
THE JOURNAL OF CHEMICAL PHYSICS 141, 224901 (2014)

Role of the potential landscape on the single-file diffusion
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Transport of colloid particles through narrow channels is ubiquitous in cell biology as well as be-
coming increasingly important for microfluidic applications or targeted drug delivery. Membrane
channels in cells are useful models for artificial designs because of their high efficiency, selectivity,
and robustness to external fluctuations. Here, we model the passive channels that let cargo simply
diffuse through them, affected by a potential profile along the way. Passive transporters achieve high
levels of efficiency and specificity from binding interactions with the cargo inside the channel. This
however leads to a paradox: why should channels which are so narrow that they are blocked by their
cargo evolve to have binding regions for their cargo if that will effectively block them? Using Brow-
nian dynamics simulations, we show that different potentials, notably symmetric, increase the flux
through narrow passive channels – and investigate how shape and depth of potentials influence the
flux. We find that there exist optimal depths for certain potential shapes and that it is most efficient
to apply a small force over an extended region of the channel. On the other hand, having several
spatially discrete binding pockets will not alter the flux significantly. We also explore the role of
many-particle effects arising from pairwise particle interactions with their neighbours and demon-
strate that the relative changes in flux can be accounted for by the kinetics of the absorption reaction
at the end of the channel. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903175]

I. INTRODUCTION

Transport of macromolecules through nano-sized pores
and narrow protein channels is essential for cell function1

while also becoming increasingly important in microfluidic
applications2, 3 or to understand drug delivery.4 Channels in
cell membranes are remarkable for their high efficiency, se-
lectivity, and robustness with respect to fluctuations of their
environment5 and come in two flavours. Active transporters
move their cargo by using cellular energy, e.g., from hy-
drolysing adenosine triphosphate or by harvesting concentra-
tion gradients of cell metabolites across the membrane. On the
other hand, passive transporters are driven by the growth of
entropy of the system as they translocate their specific cargo.
Initially thought of as molecular sieves that select via the pore
size to let the “right” cargo simply diffuse through the chan-
nel, it is now well established that passive transporters achieve
high levels of efficiency and specificity from binding interac-
tions with the cargo inside the channel. A well-characterised
example is the bacterial channel Maltoporin, where oligosac-
charide transport is facilitated by an extended binding region.6

Although many more examples of this phenomenon have
since been discovered using a plethora of methods (e.g., ex
situ crystallographic studies,7 indirect measurements of ionic
currents,8 and molecular dynamics simulations9) the exact de-
tails of the mechanisms of passive transporters are still poorly
understood.10

Our work is motivated by a seeming paradox that arises
when one considers the flux through a narrow channel, such
as Maltoporin, which prevents particles from overtaking each
other. Increasing the binding affinity between the channel in-

terior and the cargo will prolong the time each particle spends
inside the channel, hence reducing the flux and effectively
blocking it. Why then would channels evolve to have binding
regions for the molecules they have evolved to translocate?
In this paper, we combine the results of Brownian dynam-
ics (BD) simulations with theoretical arguments to show how
developing binding regions inside a channel can indeed in-
crease flux through narrow channels. We model the binding
regions using a variety of potential-energy landscapes along
the channel and investigate the dependence of the flux through
the channel on the shape and depth of these potentials.

We first consider a single freely diffusing particle to tune
our Brownian dynamics simulations in the setting where an
exact analytical solution for the transport exists, applying var-
ious tests to the simulation procedure to ensure its proper re-
flection of the physical situation. We then investigate single-
file diffusion through a channel to analyse the dependence
of particle flux on the shape and depth of applied potentials.
Finally, we demonstrate that we can account for the relative
changes in flux by considering the diffusion-limited reaction
kinetics of the absorption in a scheme11 based on the osmotic
pressure along the channel alone.

In order to investigate the dynamics of colloid parti-
cles diffusing freely or in a potential, we need to solve the
Langevin or corresponding Fokker-Planck equation. While
there exist elegant analytical solutions for the transport of
non-interacting particles,12 here we consider the many-body
problem of transport through crowded channels, which is a
more realistic boundary condition for cellular environments13

or microfluidic devices.14 We perform BD simulations15
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using the LAMMPS package16 rather than using mean-field
approaches17 for this genuine many-body problem.

