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ABSTRACT: We describe a minimal model of an intrinsically chiral polymer
chain, and characterize its equilibrium and transient behavior at different
temperatures, and in effective solvent environments by means of Brownian
dynamics simulation. By contrast to previous studies, our model transparently
includes intrinsic curvature and torsion as a measure of residue-inherent
(molecular) chirality to establish a defined handedness, while allowing the
observation of a transformation between a high-temperature expanded random coil
and a dense helical or globular state at low temperatures. In fair or good solvents, a
straightforward denaturation of a folded helix toward a random coil is observed. In
poor solvent, this process is superimposed by adoption of a condensed globule in the low-medium temperature range. Under
these conditions, we find that helical chains represent metastable states separated from the thermodynamically favored dense
globule by an energy barrier. Finally, by combining the observations of structural transformations with the evidence of
thermodynamic anomaly in the heat capacity, we suggest that the helix−globule transformation represents a discontinuous phase
transition-like process.

■ INTRODUCTION
Proteins arguably constitute the most extensively studied class
of biomacromolecules due to their involvement in nearly every
biological process and their manifold potential applications in
biotechnology and medicine. As a consequence, the prediction
of native structures from a primary sequence, the so-called
protein folding problem, has been under extensive investigation
for more than 5 decades.1 Protein folding may be defined as the
coordination of the many degrees of freedom of a flexible
polymer chain into a well-defined and compact conformation
based on energetics specified by its linear amino acid sequence.2

Thereby, formation of secondary structure elements constitutes
the first step from a one-dimensional random chain toward a
characteristic three-dimensional folded structure. In particular,
right-handed helical secondary structure appears as the
prevalent motif in the native conformational space of
polypeptides and long proteins. The most abundant helical
configuration, the α-helix, accounts for approximately 31% of
amino acid secondary structures alone, with another 4% of
helices natively being in 310-helical conformation.3 However,
the helix as a structural motif is not exclusive to proteins: it is
similarly prevalent in DNA and RNA4−6 and in many
polysaccharides. Arguably, helical structures derive their
apparent universal biological significance from allowing natively
linear polymers to maximize their thermodynamic stability in a
poor solvent environment (i.e., low temperature, unfavorable
pH, or salinity) by means of extensive intra- or intermolecular
bonding. The helical shape of nucleic acids has been thought to
principally arise from a complex interplay of interbase hydrogen
bonding and coaxial hydrophobic nucleobase stacking,7 while
helicity in polypeptides appears to be stabilized mostly by
intramolecular hydrogen bonding between each carbonyl
oxygen and its complementary amino nitrogen at the fourth

residue toward the C-terminus, in addition to steric repulsion
between subsequent side-chain residues.8 However, it is
surprisingly seldom that a connection is made between an
inherent molecular chirality of monomeric units (residues)
involved in these biopolymers and their native fold
characterized by a “phase chirality” of the secondary structure.9

Since the discovery of the α-helix in 1950,10 the
thermodynamic stability and kinetic behavior of helical
secondary structure in biopolymers has been extensively
addressed in theoretical models and numerical simulations.11,12

