
Approximation Methods

WKB approximation is an important part of QM as such, and also a very useful technique in many
other areas of physics. “W.K.B.” stands for Wentzel, Kramers and Brillouin (1926) but the concept
has been exploited, probably, since Liouville in 1837... In QM this method is often called “quasi- or
semi-classical” approximation.

In general, this is one of several methods of treating the wide range of problems characterised by two
simultaneous physical processes, each acting with their own scale. (One may contrast it with the method
of matched asymptotic expansions, when two processes also have different scales, but act separately, in
different regions). The WKB aims to obtain an asymptotic solution of

ψ′′ + k2(x)ψ = 0 (∗)

It can be a Schrödinger equation, k2(x) = 2m
h̄2 [E − V (x)] (from h̄2

2mψ
′′ − V (x)ψ + Eψ = 0). The approx-

imation is in assuming the slowly varying potential — V (x) changes appreciably over the characteristic
distance l such that kl� 1.

We look for an approximate solution in the form ψ = AeiS , where A(x) and S(x) are real functions.
Substituting this into our master equation (∗) we have A′′+ 2iA′S′+ iS′′A−S′2A+ k2A = 0. Since real
and imaginary parts of a function are orthogonal, we have separately:

Re : A′′ − S′2A+ k2A = 0

Im : 2A′S′ + S′′A = 0 ⇒ A′

A
= − S′′

2S′
→ A =

a√
S′

From the Re-part we get (S′)2 = k2 +A′′/A. The approximation comes at this stage: we should assume
that all functions stemming from our potential V (x) vary on the same length scale ∼ l and, therefore,
A′′/A ∼ 1/l2 by the order of magnitude; hence k2 � A′′/A. So we take, as a first step, (S′)2 = k2 and
recover the corresponding A = a/

√
k from the Im-part:

ψ(x) =
a1√
k(x)

exp
[
i

∫ x

x0

kdx

]
+

a2√
k(x)

exp
[
−i

∫ x

x0

kdx

]
, for E > V or k2 > 0

ψ(x) =
a1√
k(x)

exp
[∫ x

x0

|k|dx
]

+
a2√
k(x)

exp
[
−

∫ x

x0

|k|dx
]
, for E < V , imaginary k

So, for E > V the solutions (“wave functions”) are oscillating and in the opposite case we obtain the
increasing and decreasing exponentials. This result, ψ ∼ (k)−1/2 exp[i

∫
kdx] is the first order approxi-

mation in powers of 1/(kl)2, one can obtain the next orders accordingly, the full solution represents the
so-called asymptotic series.

Asymptotic Series. Let sn =
∑n

k=0 ak(1/zk) be the partial sum. Suppose that for a fixed z and
n → ∞ the quantity sn → ∞ (i.e. the sum does not converge), but for a fixed n and z → ∞ the sum
sn(z) gives an even better approximation of some function f(z). In other words

lim
z→∞

zn [sn(z)− f(z)] = 0

Then we say that sn is an asymptotic representation of f(z) (this is not a usual series because there is
no convergence!) Let us construct sn:
s0 = a0 so that a0 = f(∞);
s1 = a0 + (a1/z) so that we must have limz→∞ z[a0 + a1/z − f(z)] = 0,

1



i.e. a1 = limz→∞ z[f(z)− f(∞)];
All the next coefficients may be found in the same way. However, it is not possible to “invert” this and
reconstruct f(z) from a given asymptotic seris sn. For instance, for f(z) = e−z we can easily obtain that
a0 = 0, a1 = 0, ... an = 0, i.e the asymptotic series for f(z) and f(z) + e−z are identical...

Thus WKB solution is a series ψ =
∑n

µ=0 aµ(x)1/(kl)2µ (the parameter z ≡ (kl)2 here). As we have
just seen, this asymptotic series cannot account for exponentially small effects ∼ e−(kl)2 at large (kl).
Suppose z = (kl)2 is fixed; then (because at n → ∞ the sum diverges) there is an optimal number
of terms, n(z), which represent best the exact solution ψ(x). Further approximations do not improve
the solution, rather make it much worse! (What we have done in the first order is to neglect the term
(A′′/k2A) ∼ 1/(kl)2 and there is no apriori guarantee that the next order is even worth looking at). 1.