II. FREE BROWNIAN PARTICLE

The one-dimensional motion of a Brownian particle is
described by the Langevin equation mv̇ + αv = ζ (t), where
m is the particle mass, v its velocity, and α is the viscous
drag coefficient. We further assume white noise ζ (t) with
〈ζ (t)ζ (t′)〉 = �δ(t − t′), where � = 2αkBT/m is the intensity
of the stochastic force, satisfying the fluctuation-dissipation
theorem. The general solution for the root mean square dis-
placement of the particle is18

〈�x2〉 = 2kBT m

α2
(t/τv − 1 + exp(−t/τv)) (1)

with the velocity relaxation time τv = m/α. In the over-
damped (or diffusive) regime, with t � τv , we recover the
Einstein result: 〈�x2〉 = 2(kBT/α)t, where one defines the dif-
fusion constant D ≡ kBT/α. On the other hand, in the iner-
tial regime t � τv , the displacement grows linearly with time:
〈�x2〉 = (kBT/m)t2.

A. Brownian dynamics simulation

To verify that LAMMPS yields particle trajectories with
the right statistical properties, we first simulated freely diffus-
ing spherical Brownian particles of different sizes at different
temperatures. The goal was to identify the inertial and the dif-
fusive regimes and the fluctuation-dissipation theorem.

Integration of the Langevin equation and the application
of thermostat conditions was done via the fix_langevin
routine.19 The free particles were simulated in a box with pe-
riodic boundary conditions and were assigned initial veloc-
ities drawn from a uniform distribution for the given tem-
perature. The viscous drag coefficient α was computed using
Stoke’s law for a spherical particle at low Reynolds number:
α = 6πηR where R = σ /2 is the particle radius and η is the
fluid viscosity.

Figure 1 shows the average root mean squared displace-
ment of the particles computed as the average of 100 simu-
lated trajectories per particle. Since there is no energy scale
for the free particle, we used natural units and in this case
set the diameter of the particles to σ = 1 μm and their mass
density to that of water, yielding a mass of m ∼ 4.2 × 10−15

kg. We found that the statistical relative errors for the average
trajectories were negligible for this number of simulations.

The crossover time was determined by inspection from
the graphs. We can read off a crossing-over time of ∼0.5
μs for particle #3 where the inertial response has fully died
down; this is on the same order as the characteristic time scale
τv = m/α ∼ 220 ns.

We simulated particles of different sizes (1 − 20 μm) at
different temperatures (293 − 400 K). Here, it may be neces-
sary to account for the fluid viscosity variation with tempera-
ture, and we used the empirical formula for water,20

η(T ) = 2.141 × 10−5 × 10247.8/(T −140). (2)
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FIG. 1. Inertial to diffusive crossover for the single particle. Points are rms
displacements computed from the simulated trajectories of 100 freely diffus-
ing single particles for each set of parameters. Solid lines are the inertial and
the diffusive limits of the Langevin equation solution (1). Particle #2 initially
follows the trajectory of particle #3, with has the same mass, before crossing
over to the trajectory of particle #1, which has the same drag coefficient. Er-
rors were computed from the statistical distribution of particle displacements,
but are too small to appear on this scale.

We have confirmed that the particle trajectories generated by
LAMMPS had the statistical properties expected from theory.
We were also able to confirm that the crossover time τv is
practically independent on the heat bath temperature, since
the viscosity only depends weakly on temperature in the range
that we covered in our simulations.

To verify the fluctuation-dissipation theorem, which is
used to derive the Einstein relation D = kBT/α, we computed
the diffusion constant from a linear fit of the last three decades
of each trajectory, i.e., for t > 105 ns, obtained from 100
simulated particles. Figure 2 shows the product Dα that was
computed theoretically using the Stokes relation (see above)
as a function of temperature, compared with the measured
data. The predicted trend is observed, with a very small sys-
tematic offset that has been observed for a number of other
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FIG. 2. Testing the fluctuation-dissipation theorem. Diffusion constants Dsim
were obtained from of average trajectories and are plotted as points, multi-
plied by the drag coefficient α = 6πησ , for simulations at different tempera-
tures. The different colours correspond to the types of particles, with different
radii as indicated on the plot. The corresponding Einstein relations Dα = kBT
are plotted as solid lines.
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integration schemes in Brownian dissipative dynamics.21 Es-
sentially, this is an artefact that arises from the coarse-graining
of the microscopic properties of the fluid using a random force
ζ while imposing overall momentum conservation; this error
is not significant for our purposes for two reasons: the algo-
rithm produces trajectories in almost perfect agreement with
the theory across a broad range of temperatures and further-
more, previous studies have shown that the effects due to in-
tegrator artefacts are only significant when the conservative
forces of interest are comparable to the thermal fluctuations –
all the potentials we apply will exceed energies of a few kBT,
so we expect no effect of this small factor.