Generally speaking, helix−coil transition models seek to
describe conformations of linear polymers in solution based
on a statistical mechanics approach. They allow estimation of
the relative fraction of a model chain which assumes a helical
state−characterized either by a distinct rotating pattern in
geometric parameters and/or specific hydrogen bonding−
instead of a randomly ordered coil state under various
experimental conditions and intrinsic constraints.13 The
majority of theoretical approaches to the helix−coil transition
developed over the past 50 years is derived from the 1D-Ising
model.14 In large part, such models consider particles as helix
residues or segments, and their respective two-state variables to
represent the distinct states of helix/coil, or hydrogen-bonded/
non-hydrogen-bonded. The first prominent category of helix−
coil models, referred to also as ZB models, follows from
Zimm−Bragg in 1959.15 It considers the cooperativity among
subsequent monomer states as basis for calculation of average
fractional helicity. In other words, the model distinguishes
between helix nucleation and helix propagation, and appreciates
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that the probability for a segment assuming the helical state is
dependent on the state of neighboring units. By contrast to the
ZB category of helix−coil models essentially counting hydrogen
bonds, LR-type models pioneered by Lifson and Roig count
specific residue conformation changes between a helix and a
coil state.16 The original LR model constitutes a refinement to
Zimm−Bragg in that an α-helix is only stabilized by a hydrogen
bond if three consecutive units have adopted helical
conformation. One notable modification subsequently made
includes additional independent terminal capping parameters n
and c, which equal 1 in the original LR formulation.17 Both
main categories of helix−coil models suffer from a similar
limitation: Being derived from the 1D-Ising model in their
essence, they are incapable of describing true thermodynamic
phase transitions since indefinite helix growth and long-range
order are not possible in 1D according to the Mermin-Wagner
theorem.18 Furthermore, the coarse-grained nature of the ZB
and LR approaches does not constitute an entirely convincing
approach to capturing the fundamental physics orchestrating
the balance between the energy gain of residue interactions, the
energy cost of stiff chain bending, and the entropy of a polymer
random walk. Recent work on numerical simulation of the
helix−coil transition within the ZB framework, though based
on realistic potentials, may in particular be limited by
intrinsically nonchiral Hamiltonians producing polymer con-
formations of random handedness.19 To favor a helical ground-
state at low temperatures, directional interactions with chiral
symmetry must be engineered into the system. The fact that
neither common ZB and LR category models of the helix−coil
transition, nor of DNA denaturation, consider the inherent
chirality of constitutive residues linked to the emergence of
helical conformations is their significant limitation.20

Chirality is an inherent characteristic of nature. A lack of
inversion symmetry in systems not exhibiting any dipolar or
vector property can be observed across many length scales,
from asymmetric carbon atoms to spiral galaxies. On the
molecular scale, this breaking of symmetry has been a source of
interest in various fields, from mathematics to chemistry and
medicine, since the phenomenon was first discovered by
Pasteur in 1848.21 The arguably most palpable impact of
chirality is the fact that enantiomers often have different and
even opposite functional properties in biology. A pair of
enantiomers differs in electronic properties and shape only in a
very subtle way, leaving handedness-sensitive molecular
interactions very weak. However, it is this slight difference in
intermolecular forces between chiral chemical compounds
within biological systems which provokes their distinct
physiological effects. It appears obvious that the invariable
presence of specific chirality in fundamental modular building
blocks of life, amino acids and nucleotides, would shape the
structure of their respective biopolymers and hence the
function of all living systems. Homochirality may be seen as a
requirement or a result of replication in living systems, and the
mechanism underlying its emergence is still discussed.22

It is well accepted that macroscopic helicity (phase chirality)
is linked to the handedness of respective building blocks, such
as D-sugars in DNA or L-amino acids in proteins, and this link is
supported by several experimental studies.9,23,24 However,
careful qualification of the relative contributions of hydrogen
bonding, base stacking, steric effects, or monomeric handedness
to macromolecular secondary structure could greatly enhance
the physical understanding of the relationship between
homochirality and helicity, and potentially improve the insight

into the emergence of asymmetry in living systems. The
investigation of minimal biopolymer models represents a
meaningful approach to this question, as individual structural
and dynamical properties which may represent the essence of
helicity can be studied independently. Though sequence
heterogeneity certainly plays an important role in defining the
native conformation of biopolymers, the physical forces and
effects at the base of polymer morphology are universal. Thus,
minimal models may be used to establish a base for quantitative
comparison with experimentally determined structures, which
constitutes a major motivation of theoretical polymer physics.
While the majority of contemporary numerical attempts to
study the phase behavior of helical polymers has been based on
realistic potentials,25−29 several groups have specifically ex-
plored minimal models in the past 2 decades. Kemp et al.30

proposed their freely rotating chain-type minimal model
ignoring the specifics of amino acids in 1998. It features a
chain Hamiltonian shaped by a short-ranged chiral interaction,
implemented as triple product of three consecutive tangent
segments raised to an arbitrary power, and allows observation
of four different phases using multicanonical Monte Carlo
simulation. This model demonstrates that helix foldability may
increase with anisotropy in the potential function, and
undergoes discontinuous first-order-like helix−coil transi-
tions.31,32 Varshney et al. have taken a similar approach, and
utilized a dihedral angle cutoff to assign individual beads a
negative enthalpy, thereby emulating formation of a hydrogen
bond.33 They find a rich state diagram where continuous helix−
coil and coil−globule transitions become coupled at low
temperature and sufficient particle interaction strength ε.34