This method of approximating in powers of the ratio of the two scales involved applies to many other
areas of physics and types of equations. For instance, the wave equation ẍ + ω2(t)x = 0 when the
frequency varies slowly enough, ω̇/ω2 � 1. More complex equations are transformed to the form (∗) by
an appropriate substitution, for example

y′′ + a(x)y′ + b(x)y = 0 requires y ⇒ ψ(x) exp
[
−1

2

∫ x

0

a(ξ)dξ
]
.

Integral representation, Saddle-point. Consider an integral:

J(z) =
∫

C

ezf(x)dx ≈ eiIm[zf(x)]

∫
eRe[zf(x)]dx

The contour of integration must be chosen such that Im[zf(x)] is constant over the region where Re[zf(x)]
is Maximal (otherwise – the integrand will have oscillations and no saddle-point). Near this maximum
the exponent is given by f(x) = f(x0)− 1

2f
′′(x0)(x− x0)2 + ... Now

J(z) ≈ Const.ezf(x0)

∫
C

e−
1
2 zf ′′(x0)(x−x0)

2
dx

As z → ∞ the less of C is relevant and eventually we obtain the main saddle-point result: J(z) ≈
ezf(x0)

√
2π/zf ′′(x0). This, in fact, is the leading term of asymptotic series. Let us look at the next

terms:
Instead of expansion of f(x) we shall use the exact substitution f(x) = f(x0)−w2 (note that w is a real
function by virtue of choice Im[f(x)] =const: Im[f(x)] =Im[f(x0)]). Then

J(z) = ezf(x0)

∫
e−zw2

dx = ezf(x0)

∫
e−zw2

(
dx

dw

)
dw .

Now we should invert the definition of w = w(x) to obtain (dx/dw) as a function of w and exploit the
Gaussian integral. The explicit result depends on the specific f(x), but suppose we obtain (dx/dw) =∑∞

n=0 anw
n (near the maximum of f this is what one’d expect). Only even powers wn contribute to

the Gaussian integral (we remember that
∫
e−zw2

w2ndw = (−1)n∂n/∂zn(
√
π/z) ) and we obtain the

asymptotic series

J(z) = ezf(x0)

√
π

z

∞∑
n=0

(2n− 1)!!
2n

an

(
1
z

)n

where a0 gives the previous zero-order result.
WKB quantisation.

ψ′′ + k2(x)ψ = 0 with k2 =
2m
h̄2 [E − V (x)]

However slow the variation of V (x) might be, there is a region where WKB fails,
at E ∼ V (turning points x1 and x2 on the picture). Two methods are usually

used:
(1) Assume that near the turning point E − V (x) ≈ αx, a linear function [this is always so except for a
few specific cases, like a vertical wall, or the point of max(V )]. The the equation in this region is just
ψ′′ + xψ = 0, having solutions known as Airy functions. One then needs to match the coefficients with

1Read a corresponding chapter in Landau & Lifshits v.III (Quantum Mechanics) to see how this approximation is directly
related to the quantum-mechanical h̄
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two families of WKB solutions for k2 > 0 and k2 < 0 of both sides.
(2) One can avoid using special functions by bringing the two areas, k2 > 0 and k2 < 0 into a direct
contact on the complex plane {x→ z}. When we travel around a turning point via the complex plane at
sufficient distance, the WKB condition that |E − V (x)| is big enough is valid all the time. (Caution as
the integration contour crosses the “Stokes lines” - branch cuts - where the analytic continuation breaks
down).

Essentially, near each turning point we have a decreasing exponential ∼ |k|−1/2 exp[−
∫
|k|dx] in the

classically prohibited region k2 < 0 and a real combination of:

ψE>V =
c1√
k(x)

exp
[
i

∫ x

x1

kdx

]
+

c2√
k(x)

exp
[
−i

∫ x

x1

kdx

]
,

on the other, classically allowed side. In the cases when the potential V (x) has linear behaviour near x1

the matching gives
c

2
√
|k|

exp
[
−

∫ x1

x

|k|dx
]
⇒ c√

k
cos

[
−

∫ x

x1

kdx− π

4

]
(note the integration direction). If the classically accessible area k2 > 0 is bounded by an infinitely high
potential wall, then the boundary condition is just ψ|wall = 0. The WKB approximation is valid up to
the point of contact and the solution is ψ = (c/

√
k) sin[

∫ x1

x
kdx].