III. FREE PARTICLE IN A CHANNEL

Having established the dynamics of Brownian particles
and verified that LAMMPS generates trajectories with the de-
sired statistics, we now turn our attention to the diffusion of
particles confined in a narrow channel. We considered parti-
cles of diameter σ = 2R freely diffusing through a cylindrical
channel of radius σ and length L.

Note that from here on, we will use Lennard-Jones (LJ)
units which render all quantities dimensionless by assuming
that particle interactions follow the standard Lennard-Jones
potential V (r) = 4ε[(σ/r)12 − (σ/r)6] and setting the parti-
cle mass m, the Boltzmann constant kB, and ε and σ as de-
fined above equal to 1.22 For example, all lengths are from
here on to be understood as multiples of the particle diameter
σ , while other variables can be transformed to a dimension-
less form by a scaling with an appropriate combination of m,
kB, σ , and ε, e.g., for time: tLJ = t ·

√
εm−1σ−2. For a full list

of conversion formulae see the LAMMPS manual.22 LJ units
are widely used in computational physics and offer the advan-
tage of treating systems of different size and energy scales in
one framework.

In our simulations, particles are modelled as spheres with
a Lennard-Jones 12/6 type repulsion and no attractive interac-
tion tail, that is, the LJ potential of pair interaction is truncated
at the point of its minimum, r* = 21/6σ . The channel radius is
too small to allow particles to overtake each other, thus pro-
ducing the single-file diffusion and reflecting the experimental
fact that many metabolites will completely block their chan-
nels during the transport due to their tight fit.23

Figure 3(a) shows a 2D-projection of the simulation ge-
ometry (all simulations were carried out in full three dimen-
sions). The simulation box is a cylinder of radius σ , aligned
along the z-axis, whose walls interact with particles using the
repulsive part of the Lennard-Jones potential, same as de-
scribed above, thereby “softly” preventing contact. Particles
are inserted at the very left end of the simulation box, the
“insertion region” (blue), if there is enough space. They then
diffuse inside the cylinder. What we will call the “channel”
of length L is the area shown in white in the middle of the
simulation box. Once the particles have crossed the channel
and entered the “removal region” to the right (blue), they are
removed from the simulation. Underneath, in Fig. 3(b) is a
plot of two example potentials V (z) and their corresponding

(a)

(b)

FIG. 3. Channel geometry and an applied potential. (a) The simulation box
is split in three regions, with the “channel” of length L in the middle aligned
along the z-axis, containing spherical particles. Particles are inserted in the
blue region to the left and removed from the simulation once they have
crossed the channel and entered the blue removal region to the right. (b) A
typical applied potential (red), in this case a uniform well, and the corre-
sponding force exerted on a particle (blue), to scale.

force landscapes, to scale. To investigate the first passage time
distribution, no potential was applied.

A. Distribution of first passage times

To check the physics of our channel setup, we looked at a
classical problem: the distribution of first passage times, f(τ ),
of particles freely diffusing through the channel, i.e., individ-
ually and without any applied potential. The first solution of
this problem is due to Lord Kelvin, obtained by the methods
of images.14 However, the easy exponential solution it is only
applicable when the particle is free to diffuse as far as neces-
sary to the left of z = 0, while the first passage time is being
tested by arriving at z = L to the right of its entry point, see
Fig. 3(a). In our case, the passage is blocked to the left, so
to find the probability for a particle p(z, t) one needs to solve
the one-dimensional free diffusion equation with the bound-
ary conditions: reflective wall, ∇p = 0 at z = 0, absorbing
wall, p = 0 at z = L, and the initial condition for insertion:
p(x, t = 0) = δ(z). The explicit solution is

p(z, t) ∝
∞∑

n=0

cos
[πz

L
(n + 1/2)

]
exp

(
−πD2(n + 1/2)2

L2
t

)
.

