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In this work we examine layer fluctuations in a smectic elastomer with quenched random disorder
induced by crosslinks. The system is analyzed in a continuum model and crosslinks are introduced as
a random field in a microscopic picture. In the case of small deformations and replica symmetry the
intensity profile for x-ray scattering along the layer normal was determined for layer displacements
smaller than the layer separation. In this regime it is predicted that for large enough crosslink
densities the first-order diffraction pattern of the solid assumes a Lorentzian form showing a decay
of short-range order over a length scale of 20 nm. Crosslinks are observed to disorder the system by
decreasing the correlation length, which we show not to be a consequence of the random field. The
coupling to random crosslinks is predicted to retard the decrease of the correlation length and hence
found to stabilize the 1-D periodic layer structure against thermal fluctuations. The dependence of
the correlation length on the crosslink density leads us to propose an estimate for the percolation
limit of a smectic elastomer network.

PACS numbers: 82.70.Gg, 83.85.Ns, 87.14.Ee

INTRODUCTION

Smectic elastomers are subject of ongoing research
activity, as they offer intriguing challenges for the ex-
perimentalist as well as the theorist. The remarkable
properties of these materials are a direct consequence of
their composition: mesogenic molecules are attached to
a polymer backbone leading to both liquid crystalline
and rubber-elastic qualities [1]. Moreover, the polymer
backbones are crosslinked at random positions giving rise
to two opposing effects: On the one hand crosslinks pin
the smectic layer to the underlying elastic matrix which
in turn suppresses layer bending fluctuations. On the
other hand, crosslinks represent a quenched random field
of defects that might disturb the smectic layers if there
is a potential energy preference for these crosslink to be
linked with the layers. Hence the role of crosslinks for
the 1-dimensional translational order in smectic systems
is a subject of an ongoing debate.

It is well established that smectic liquids display the
Landau-Peierls instability. Thermal fluctuations cause
the correlations of smectic layer fluctuations to diverge
logarithmically leading to the quasi-long-range order
[2, 3]. The resulting intensity signature in X-ray scat-
tering experiments was predicted by Caillé [4] and was
confirmed experimentally in classical experiments [5, 6].
The traditional periodic Bragg peaks reduce to a singular
diffuse scattering peak with algebraically decaying tails.

In smectic elastomers the lamellar phase interacts with
the underlying elastic matrix through crosslinks [7, 8].
Relative displacements of layers and the elastic medium
are penalized, pinning layers together and correspond-
ingly stabilizing the 1-D periodic structure. The resulting
long-range order has been described theoretically [9, 10]
and observed by Wong et al. [11].

Crosslinks can also be a source of disordering. In
the process of crosslinking the elastic matrix couples to

the smectic layers and can perturb these, thus adding
quenched defects to the system. This random field of de-
fects is suspected to affect smectic order negatively [12].
In a recent X-ray study of smectic elastomers Obraztsov
et al. [13] showed both effects attributed to crosslinks:
Whereas crosslinks initially improve translational order
a further increase in crosslink concentration broadens
the quasi-Bragg peaks corresponding to growing disor-
der. Besides, the characteristic quasi-long range order
was observed up to high crosslink densities.

The presence of crosslinks also manifests itself in other
properties of smA-elastomers: The mechanical response
of these materials upon the application of stress perpen-
dicular and parallel to the layers has been extensively ex-
amined both experimentally and theoretically. In most
cases the elastic modulus in the direction parallel to the
layer normal is much larger than the modulus in the di-
rection parallel to the layers while in-plane fluidity is
maintained [14]. If strained excessively the monodomain
structure breaks down in favor of a zig-zag array of ro-
tated layers and areas with nematic-like order [15]. A the-
oretical investigation using a microscopic picture based
on a corrugated potential for crosslinks [8] was successful
in confirming the experimental findings. This form of a
corrugated potential for crosslinks will also be employed
in the present work.

In smectic systems other than elastomers, disorder has
been known to have drastic effects. Quenched disorder
due to confinement of smectic liquid crystals in the ran-
dom environment of an aerogel was observed to destroy
the smectic translational ordering and only allow short-
range correlations [16]. This effect is predicted to persist
even for arbitrarily weak quenched disorder [17, 18].

