(P ′iQ

′
j)/(σ1(P ′i )σ2(Q′j))

=
∑
i,j

σ(PiQj) log σ(PiQj)/(σ1(Pi)σ2(Qj)).

Now suppose that the sequences (Pi)
I
i=1 and (Qj)

J
j=1 remain finite, but consider

general Ψ =
∑

n

√
pnϕnψn. LetRN be the projection onH onto the finite-dimensional

space spanned by {ϕmψn : m = 1, . . . , N ;n = 1, . . . , N}. Assume, without loss of

generality, that p1 > 0 and set rNn = pn/
∑N

n=1 pn and σN = |ΨN><ΨN | where

ΨN =

N∑
n=1

√
rNn ϕnψn.

The lemma shows that

−
N∑

n=1

rNn log rNn ≥
∑
i,j

σN (PiQj) log σN (PiQj)/(σ
N
1 (Pi)σ

N
2 (Qj)).
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This is equivalent to
N∑

n=1

rNn log rNn ≤ entZ(σN |Z |σN
1 |Z1

⊗ σN
2 |Z2

).

W*-upper semicontinuity of relative entropy (Donald 1986), or, in this abelian
situation, Fatou’s lemma, then implies that

entZ(σ|Z |σ1|Z1
⊗ σ2|Z2

) ≥ lim sup
N→∞

entZ(σN |Z |σN
1 |Z1

⊗ σN
2 |Z2

)

≥ lim sup
N→∞

N∑
n=1

rNn log rNn = lim sup
N→∞

(

∑N
n=1 pn log pn∑N

n=1 pn
− log(

N∑
n=1

pn)) =

∞∑
n=1

pn log pn.

Finally, for the case of infinite sequences (Pi)
∞
i=1 and (Qj)

∞
j=1, write P I =∑∞

i=I+1 Pi, Q
J =

∑∞
j=I+1Qj .

Then, we have just proved that, for all finite I and J ,

−
∞∑

n=1

pn log pn ≥
I∑

i=1

J∑
j=1

[
σ(PiQj) log σ(PiQj)− σ(PiQj) log(σ1(Pi)σ2(Qj))

−σ(PiQj) + σ1(Pi)σ2(Qj)
]

+[σ(P IQJ) log σ(P IQJ)− σ(P IQJ) log(σ1(P I)σ2(QJ))− σ(P IQJ) + σ1(P I)σ2(QJ)
]

≥
I∑

i=1

J∑
j=1

[
σ(PiQj) log σ(PiQj)− σ(PiQj) log(σ1(Pi)σ2(Qj))

−σ(PiQj) + σ1(Pi)σ2(Qj)
]
.

Taking the limits I → ∞, J → ∞ gives the required bound and completes the
proof of the theorem.
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