(3)
The survival probability for the particle to remain anywhere
between 0 and L, having started at z = 0 is obtained by in-
tegration: Q(t) = ∫ L

0 p(x, t)dx. Given the boundary condi-
tions, Q(t) does not depend on anything happening outside
the (0 − L) interval. Given the definition of the survival prob-
ability, the fraction of particles equal to −dQ(t)/dt is absorbed
between t and t + dt. This means that f(t) = −dQ(t)/dt is actu-
ally the probability density of the time t that takes the particle
to reach z = L for the first time. This distribution function
is plotted in Fig. 4, and it gives average first passage time
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FIG. 4. Distribution of first passage times for free diffusion. The histogram
was obtained from the first passage time of 500 single-particle simulations.
The solid line is the theoretically calculated distribution f(τ ), fitted using the
diffusion constant D = 0.284 and a normalisation constant as the fitting pa-
rameters.

τ diff ≈ 4.92L2/π2D. A solution based on the inversion of a
Laplace transform24, 25 gives the average first passage time
τ diff = L2/2D, numerically indistinguishable from the mode-
sum version above.

We measured the passage times in 500 simulations of a
single particle diffusion (to ensure no pair-interaction events
could take place), where we inserted a particle in the insertion
area and allowed it to freely diffuse to the end of the chan-
nel, the time for which we measured. We fit the distribution
of first passage times to the resulting histogram of particle
travel times in Fig. 4, where only the diffusion constant D and
a normalisation act as fitting parameters. The data are in good
agreement with the model, and we find a bare diffusion con-
stant D0 = 0.28.

Interestingly, we also found that when we considered a
similar experiment where we inserted several particles into
the channel one by one at a certain (very low) frequency, the
distribution of first passage times severely deviated from the
free-diffusion result even at concentrations of just 2–3 parti-
cles inside a channel of length L = 30 at any one time. This
shows that many-particle effects caused by particle-particle
interactions cannot realistically be ignored even at the low-
est of concentrations, a point to which we will return at the
end of this paper. In this particular case, the average first pas-
sage time was significantly increased at these concentrations,
suggesting a smaller diffusion constant or higher effective re-
sistance.

IV. POTENTIAL ALONG THE CHANNEL

Having established that our simulation setup produces
physically meaningful results, we now turn to the dependence
of the flux through a passive channel on the potential land-
scape inside it. We therefore made a series of experiments,
in each of which we simulated the insertion of 100 parti-
cles in the channel. Since this is now a genuine multi-particle

problem, simulation time increases accordingly. We therefore
made use of the parallel computing capacities of LAMMPS.

Particle insertion was attempted at a rate 0.01τ−1 = 1/Tin
where τ is time in LJ units (see early Sec. III). Particles were
only inserted if there was enough space in the insertion re-
gion; if a particle could not be inserted due to crowding at the
channel entry, the insertion was skipped and the next attempt
was made after a time interval of Tin. The intended insertion
interval Tin is significantly smaller than the mean first pas-
sage time τ diff ≈ L2/2D ≈ 1600, leading to a system driven
far from equilibrium. Since we have analysed the effects of
different insertion rates earlier,14 we will keep the high inser-
tion rate fixed for the remainder of the paper and focus our
attention on the effects of the potentials. Inside the channel,
one out of a number of different potential shapes was applied
with potential depth between Vmin ∈ [5, 70] in LJ units. The
shapes of the potential are shown in the insets of Fig. 6 and in-
clude “continuous” potentials, where the channel is modelled
having a homogeneous attractive interaction with the parti-
cle along its entire length (single/double tanh, triangular po-
tentials) as well as “discrete” potentials, where the channel
provides a number of discrete, spatially well-defined binding
pockets, modelled as a Gaussian with a depth Vmin and a stan-
dard deviation of 0.5σ , where σ is still the particle diameter
as introduced in Sec. III. Note that potential “steps” are mod-
elled using tanh functions, hence the names “Double tanh,”
etc.