All these findings motivate us to theoretically examine
the importance of randomly distributed crosslinks for the
translational order in smectic elastomers. Hence, in this
paper we will develop a theoretical description of uniax-
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ial monodomain smectic elastomers with a random field
coupling. In the development of a continuum theory for
smectic elastomers we will follow Osborne et al. [10],
and introduce the random field induced by the crosslinks
as an additional coupling to that theory, where crosslink
points are confined in a corrugated potential. In partic-
ular, we will be interested in the consequences of ran-
dom crosslinks for layer displacement fluctuations and
the resulting behavior in X-ray diffraction experiments.
At the end we will compare our results to experimentally
observed phenomena.

In describing our model, as well as analyzing exper-
imental results, it is important to distinguish different
ways a smectic elastomer can be formed. Figure 1 illus-
trates three possible ways: In panel A we show how a
well-formed smectic liquid crystal, aligned with the help
of external fields or surfaces, can be crosslinked to pre-
serve the layer structure. This system corresponds to
theoretical description of [9, 10] and some of the experi-
ments of [11, 14]. In panel B we assume that a uniaxially
aligned (monodomain) nematic elastomer is established
by first aligning and then crosslinking the network [19];
cooling the system down into the smectic A phase re-
sults in a system that preserves the uniaxial alignment
but has frustrated layers due to random crosslink posi-
tioning. This is the system we study in this paper, and
we believe this is the preparation protocol of Obraztsov et

al. [13]. Finally, panel C shows a different scenario when
the crosslinked elastomeric network is established in the
isotropic phase (either above the nematic-isotropic tran-
sition, or when the smectic phase appears directly below
isotropic). In this case we expect a strongly misaligned
polydomain state in which both the layer structure and
the nematic director would only have short-range cor-
relations. Nematic polydomain systems are relatively
well understood, both theoretically and experimentally
[20, 21], while at present there is no theory to describe the
equilibrium structure of polydomain smectic elastomers
(apart from an extensive discussion of stress-induced reg-
ular domain patterns [8] and the elastic softness during
domain alignment by external stress [22]).

THE MODEL

Continuum description

We will base the model of a monodomain uniaxial
smectic-A elastomer on a nematic elastomer that un-
derwent the smectic-nematic transition and exhibits the
smectic-A phase. In this process we will allow the ne-
matic degrees of freedom to establish equilibrium, which
mathematically corresponds to integrating out the ne-
matic director fluctuations. The macroscopic properties
of the material will be that of a lamellar system regard-
less of how the lamellar phase was reached. In addition,
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FIG. 1: Three ways of obtaining smectic elastomers, in de-
creasing order of resulting alignment. Procedure A results in
a true monodomain smectic elastomer. Following the method
B one obtains a uniaxially aligned elastomer with layer frus-
tration, while the procedure C leads to a true polydomain
smectic elastomer.

we restrict our examination to the uniaxial case (scenario
B in Fig. 1) as these materials were studied in recent ex-
periments [13].

Smectic order is characterized by the order parame-
ter |ψ(r)| which is allowed values between zero and one,
corresponding to no smectic order and the perfect 1-
dimensional order, respectively. We will only be inter-
ested in the smectic phase of the system as we are con-
cerned with the correlation of smectic layers in the ma-
terial and their displacement fluctuations. Therefore, we
take the system to be far from the nematic-smectic tran-
sition by working well below the critical point TNA. Con-
sequently, the smectic order parameter can be taken as
constant and uniform with a value of |ψ(r)| = 1.

We begin our description of liquid crystal elastomer by
considering the relevant contributions to the continuum
free energy density: this will include terms for the ordi-
nary nematic, the smectic, and the elastomer. As we are
only interested in the smectic phase, the nematic director
fluctuations are integrated out as shown elsewhere [10].
The resulting smectic elastomer has two relevant degrees
of freedom, the relative displacement fields of the lay-
ers u(r) and of the elastic matrix v(r). Consequently,
contributions to the effective free energy of the smectic
elastomer either depend on one of the two displacement
fields or consist of an interaction between the two:

(i) Deformations of layers of the smectic-A phase con-
tribute to the energy density through a term FsmA.

(ii) The elastic response of a uniaxial material leads to
an energy density term Fel.