While both models consider torsional angles between individual
residues a basis for helicity, they do not implement true
intrinsic curvature κ and torsion τ, as represented in the
Yamakawa theory.35 The latter treats linear polymers with
energies quadratic in the local difference from preferred
intrinsic curvature and torsion, represented by local angular
rates of rotations on the chain. Unfortunately, in this formalism
extraction of results is not a transparent process. A simplified
auxiliary field model embracing intrinsic curvature and zero-
average torsion for increased transparency and utility was
recently developed.36 However, it does not implement excluded
volume effects or a preferred chiral sense. Here we propose an
alternative minimal model which implements both intrinsic
curvature and torsion in a straightforwardly adjustable way to
shape helices of defined handedness. Thereby, our model
directly connects force field parameters to frame-independent
geometric properties of a helical space curve (radius and pitch).
We employ Brownian dynamics simulation to characterize the
minimal model with respect to its transient and equilibrium
thermodynamic and morphological properties, including its
phase behavior.

■ THE MODEL
The foundation of the minimal model of a chiral polymer
reported in this work is laid by its force field. Defining the form
and parameters of the mathematical functions shaping the pair
potential of interaction between chain monomers (residues), it
takes the general form

= + + +E E E E Ebond angle dihedral nonbonded (1)

To account for bonded interactions along the polymer chain,
we follow the established tradition and employ a hybrid term
composed of the attractive finite extensible nonlinear elastic
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(FENE) potential and a repulsive truncated Lennard-Jones (LJ)
potential cut off at rij = 21/6σ:
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with bond stiffness parameter Kr, maximum bond extension R0,
distance between two consecutive particles rij, LJ potential well
depth ε, and LJ potential root distance σ (Figure 1). The FENE

potential originating from the bead−spring polymer model
extensively studied by Kremer and Grest is harmonic near its
minimum,37 so that the effective spring constant between
monomers equals Kr. However, a FENE bond cannot be
stretched beyond the maximum length R0. This attractive
potential is balanced by the repulsive portion of the LJ
potential, which reflects the same excluded-volume interaction
as exists between any pair of monomers (particles).
While the truncated (repulsive) LJ term is effective only

between covalently linked monomers, nonbonded interactions
are described by the standard LJ potential
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to account for excluded volume effects as well as a possible
effective long-range attraction between monomers in poor
solvent. Again, this is standard in describing model molecular

interactions. Hereby, the repulsive and attractive regions are
separated by the distance σ, where the interparticle potential
equals zero, and the potential minimum −ε is reached at rij =
21/6σ.
While Ebond and Enonbonded accommodate polymer chains of

arbitrary conformation, Eangle and Edihedral were chosen to
characterize the intrinsic curvature κ and torsion τ for
generation of a helical ground state. It is the combination of
intrinsic curvature and torsion that shapes the macroscopic
(phase) chirality in a helical polymer chain−neither of the two
terms are sufficient on their own.35 We account for bending
stiffness by means of a harmonic potential for each pair of
connected bonds:

θ θ= −θE K ( )angle i 0
2

(4)

with bending stiffness parameter Kθ, bond angle θi, and
equilibrium bond angle θ0. It can be shown that Eangle, though
simple in its mathematical form, indeed constitutes a measure
of intrinsic curvature κ using geometrical considerations based
on the angle between subsequent tangent vectors Ti along the
chain:
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To account for torsional stiffness within the minimal polymer
model, a CHARMM-like dihedral potential was adopted:38