Despite the binding pockets being narrow, we can clearly
see particle trapping occurring by looking at individual par-
ticle trajectories such as the one shown in Fig. 5, where dis-
placement of a single particle along the channel is plotted on
the x-axis in red, with time on the y-axis. The applied poten-
tial, a series of four spatially discrete binding pockets, each
modelled as a Gaussians, is plotted in blue. We can clearly see
that the particle is trapped by every binding pocket, spend-
ing most time in the second pocket from the left. However,
the continuous insertion of particles to the left of the channel
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FIG. 5. Example trajectory of a single particle in a channel with four binding
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red on the x-axis. The potential inside the channel (blue) has four binding
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pocket, spending most time in the second pocket. The overall flux, however,
is unaltered compared to a channel with no potential at all (see Figs. 6 and 7).
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compared to the free (V = 0) channel, plotted in pink. Symmetric potentials
(blue, green) enhance the flux, but as we would expect not as much as a
simple potential drop at the beginning of the channel (red).

leads to a consistent movement of the tagged particle to the
right.

We measured the cumulative number of particles that
have crossed the channel as a function of time. An example
of these measurements is shown in Fig. 6, where the cumu-
lative number of translocated particles is plotted as a func-
tion of time for different potential shapes, all with the same
Vmin = −20. Insets show the exact form of the applied poten-
tials for each experiment.

We can already make a number of observations from
Fig. 6. First of all, a simple potential drop at the entrance
of the channel leads to the expected acceleration and hence
significantly increased flux (red). Symmetrical potentials pro-
duce an increased flux compared to a channel with no poten-
tial (V = 0) or different numbers of discrete binding pockets,
which surprisingly do not change the flux significantly com-
pared to the V = 0 case. The number of translocated particles
saturates for all potentials with Vmin = −20 at a value lower
than 100, the total number of particles inserted during the sim-
ulation, because as particle insertion stops, exiting the channel
becomes increasingly harder for the remaining particles since
the pressure inside the channel decreases. The fact that the
translocation number for a triangular potential saturates at a
higher value than for the double-tanh potential supports this
interpretation, since the double-tanh potential has a steeper
wall at the end of the channel which will effectively block
the channel. The number of particles trapped in the channel at
the end of the simulation increases as the potential depth in-
creases: for the double tanh potential, particles are trapped for
a time t � T, the time of the simulation, at a potential depth
of Vmin ∼ −10, while for the other potentials trapping only
occurs at potential depths Vmin > −15.

Let us now discuss how the flux through the channel de-
pends on the depth of the potential for the different poten-
tial functions discussed so far. We therefore define flux as
the slope of a fit to the linear portion of the translocation

plots in Fig. 6,

J =
〈

dN

dt

〉
, (4)

and repeat the analysis above for different potential depths.
The average flux was computed from five experiments for
given potential shape and depth, that simulated the transloca-
tion of 100 particles each. Simulating this number of particles
stabilised the linear fits and resulted in the small relative er-
rors that are plotted in Fig. 7 and enable us to refine some of
the observations already made:

1. Symmetric potentials increase the flux of single-file dif-
fusion. This is surprising at first sight, since the overall
work done on the particle is zero. However, the symme-
try of the potentials is broken by the pressure that the
newly inserted particles exert on the particles near the
end of the channel at the potential wall.14 It should be
noted that this pressure emerges purely from the free dif-
fusion inside the channel and has significant effects even
at low colloid concentrations inside the channel. We are
only inserting particles if there is free space at the begin-
ning of the channel, as described above, so we are not
actively pushing particles through the channel.
Furthermore, the flux through channels with symmet-
ric potentials does not go below the flux through a free
channel even for deep potentials.

2. The triangular potential profile outperforms the double-
tanh potential. This is due to the fact that in the over-
damped limit, after an impulse is delivered to a particle,
it very quickly relaxes back to normal diffusion. Effec-
tively, Newton’s second law does not hold anymore and
a small force over a longer time, pushing the dense re-
gion forward at the entry half of the channel, is more
effective than a strong force over a short period of time.

3. We find that there are optimal potential depths that max-
imize flux (Vmin ≥ 30 for the triangular potential, Vmin
∼ 15 for the double tanh potential). This observation is
in agreement with theoretical predictions for diffusion of
individual particles along a channel.26, 27

4. The increase in flux with symmetric potentials is not
due to some sort of Kramers-type barrier hoping. This
is shown by the fact that the flux through a channel with
a tanh step at its end (“tanh wall”) (see inset in Fig. 7)
goes to zero for Vmin ∼ 25, where double-tanh and trian-
gular potentials still outperform the V = 0 case.