(iii) Relative translations and rotations between the lay-
ers and the underlying elastic matrix are summarized in
a coupling term Fc.

Bringing these results together one obtains the effec-
tive energy density FsmEl = FsmA + Fel + Fc. It was
shown that in reciprocal space this expression can be ar-
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ranged as a quadratic form [10]:

FsmEl =
1

2
vq ·G(q) · v−q +

1

2
M(q)uqu−q

− Γ(q) · [vqu−q + v−quq] , (1)

where the values of matrix coefficients G,M and Γ are
rather cumbersome and are explicitly given in [1, 10]. To
obtain the full free energy density of the system the ran-
dom field coupling now has to be added to the expression
above.

Random Field Coupling

The coupling to the random field is introduced as an
interaction pinning the layers to randomly distributed
crosslinks [12]. The effect of crosslinks on the smectic
phase is modelled by a corrugated potential which penal-
izes deviations of crosslinks from the local layer positions.
In the case |ψ(r)| = 1 the potential takes the form

FRF = γ

∫

d3r c(r) cos (q0 [z − u(r) + vz(r)]) (2)

where γ is the interaction strength and c(r) the crosslink
concentration. In a continuum theory the crosslink con-
centration is a random function with a Gaussian proba-
bility distribution derived in [28]:

P [c] ∝ exp

(

−
∫

d3r
(c (r) − c0)

2

2c0

)

, (3)

where c0 is the mean number of crosslinks per unit vol-
ume is also the standard deviation.

Replica Hamiltonian

Adding all contributions to the free energy we can
write the partition function for a smectic elastomer cou-
pled to a random field as

Z =

∫

DuDv exp

(

−β
[

FRF +

∫

d3rFsmEl

])

. (4)

Physical quantities are calculated as the average over
the disorder associated with the crosslinks. These disor-
der averages can be overcome using the replica trick [23],
so in the case of the effective free energy of the system:

βF = −〈lnZ〉P = lim
n→0

1 − 〈Zn〉P
n

, (5)

with β = 1/kBT . The disorder average over the n repli-
cas of the system can be performed analytically . Since
FRF is the only term that depends on the crosslink con-
centration, the disorder average will only affect this term

and couple different replicas together into the term Frepl.
After coarse-graining the system by averaging over the
period of the smectic modulation q−1

0 we find:

Frepl = −λ
n
∑

a,b=1

∫

d3r cos
(

q0
[

ua − ub − va
z + vb

z

])

,

(6)
where the effective coupling strength is λ = c0βγ

2/2.
The full replica Hamiltonian as appearing in the expres-
sion for the replicated partition function is then given
by

Hrep =

∫

d3r
(

n
∑

a=1

[F a
smA + F a

el + F a
c ]

− λ

n
∑

a,b=1

cos
(

q0
[

ua − ub − va
z + vb

z

]) )

. (7)

The next step in our calculation is to integrate out the
elastic matrix fluctuations v to obtain an effective free
energy density that only depends on the layer displace-
ments u. From this expression we will be able to derive
the mean-square layer fluctuations.

Integrating out elastic phonons

Averaging over quenched random disorder left us with
an energy term that couples different replicas together
in the replica Hamiltonian. Strictly, the cosine in its ex-
pression renders the partition function a non-Gaussian
integral and makes its evaluation analytically very hard
(see [24] for a detailed treatment of such a system in
the context of Abrikosov flux latices in disordered super-
conductors, including the hierarchical replica symmetry
breaking). Noting that the interaction contains transla-
tionally invariant terms of the form [ua(r) − ub(r)] and
[va

z (r) − vb
z(r)] we will make quick progress by assum-

ing weak disorder, so that the cosine-function can be
expanded to its leading quadratic order. This is a sig-
nificant simplification, which will not allow us to address
delicate problems of replica symmetry breaking. How-
ever, the advantage is that we can find the qualitative
analytical answers to correlation functions in the rele-
vant range – and our conclusions about the enhanced
order will be consistent with assuming the differences
q0[u

a − ub] are small. Rewriting the expanded expres-
sion of Frepl in reciprocal space it can be combined with
the remaining energy terms (1) leading to a quadratic
form for the replica Hamiltonian

Hrep = V 2

∫

d3q

2π

n
∑

a,b=1

(1

2
va
q · Gab(q) · vb

−q

− 2Γab(q) · ua
qv

b
−q +

1

2
Mab(q)ua

qu
b
−q

)

(8)
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where the random field coupling has been subsumed
into the redefined matrix coefficients G

ab(q), Γab(q) and

Mab(q).