φ φ= + −φE K [1 cos( )]dihedral i 0 (6)

with dihedral stiffness parameter Kφ, torsion angle φi, and the
equilibrium torsion phase φ0. The potential is characterized by
a single minimum at φi = π + φ0, and with φ0 = 0 it favors the
standard zigzag sequence of bond orientations in the chain. In a
similar way as outlined above, it can be shown that Edihedral
represents a measure of intrinsic torsion τ (this time, the angles
between three consecutive tangent vectors Ti are relevant):
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Figure 1. Schematic representation of the model chain geometry, in
particular showing the direction of the tangent vector Ti+1, the bending
angle θi, and the torsion angle φi.

Figure 2. Structures observed after thermal equilibration of an initially straight chain at a temperature T = 500K and εa = 1(kcal)/(mol) over 106

time steps: (A) Kθ = 10 (kcal)/(mol rad2); Kφ = 10 (kcal)/(mol), (B) Kθ = 10 (kcal)/(mol rad2); Kφ = 1 (kcal)/(mol), (C) Kθ = 1 (kcal)/(mol
rad2); Kφ = 10 (kcal)/(mol). The three initial configurations used in chain simulations: (D) initial helix, (E) initial random coil, and (F) initial
straight chain.
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Taken together, the minimal model of a chiral polymer
presented here reflects both components of intrinsic (molec-
ular) chirality, intrinsic curvature and intrinsic torsion, which
may be arbitrarily shaped by target bond and dihedral angles θ0
and φ0, and their corresponding stiffness parameters Kθ and Kφ

(see Figure 2). Unless indicated otherwise, we chose a default
bending stiffness of Kθ = 10 (kcal)/(mol rad2), and a torsional
stiffness of Kφ = 10 (kcal)/(mol) for our minimal model.
Notably, intrinsic curvature and torsion as implemented in

our model are related to defining geometric properties of a
helical space curve of radius a and helix pitch p = 2πh, as shown
below:

κ
κ τ

π τ
κ τ

=
+

=
+

a p;
4

2 2

2

2 2 (8)

■ SIMULATION METHODOLOGY
In this work, we perform numerical simulations using the large
scale atomic/molecular massively parallel simulator
(LAMMPS) to subject a polymer chain to Brownian dynamics
over time.39,40 To perform thermal equilibration at a given
target temperature, the chain is subjected to a Langevin
thermostat as described by Schneider and Stoll.41 If constrained
to the microcanonical ensemble, the Langevin thermostat
implements Brownian dynamics within the MD framework of
LAMMPS. We simulated a polymer chain composed of N =
100 connected monomers in a large cubic cell with fixed
nonperiodic boundary conditions. Unless indicated otherwise,
data points represent thermodynamic averages over 10,000 ps
and 6 different simulation runs each, carried out with a time
step size of 1 fs. Thermal equilibration was performed at
temperatures across a wide range, from 1 to 5000 K, for three
different initial conformations: (i) a well-ordered helix, (ii) a
straight polymer chain, and (iii) a random coil (see Figure 2) to
test whether the results depend on this initial configuration. To
account for deteriorating solvent conditions, the strength of the
nonbonded LJ interaction between particles was increased from
εr = 0.01 (kcal)/(mol) to εa = 1 (kcal)/(mol). Here we
investigated an arbitrary right-handed helical ground state with
θ0 = 160° and φ0 = 200°, corresponding to a 20° deviation
from a straight chain in bending and ecliptic configuration in
torsion, respectively.