If we have a potential well, i.e the classically accessible region is bounded by two turning points,
x1 < x < x2, then we obtain from the matching near each point a separate solution:

ψ1 =
a1√
k

cos
[
−

∫ x

x1

kdx− c1π
]

and ψ2 =
a2√
k

cos
[
−

∫ x2

x

kdx− c2π
]

(with the phases c1, c2 determined by the turning point details). The requirement that these two functions
should be identical gives the quantisation condition∫ x2

x1

kdx = (n+ c1 + c2)π

(with a1 = (−1)na2). The cosine goes through zero n times as x varies from x1 to x2, so that n is just
the the number of nodes of ψ(x) in this interval. For the most common case with linear V (x) near both
turning points the phase factors c1 = 1

4 and c2 = 1
4 , so that the r.h.s. is (n+ 1

2 )π.
Estimates of Integrals. The following examples illustrate the approach:

Case 1. J(x) =
∫ x

0

et2 dt√
x2 − t2

If x << 1, then the exponential in the integrand is of order 1. Consequently

J(x) ≈
∫ x

0

dt√
x2 − t2

=
∫ 1

0

dz√
1− z2

Since this integral contains no parameters, we have J(x) ∼ 1 for x << 1 [Actual calculation gives
J(x) ≈ π/2]
If x >> 1, then because of the exponential factor the principal contribution to the integral comes from
the region near t ∼ x. Let us expand around this point: ξ = x− t, so that

J(x) =
∫ x

0

ex2−2ξx+ξ2 dξ√
2ξx− ξ2

≈ ex2
∫ x

0

e−2ξx dξ√
2ξx

≈ ex2

2x

∫ ∞

0

e−z dz√
z

=
ex2

2x
√
π

At x ∼ 1 both expressions are of the same order of unity, as of course they must be.

Case 2. J(a) =
∫ ∞

0

e−x2
sin2 axdx

In all cases the important region is only 0 < x < 1 because of the exponential. If a >> 1 then the sine
oscillates many times over this region and can be replaced by its average, 1

2 . Then

J(a >> 1) ≈
∫ ∞

0

1
2
e−x2

dx = const
[
actually

√
π

4

]
.
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If a << 1 then the argument of sine is always small and we can expand it:

J(a << 1) ≈ a2

∫ ∞

0

e−x2
x2dx = a2 const

[
actually

√
π

4
a2

]
.

These two limits match at a ∼ 1 and form a good description of J(a) over the whole region of the variable
a [an exact calculation, possible here, gives J =

√
π

4 (1− e−a2
)].

Case 3. J(α) =
∫ ∞

0

e−αz

z + 1
dz

(important region is only 0 < z < 1/α. If α >> 1 then z is always small and J(α) ≈
∫∞
0
e−αzdz = 1/α

(which is the same as simply taking
∫ 1/α

0
dz). If α << 1 then in the most of relevant region z >> 1

and we can neglect 1:

J(α << 1) ≈
∫ ∞

0

e−αz

z
dz ≈

∫ 1/α

0

1
z
dz = ln(1/α) .

Integrals of oscillating functions; high terms in Fourier series expansion.

Case 4. J(ω) =
∫ ∞

−∞

eiωtdt√
1 + t2

, ω →∞

The singularities of the integrand occur on the imaginary axis, t = ±i. We can deform the contour into
the upper half-plane. The contributions from ∞ vanish, the small contour around the branch point tends
to zero: t = i+ ρeiφ

∫
C1

∼
∫ 2π

0

ρeiφdφ
√
ρeiφ/2

∼ √ρ→ 0

Because the integrand (
√

1 + t2) has a different sign on the two sides of the branch
cut, the integrals along C2 and C3 are equal. Changing the variable t = i(1 + ξ)
we have

J(ω) = 2e−ω

∫ ∞

0

e−ωξ dξ√
2ξ

=

√
2π
ω
e−ω

For large ω the integral is exponentially small. This is a special case of a more general theorem: the high
Fourier components of any function that has no singularities on the real axis are exponentially small. If
x1 is the “characteristic length” of f(x) (i.e. roughly, the distance of the nearest singularities from the
real axis is of order x1), then

fω ≡
∫ ∞

−∞
f(x)eiωxdx ∼ e−ωx1 for ωx1 � 1
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