The expression for the replicated partition function is
now a Gaussian integral and can be performed analyt-
ically. When evaluating Gaussian integrals the method
of steepest descent is mathematically equivalent to eval-
uating the integral exactly. Hence the integration over
elastic matrix fluctuations va

q can be done by minimiz-
ing the replica Hamiltonian with respect to the ma-
trix fluctuations. Performing the minimization of the
quadratic form we find the optimal fluctuation modes
to be va

q = 2 G
−1ac

(q) · Γcb(q) ub
q.

Inserting the optimal modes into the replica Hamilto-
nian we arrive at an effective energy expression in terms
of the smectic layer fluctuations alone:

F eff
smA =

V 2

2

∫

d3q

(2π)
3 Mab

eff(q)ua
qu

b
−q, (9)

with Mab
eff =

[

Mab(q) − 4Γac(q) ·G−1cd
(q) · Γdb(q)

]

.

From the expression above we will be able to determine
fluctuations of layer displacements and examine the be-
havior of our system in x-ray scattering experiments.

Smectic layer fluctuations

As we are only interested in fluctuations of the smec-
tic phase, the observable spectrum is known to be ex-
pressed by the diagonal term in the replica space [24, 25]:
〈

|uq|2
〉

=
〈

ua
qu

a
−q

〉

. The full expression for
〈

|uq|2
〉

is

rather tedious. However, we can employ simplifying ap-
proximations to focus on relevant physical consequences
and present the results in a compact form. We regard the
system as essentially incompressible such that the bulk
modulus C3 is taken to be very large compared to the
other elastic moduli. Hence terms of order C5/C3 ≪ 1
can be ignored. Another possibility to simplify our ex-
pression can be derived from the setup of scattering ex-
periments. In X-ray scattering studies [13] the incident
and scattered beam are close to the layer normal of the
smectic, which results in the excitations of the material
(the scattering vector q) to be mainly along the layer nor-
mal. Consequently we take the wave vector components
along the layer normal to dominate over components in
the layer plane: qz ≫ q⊥. In addition to this restriction
we only consider wave vectors that are small (and the
corresponding length scale large) in the sense that they
obey q ≪

√

Λ/C, where C is a characteristic magnitude
of the rubber shear modulus.

Applying these approximations we finally obtain the

expression for the fluctuations of layer displacements:

〈

|uq|2
〉

≈ kBT

2V Λ

(

1

1 + B
2Λq

2
z

)

+
c0q

2
0γ

2

4V Λ2

(

1

1 + B
2Λq

2
z

)2

(10)
The constant B in this expression is the layer compres-
sion modulus that also appears in the free energy density
of a smectic liquid: FsmA = 1

2

(

Bq2z +Kq4⊥
)

|uq|2.

RESULTS AND DISCUSSION

Importance of the random field

We obtained an expression for the mean-square layer
displacements that consists of two contributions (10): the
first term displays ordinary thermal fluctuations, modi-
fied by the coupling of smectic layers to the elastic ma-
trix, whereas the second term represents the effect of the
random field of crosslinks. The first term coincides with
the expression that was obtained before by Osborne [10]
and has the form of a Lorentzian with a characteristic
length scale given by

√

B/2Λ. We now observe that the
fluctuation term due to the random field has the form
of the square of a Lorentzian with the same length scale
√

B/2Λ. This form already gives us hints about the rel-
evance of the random field for the behavior of layer fluc-
tuations. For relatively large wave numbers qz this term
behaves like qz

−4 and will be dominated by the thermal
fluctuations which only decrease like qz

−2, in the way
similar to the classical Larkin effect of quenched disor-
der in a lattice [26]. For small wave numbers qz both
the thermal and the random field term have a finite cut-
off “mass”. The relative magnitude of the random field
is not negligible and we will hence assess its strength in
comparison to the thermal part.