■ EQUILIBRIUM AND THERMODYNAMICS
In essence, any investigation of polymer folding in poor solvent
corresponds to an analysis of the underlying free energy
landscape, which is characterized by an ensemble of conforma-
tional local minima separated by energy barriers. Natural
systems generally strive for minimization of their Gibbs free
energy. However, the polymer can become kinetically trapped
in metastable states if the energy landscape cannot freely be
explored (e.g., under low temperature conditions), i.e.: the
system becomes nonergodic.42 To investigate the thermody-
namic properties, equilibrium potential energy PE and the
average radius of gyration Rg were directly calculated as a
function of temperature for different initial conformations and
effective solvent environments. A remark about the “radius of
gyration” is due here: the radius of gyration is a standard
parameter in polymer physics reflecting the average distance of
particles in the chain from their common center of mass.
However, this parameter may become quite ambiguous when
the equilibrium chain shape is highly anisotropic. For instance,

in a liquid crystalline chain, one can identify the two principal
values, Rg∥ and Rg⊥. In principle, the same is true in a highly
elongated helix as well. However, we continue using the single-
value average (in this case, Rg = (Rg∥ + 2Rg⊥)/3) to reduce the
number of parameters to consider, understanding that this
average is often dominated by the longitudinal Rg∥. First, we
consider near-Θ solvent conditions whereby long-range
attraction between monomers is negligible (εr = 0.01 (kcal)/
(mol)).

We find that the structural integrity of the initial helix (Figure
3A, Rg ≈ 16 Å) is increasingly dissolved beyond the double-
digit temperature scale, until the polymer model adopts a
random coil conformation (Figure 3C, Rg ≈ 9 Å) bare of visible
helical properties over 1000 K (see Figure 4). As explained
earlier, Rg represents a “radius of gyration” only for the random
coil, which is spherical and random on average, while Rg is just a
measure of average length for highly extended conformations
such as a straight chain or a helix. At high temperatures, energy
barriers of intrinsic bending and torsional stiffness can be
ignored, and the initially helical polymer model adopts a fully
entropy-driven conformation of an expanded random coil (self-
avoiding random walk) in Θ solvent. However, since our
simulations are conducted in near-Θ solvent with minor
residual long-range attraction between chain monomers still
present, we observe a more compact coil conformation (see
Figure 4A). Considering average potential energy after
equilibration (see Figure 4B), a plateau at low temperatures
represents the ordered helical phase driven and dominated by
the minimization of interaction energy (1), while temperatures
high enough to reach the entropy-dominated regime lead to a
continuous and pronounced rise of potential energy toward
random coil morphology, where the Gibbs free energy is still
minimized. The same qualitative equilibrium behavior is
observed for all initial configurations, supporting the notion
of reversibility within the process of thermally induced
transformation in fair solvent.
In contrast, numerical results in poor solvent conditions

characterized by an increased long-range effective attraction
between monomers (εa = 1 (kcal)/(mol)) reveal pronounced
minima of both the radius of gyration (Rg ≈ 3 Å) and the
potential energy in the low-mid temperature range, indicating
an energetically favored condensed globular state (see Figure
5). It becomes apparent that this dense globular conformation
becomes adopted at lower temperature for an initial random
coil compared to an initial helix, which is a consequence of a
minor level of thermal fluctuation being required for nucleation
in the former case. This notion is supported by the results of a
simulation starting from an initially straight extended chain,
exhibiting thermodynamic properties very similar to the initial
helix.

Figure 3. Prevalent chain conformations in near-Θ solvent: (A)
equilibrium helix at low temperature, (B) the “melting helix”, and (C)
several shapes of a random coil at high temperature.
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The condensed globule is thermodynamically favored over
the helical state as overall nonspecific attraction between
monomers outbalances specific terms favoring bend and
torsion. In this state, deviation from the “target” helical values
θ0, φ0 is energetically unfavorable, but compensated by the
combined negative energy contribution of several monomers
coming together under nonbonded attraction mediated by εa.
In contrast, in near-Θ solvent represented via εr = 0.01εa, a
similar prevalence of monomer attraction over competing
energy penalties does not take effect. However, as implied by
the morphology of representative conformations, chain
curvature remains a well-accommodated feature of the
condensed globule. To obtain an indication of the mechanism
of helix−globule transition, intermediate states were captured
during the process of collapse (see Figure 6A).
On the basis of our observations, we hypothesize that

nucleation is initiated at the polymer termini and the helix
subsequently collapses into the globule alongside its axis. This
process may be considered a special instance of the mechanism
proposed by Halperin and Goldbart.43 A recent detailed study
of such “raindrop” coalescence has shown how a long polymer

chain goes through stages of necklaces of condensed domains
on its way toward the final equilibrium globule.39 Sufficiently
flexible polymer chains collapse via terminal “raindrops” in the
short-chain limit,44 as we also see in Figure 6. With increasing
temperature (i.e., for temperatures greater than a “critical point”
of 50 K for an initial random coil and 200 K for an initial helix