5. Narrow binding pockets do not alter the flux signifi-
cantly, even though it is clear from individual particle
trajectories that particles do get trapped in the binding
pockets (Fig. 5). This is in contrast to theoretical re-
sults that were obtained for individual, non-interacting
particles10 and highlights the importance of many-body
interactions in the crowded channel: here, the pressure
emerging from the free diffusion inside the channel and
removal of particles at its end pushes bound particles out
of the pockets and hence establishes a constant flux.

Figure 8 gives the snapshots of final simulation frames
to illustrate what is an “equilibrium” situation in each po-
tential profile V (z). It shows that for a sufficiently deep
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FIG. 8. Binding potentials keep particles in the channel. The snapshots
(a)–(c) for different potential profiles give particle positions at the end of
a simulation run, with channel and particle diameters to scale. This illustrates
that sufficiently deep attractive potential will retain some particles, in regions
shaded in the plots, when no additional influx from the left occurs (explaining
the saturation plateau below 100 in Fig. 6).

attractive potential well, particles are retained in such a well,
while the particles facing weaker binding forces escape and
diffuse out of the channel. The final number of retained par-
ticles explains why the plateaus of different curves in Fig. 6
are below 100. These snapshots also help understand why the
flux increases with the depth of continuous potentials (double-
tanh or triangular). The process is analogous to the enzymatic
action: although the energy barrier at the end of channel is
prohibitively high (as illustrated by the complete vanishing of
diffusive flux for the “tanh-wall” potential in Fig. 7), when
particles are confined at a high density in front of such a wall
– they are forced to escape, pushed by the neighbours from the
left.

It is also interesting to observe that at a constant tem-
perature of our heat bath, when these potentials become ex-
cessively deep, the channel does get blocked: this occurs at
Vmin < 50 − 60 for the double-tanh potential, and has to be
inferred to occur at a much greater depth for the triangular
potential, see Fig. 7.

V. THEORETICAL CONSIDERATIONS

We would like to gain a better insight into the data shown
in Fig. 7 from a theoretical perspective. Since the basic fea-
tures of single-file diffusion have already been discussed ex-
tensively elsewhere,28–30 we will focus our discussion here on
the relative change in flux through a channel when we apply
a potential.

It turns out that an effective way to pose this problem is to
describe translocation as a reaction A + B → B where the col-
loidal particles A are absorbed by a “trap” B, i.e., the channel
exit, upon encounter, although it should be noted that other
approaches have been applied successfully.31 The problem of
finding the flux through the channel becomes the problem of
computing the rate κ of this reaction in a crowded single-file
environment with applied potentials. For systems with spheri-
cal symmetry in the limit of infinitely diluted reactants A, this
is a classical problem of diffusion-controlled reaction kinet-
ics, which was solved exactly by Smoluchowski,32 produc-
ing the rate κs = 2πD0σρ0 where ρ(r) is the density pro-
file of reactants A around the trap reaching the value ρ0 at
infinity.

In general, the reaction dynamics is governed by the dif-
fusive Fokker-Planck equation

∂ρ

∂t
= Dc∇ ·

(
∇ρ − F

kBT
ρ

)
, (5)

taking the many-body effects into account through the in-
homogeneous density profile ρ(r) along the channel, which
generates an osmotic pressure �(r) that acts as to spread the
density profile via a force per particle F(ρ(r)) = −1/ρ(r) ·
∇�(ρ).33 These two parameters are nonlinearly coupled via
the collective diffusion coefficient Dc = D0 · ∂�/∂ρ. An
exact solution of this problem is a formidable task even for
numerical methods, which makes us look for reasonable ap-
proximations. We assume first that the density profile ρ(z) is
computed from the simulations. Second, we reformulate the
problem as a homogeneous collective diffusion problem in the
superimposed field F(ρ(r)) just introduced, i.e., we ignore the
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ρ-dependence of Dc when we take the derivative in (5). This
approximation works since the dependence of Dc on ρ is less
nonlinear than the dependence of � which survives the ap-
proximation and dominates the final result.34

We take ρ(z) as the number of colloid particles per unit
length along the channel at a given time (hence always ρ

< 1), and we initially ignore the force due to the applied
potential. With increasing ρ, it takes a given single particle
longer to reach the channel exit, but once it is in the vicinity
of the exit, its chance of escaping increases since it cannot
diffuse far away from the exit. Quantitatively, Dorsaz and co-
workers11 showed numerically that the reaction rate can be
approximated well by the following expression:

κ ≈ κs

β�(ρ0)

ρ0

· exp

(−β�(ρ�)

ρ�

)
, (6)

where β = 1/kBT, ρ0 is the density at the beginning of the
channel, and ρ� = ρ(�) is the density a characteristic “en-
counter distance” � from the channel end at which the den-
sity of colloid particles acquires structure due to interac-
tions (in other words, where the ideal-gas linear relationship
� = kBTρ stops being valid), see Fig. 9. Equation (6) has
since been derived from first principles by Zaccone,34 who
finds a prefactor of β(d�/ dρ)ρ0

instead of β�(ρ0)/ρ0, but
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FIG. 9. Binding potentials keep steady-state density highly nonlinear. The
snapshots (a)–(c) for different potential profiles give the average density of
particles in each case, in the steady-state transport regime (constant flux).

notes that the two prefactors have the same dependence on ρ0
which would indicate that the solution is qualitatively correct.

In order to evaluate (6), we write the osmotic pressure
β� as a virial expansion in the density along the channel

β� = ρ + B2ρ
2 + B3ρ

3 + · · · (7)

and compute ρ from 1000 randomly selected snapshots of the
simulations after the flux has equilibrated to its steady-state
value. The virial coefficients B2 and B3 account for two-
and three-body interactions between the particles in the
channel which captures the essential dynamics since in
the effectively 1D system of the channel, the motion of a
particle is dependent on the particle in front and the particle
behind it.14 B2 and B3 were computed for the Lennard-Jones
12/6 potential with ε = 1, σ = 1 that was used to model
particle-particle interactions as described in Sec. III. While
B2 = 2π

∫ ∞
0 r2[1 − e−βV (r)] dr; computation of B3 is more

involved, but values are available.35

A plot of the reaction rates computed from (6) is shown in
Fig. 10. All values are normalised with respect to the reaction
rate computed for no potential: κ ≡ 1 at V = 0. It is clear from
the graph that these rates correctly predict the trends seen in
the flux from the simulations (Fig. 7): there is no significant
flux change with discrete pockets but a considerable increase
with continuous potentials; the double tanh potential performs
best at small potential depths while the triangular potential
trumps for deeper potentials. The numerical range of the rela-
tive changes is good although it is systemically low by ∼0.1.
This is a remarkable agreement given that at no point we ex-
plicitly introduced the form of the potentials and evaluate ρ

only at two discrete points, i.e., the beginning of the channel
and very close to its exit. This shows that all the informa-
tion about many-particle effects and the channel translocation
with an applied potential is encoded in the steady-state den-
sity distribution, which in turn is controlled by the two virial
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FIG. 10. Reaction rates (6) for an absorption reaction A + B → B correctly
predict the flux through a channel with applied potential. The trends seen
in the simulations (Fig. 7) are correctly predicted and numerical agreement
is also good, although there is a systematic offset of ∼0.1. Since the form
of the potentials does not enter the model at any point, we conclude that all
the information is encoded in the equilibrium density distribution, which we
sample at only two discrete points.
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coefficients B2 and B3 (or the two values ρ0 and ρ� sampled
near the beginning and near the end of the channel).

VI. CONCLUSION

Our result that continuous, symmetrical potentials in-
crease the flux significantly confirms earlier speculation that
membrane channels in cells are most likely to provide a
“molecular slide”6 by organising discrete binding sites in suc-
cession, since having them isolated one after the other would
provide little to no increase in flux as shown. Furthermore,
our results can offer guidance for the design of artificial chan-
nels in microfluidic applications, where improving flux is of-
ten important and clogging can be a problem.14

Any theoretical description of particle translocation has
to account for both the applied potential and the crowding in-
side the channel. We have shown that it is possible to account
for the relative changes in flux by considering the kinetics of
the “absorption reaction” of particles exiting the channel, thus
mapping the many-body problem to a two-body-interaction
where crowding is modelled by the osmotic pressure inside
the channel, without knowledge of the applied potential.
However, this is more of an explanation a posteriori since it
requires knowledge of the density profile along the channel.
Further theoretical work will therefore have to focus on
the development of methods to calculate these distributions
not just for periodic boundary conditions,29 but for more
realistic geometries and boundary conditions in the presence
of potentials in an attempt to predict particle flux without
resorting to simulations.
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