Note that the coupling constant Λ was analyzed on
dimensional grounds [1] to be of the form:

Λ ≈ αc0
kBT

R2
0

, (11)

where α is a non-dimensional coefficient of order unity
and R0 is the characteristic distance between two
crosslinking points in the network. Using this estimate
for Λ we can investigate the role of the random field con-
tribution. For this term to dominate thermal fluctuations
the coupling constant γ has to satisfy the condition

γ > kBT

√

d0

R0
(12)

where d0 is the smectic layer separation. As any
crosslinking of physical significance for the material has
to connect points that are separated by at least one smec-
tic layer it can safely be assumed that d0

R0

< 1 and, with
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kBT being the only energy scale in this system, γ eas-
ily meets the condition above. Therefore, we obtain the
interesting result that the smectic layer fluctuations are
dominated by the random-field term for small wavenum-
bers (i.e. for correlations at long length scale). This will
have interesting consequences on translational order in
smectic elastomers.

Given the linear dependence of Λ on the crosslink con-
centrations we note that both terms in the expression for
the mean-square layer displacements (10) are inversely
proportional to the crosslink density. This behaviour will
be of importance when analyzing the properties of smec-
tic elastomers in x-ray scattering experiments.

X-ray scattering

We will now proceed to examine the consequences of
our theory for the intensity of X-rays scattered from the
structured elastomer. In particular we will be interested
to compare our predictions to the results of a recent study
by Obraztsov et al. [13]. They investigated the influ-
ence of disorder induced by random crosslinks study on
smectic elastomers. Quasi-Bragg peaks were identified
and their lineshape accurately determined. For small
crosslinking densities the central part of the peaks can
be described by a Gaussian, however, upon increasing
the crosslink density the peaks broaden and the Gaus-
sian transforms into a Lorentzian lineshape. The tails of
the quasi-Bragg peaks showed algebraic decay character-
istic of quasi-long range order.

For an ideally infinite smectic material the intensity of
the first-order reflection peak in reciprocal space is of the
form

I(q) ∝
∫

d3r eiq·r 〈ρ(0)ρ(r)〉 ∝
∫

d3r ei(q−q0)·r S(r)

(13)
with the structure factor S(r) is given by the average
〈exp (iq0 [u(r) − u(0)])〉. In the harmonic approximation
the structure factor can be written in terms of a layer dis-
placement correlation function, utilizing the basic prop-
erty of Gaussian distributions:

S(r) = exp

(

−q
2
0

2

〈

[u(r) − u(0)]
2
〉

)

(14)

To proceed with the calculation of scattering intensity
we recall the results of previous work on fluctuations in
smectic elastomers. Our expression for layer displace-
ment fluctuations coincides asymptotically with the re-
sult obtained by Osborne [10]. There it was concluded
that fluctuations with the spectrum of this form in re-
ciprocal space prevent the divergence of the mean-square
fluctuations in real space:

〈

u2
〉 ∼= kBT

d0

√

2C∗
5B

∗
(15)

Consequently, we can take the displacements of layers
u(r) to be small compared to the layer spacing d0 =
2π/q0. This is consistent with the Lindemann criterion
[27] for crystalline lattices far from their melting point. In
this limit the argument of the exponential in the expres-
sion for S(r) is taken to be sufficiently small to justify an

expansion to first order: S(r) ≈ 1− 1
2q

2
0

〈

[u(r) − u(0)]
2
〉

.

The resulting intensity of the first-order X-ray diffrac-
tion peak consists of a broad lineshape superposed on
a delta-functional Bragg-peak attenuated by a Debye-
Waller-factor:

I(q) ∝ e−q2

0〈u2〉(2π)3δ3(q−q0) + q20V
〈

|uq−q0
|2
〉

(16)

Let us examine the above result. The delta-function
represents a true Bragg-peak showing the remnant long-
range order in the system. The amplitude of the Bragg-
peak corresponds to a first-order expansion of a Debye-
Waller factor of the form ∝ exp

[

−(4π2/d2
0)
〈

u2
〉]

. In our

approximation of small layer displacements
〈

u2
〉

the am-
plitude of the Bragg-peak is close to its maximum value
hinting on the presence of true long-range order in the
system. This behavior is consistent with previous studies
of smectic elastomers [9, 10].