Figure 4. Equilibrium (A) radius of gyration and (B) potential energy as a function of temperature for initial helix (black circle) and initial random
coil (blue square) in Θ solvent. A representative snapshot of chain conformation in different regime is showing above each plot to guide the reader.

Figure 5. Equilibrium (A) radius of gyration and (B) potential energy as a function of temperature for initial helix (black circle), initial random coil
(blue square), and initial straight chain (red triangle) in poor solvent.

Figure 6. (A) Intermediate conformations of the helix−globule
transition captured during thermal equilibration of an initial helix in
poor solvent at 300 K. (B) Structures captured during thermal
equilibration of an initial helix in poor solvent conditions at 700 K over
5 × 106 time steps.
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or straight chain), globular equilibrium states become
continuously more amorphous and eventually resemble a
random coil, again via this inhomogeneous process (see Figure
6B). The term “critical point” is used here with caution: the
transformation between characteristic conformational states in
a finite-size (relatively short: N = 100) chain cannot be a true
critical phase transition. However, there are identifiable
temperature regions where distinct conformational trans-
formations take place, and a very sharp thermodynamic
anomaly was observed at these temperatures (discussed
below and illustrated in Figure 9), and we therefore refer to
these characteristic temperature values as “critical points”.

■ KINETICS AND METASTABILITY

The observation that the model does not adopt its global
minimal energy state at low temperatures in poor solvent
(Figure 5B) indicates the metastable nature of initial
conformations. It has previously been suggested that native
helical secondary structure may resemble a metastable state
which is kinetically “protected” from transformation into
thermodynamically favored densely aggregated globular
states.45 This notion is supported by our Brownian dynamics
trajectories recorded in the low-mid temperature range, which
exhibit abrupt transitions between extended helical and
condensed globular states (Figure 7).
At very low temperatures, the initial helical polymer

conformation is kinetically trapped and no change is observed
over the time of observation (Figure 7A). However, at
temperatures greater than the critical point (200 K for an
initial helix or straight chain), the barrier between helix and

globule can be crossed within the simulation time frame, and a
pronounced downward jump in radius of gyration and potential
energy is seen, indicating adoption of a condensed globule
(Figure 7B). At higher temperatures we find more frequent
jumps with decreased magnitude, i.e. the reverse process also
becomes apparent (see Figure 7C)that is, a repeated
switching between the helical and the globular state. Finally,
at very high temperatures (1000 K and above in our
simulations), barriers on the energy landscape become
irrelevant, and the minimal polymer model adopts a random
coil conformation (Figure 7D).

■ PHASE BEHAVIOR

As discussed in previous sections, the minimal model of a chiral
polymer chain with intrinsic bend and torsion, investigated as a
function of temperature and effective solvent conditions, is
capable of adopting several distinct conformational states. We
asked whether the transformations between those may
represent true thermodynamic phase transitions commonly
defined by nonanalytic behavior of free energy as a function
of a thermodynamic variableand if so, how they can be
classified.46 Notably, there currently is no general agreement
whether a single-chain transformation, such as the one between
helix and random coil, may be referred to as a thermodynamic
phase transition or not. It is questionable whether a single
polymer chain composed of a finite number of residues (N =
100 in our case) represents a phase in the sense of a
thermodynamic limit of microstates with essentially uniform
physical properties,47 but an extrapolative approximation may
be yielded by means of finite-size scaling analysis. According to

Figure 7. Characteristic examples of evolution of the radius of gyration (green) and potential energy (black) recorded from single Brownian
dynamics trajectories starting from the initial helix at: (A) 100 K, (B) 200 K, (C) 350 K, and (D) 2500 K in poor solvent, εa = 1 (kcal)/(mol).
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the Peierls argument, the classical Zimm−Bragg15 and Lifson−
Roig16 helix−coil models derived from the 1D-Ising model14

cannot undergo a phase transition: thermal fluctuations at finite
temperature in one-dimensional systems are too high and no
long-range order is established.48 In light of this view, the
transformation between helix and random coil essentially
resembles a crossover, a continuous change in macroscopic
physical parameters described by a sigmoid curve. However, it
has more recently been argued that the one-dimensional
description of a linear chain based on a sequence of coupled
spin-flips may be too simplistic to capture the physical reality of
the process.19 In fact, a polymer is subject to long-range
interactions between residues, and changes from a disordered
coil to an ordered folded state in three-dimensional space,
principally allowing long-range order and the incidence of
phase transition-like behavior. The simulation framework
employed here represents a suitable abstraction of this reality.
To investigate the nature of the helix−coil and helix−globule
state transformations, we examined an appropriate order
parameter representing the average helicity (phase chirality)
as a local thermodynamic average of relevant structural features.
This approach leaves conformational order independent from
the number of residues, and allows extrapolation of results to
the thermodynamic limit of an infinitely long chain. Inspired by
the classical helix−coil models, the order parameter

=
−

M
h

N 2 (9)

with number of nonterminal helical residues h and total number
of chain residues N counts monomer properties characteristic
of a well-ordered helix. Terminal residues may move freely, are
not part of the helical segment and are therefore disregarded.
According to this definition, M = 1 indicates a fully helical
conformation, M = 0 one without any helical segments. Here, a
residue is considered helical if both its bond- and torsional
angles are within 10° of their respective target values (i.e., |θ −
θ0| < 10° and |φ − φ0| < 10°). This definition of a helical
residue is stricter than in previous related work.19,31 The
resulting dependence of the order parameter M(T) is shown in
Figure 8, for an initial chain starting from the helix, straight-
chain, and random coil conformations, under near-Θ and poor
solvent conditions previously described. The subsequent fitting

of these data is described in the figure caption, and reveals the
two separate processes taking place at high temperatures, and
around 200 K, respectively.
In Θ solvent, the order parameter M continuously decreases

over temperature as the ordered helix transforms into a random
coil (Figure 8A). As previously noted, the equilibrium behavior
appears independent from initial chain conformation in this
case. At high temperatures, the chain in the domain of a
random coil is subject to an entropy maximization, which is
characterized by simple power law dependence M(T) ∝ 1/T.
Overall, the near-Θ solvent behavior is well fit by the function
M(T) = 1/[1 + (T)/(172)], suggesting a single-process
crossover between low and high temperature domains.
In poor solvent, M(T) is shaped by two superimposed

processes: the helix−coil transformation represented by a
crossover as outlined above, and the helix−globule transition in
the low-medium temperature range (Figure 8B). The latter
process is well fit by a logistic function M(T) = 0.13 + 1/{1 + a
× exp[(T − b)/c]} characterized by steep exponential decline
of the order parameter near the transition point and a plateau at
M = 0.13, suggesting residual order within the condensed
globule. As previously noted for thermodynamic properties
(Figure 5), the helix−globule transition is observed at lower
temperature if simulations start from a random coil compared
to an initial helix or straight polymer chain. As expected, at high
temperatures all these differences disappear and the system
exhibits entropic power law dependence M(T) ∝ 1/T
irrespective of the effective solvent environment or the initial
conformation.
If we suspect a thermodynamic phase transformation is

taking place,49 the next step is to examine how the thermal
fluctuations shape the average specific heat of the system. We
calculate the heat capacity in the standard way, via the variance
of the internal energy fluctuations,

= ⟨ ⟩ − ⟨ ⟩
C

PE PE
N k T( )N

2 2

B
2

(10)

as a function of temperature. Plotting this in Figure 9, we find a
very sharp peak in specific heat reminiscent of a discontinuity at
approximately 50 K for an initial random coil, and a similar
feature at 200 K for an initial helix or straight chain under poor

Figure 8. Equilibrium order parameter M as a function of temperature for initial helix (black circle), initial random coil (blue square), and initial
straight chain (red triangle) in (A) near-Θ solvent εr, or (B) poor solvent εa. Fits by an empirical functions M(T) = 1/[1 + (T/172)] (solid gray
line), M(T) = 0.13 + 1/{1 + 2.8 × exp[(T − 200)/67.5]} (dotted gray line), and M(T) = 0.13 + 1/{1 + 3.58 × exp[(T − 84.5)/26.4]} (dashed gray
line) each satisfy an R2 value of at least 0.99.
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solvent conditions. These anomalies correspond well to the
crossover temperatures seen in the order parameter variation
M(T) in Figure 8B, illustrating once more that characteristic
temperature of helix−globule transition is lower if simulations
start from a random coil configuration, compared to an
extended initial chain.
No thermodynamic anomaly was seen in near-Θ solvent,

where only the helix−coil transformation is taking place. In
contrast, a pronounced peak in C(T) is seen in poor solvent
conditions, with the essentially step-like jump at the low-T edge
(herein referred to as “critical point”), which must be linked to
the helix−globule transition. Peaks in heat capacity generally
indicate pronounced fluctuations in the system energy as a
function of temperature, irrespective of the nature of state
transformation. Given the fact that we do not observe a
transition until temperature allows sufficient flexibility in a
natively helical chain, and the transformation from helix to coil
is continuous (as seen in the near-Θ solvent data), we may in
fact refer to the helix−globule transition as an instance of
discontinuous coil−globule collapse.

■ CONCLUSION
We have examined a minimal model of an intrinsically helical
polymer embracing transparently adjustable curvature and
torsion as a measure of residue-inherent chirality, and
investigated its phase behavior by means of Brownian dynamics
simulation. In near-Θ solvent, the helical ground state is
continuously dissolved toward a random coil through a smooth
crossover between low and high temperature regime. This
transformation is found to be reversible and not dependent on
the initial conformation we start the simulations with. In
contrast, in poor solvent characterized by a significant long-
range attraction between chain residues, the above helix−coil
transformation is superimposed by a sharp discontinuous
helix−globule collapse in the low-mid temperature range. On
the basis of the data for the average chain potential energy, its
radius of gyration, and the specific heat, as functions of
temperature, we suggest that this transformation resembles a
thermodynamic phase transition driven by thermal fluctuations,
which is supported by previous experimental data, numerical

simulations, and the theory of semiflexible polymers.32,34,50,51

Conformational intermediates captured during the helix−
globule collapse indicate that it proceeds via nucleation
initiated at the polymer termini, so that the chain subsequently
collapses into the globule alongside its axis. This process is
reminiscent of the Halperin−Goldbart mechanism,39,43 where-
by sufficiently flexible polymer chains collapse into terminal
“raindrops” in the short-chain limit.
Interestingly, an initial random coil conformation is found to

collapse into a globule at significantly lower temperatures than
an initial helix or straight chain (all in poor solvent). This
observation supports the notion that native helical secondary
structure in natural biopolymers, especially polypeptides and
proteins, represents a deep metastable state which protects the
polymer from transition into thermodynamically favored
aggregate conformations. We confirm the metastable nature
of initial conformations in deteriorated solvent by means of
Brownian dynamics trajectories, whereby spontaneous tran-
sitions between apparently coexisting extended and condensed
conformations become apparent via pronounced jumps in
compactness and potential energy as temperature is high
enough for energy barriers to be crossed.
It is an interesting notion that the qualitative robustness in

thermodynamic properties and phase behavior enabled by
intrinsic helicity, regardless of specific chemistry, may be the
basis of the prevalence of helical conformations in natural
biopolymers. Future studies of chains embracing different
lengths, stiffness, and implementations of intrinsic curvature
and torsion would supplement our conclusions on the nature of
transitions between helix, globule, and coil, and address the
question how the phase behavior of a polymer may be
modulated by its monomer’s chirality properties.
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