The second term of expression (16) corresponding to
the broad lineshape is entirely dictated by the mean-
square displacement fluctuations in reciprocal space. To
compare our results to experiment we will need to take
the setup of X-ray studies into account. In experiments
[13] the incident and scattered beams were closely aligned
with the normal to the smectic phase, leading to the scat-
tering vector components qz ≫ q⊥. We already calcu-

lated an expression for
〈

|uq−q0
|2
〉

in this limit which we

found to be of Lorentzian form (10):

I(q) ∝ kBT

2V Λ

(

1

1 + B
2Λ(qz − q0)2

)

+
c0q

2
0γ

2

4V Λ2

(

1

1 + B
2Λ (qz − q0)2

)2

. (17)

Several lessons can be learnt from this result. Thermal
fluctuations display a Lorentzian intensity profile with
a correlation length ξ =

√

B/2Λ whereas the random
field of crosslinks leads to the lineshape of the square
of a Lorentzian characterized by the same length scale.
This form allows us to analyze the quality of the short-
range order exhibited in our system: The characteristic
length displayed by this lineshape is a measure for the dis-
tance over which good translational order persists. Using
previous estimates for the values of B and Λ in smectic
elastomers [1] we obtain ξ ≈ 20nm. Since the coupling
parameter Λ is known to be proportional to the crosslink
density c0, this correlation length decreases with a grow-
ing number of crosslinks. Hence we demonstrated the
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ability of crosslinks to impair translational order, but the
precise emergence of this effect is somewhat unexpected:
the decrease of the correlation length is also observed
in the case of thermal fluctuations and is not purely an
effect of the random field.

In addition, it can be observed that the lineshape
caused by the random field of crosslinks is always nar-
rower than the lineshape due to thermal fluctuations.
The envelope for the intensity profile due to the random
field decays faster than q−2 far away from the central
peak. Such a behavior was observed by Wong [11], where
the intensity was observed to decrease like ∼ q−2.4. We
combine this finding with the above result regarding the
relative strength of the random field fluctuations to arrive
at the following surprising conclusion: the presence of
random crosslinks in our system actually improves short-
range translational order versus thermal fluctuations.

Finally, the dependence of the diffraction pattern
on the crosslink concentration is examined. Layer
fluctuation correlations (10) are found to be inversely
proportional to the crosslink density which will de-
termine the behavior of the Debye-Waller factor and
the relative strength of various terms contributing to
the scattering intensity. So the first two terms in
the intensity profile (16) are of comparable strength if

q20

〈

|uq−q0
|2
〉

qz≫q⊥
∼ 1. Using the dependence of the

layer fluctuation correlations on the crosslink density, the
above condition can be rearranged as a constraint on the
concentration of crosslinks. For the Lorentzian lineshape
to contribute significantly to the diffraction pattern we
require a crosslink number density of

c0 ∼ R2
0

d2
0V

. (18)

For higher concentrations the Lorentzian lineshape is
suppressed in favor of Bragg peaks, revealing true long-
range order. On the other hand, on lowering the crosslink
density the Debye-Waller factor attenuates the Bragg
peaks and the intensity profile becomes increasingly
Lorentzian-like indicating the presence of only short-
range order. This emergence of a Lorentzian lineshape
for high crosslink densities is in general agreement with
experiment and was in particular highlighted recently
[13]. When decreasing the crosslink concentration even
further we leave the regime of small layer displacements
and the diffraction pattern has to be determined from
the full expression of the structure factor (14). Besides,
our expression for the lineshape appears to be singular
for the crosslink density approaching zero. In this case
(c0, C, Λ → 0) our previous approximations break down
and hence our result for scattering intensity becomes in-
valid. For the case of a vanishing crosslink density c0
our system naturally returns to the smectic liquid whose
intensity profile was obtained by Caillé [4].

Percolation limit

Obraztsov et al. [13] measured a broadening of first-
order diffraction peaks upon increasing the concentration
of crosslinks. In the case of X-rays scattered off an elas-
tomer prepared with the stiff cross linker V8, the central
parts of the peaks were well described by Lorentzians.
For crosslink volume fractions of x =0.1, 0.125, and 0.15
the Lorentzians correspond to a correlation length of ξ =
53, 26, and 15 nm, respectively [13]. If expressed as a
power law, the correlation length roughly depends on the
volume fraction of crosslinks as ξ ∼ x−3, however tenu-
ous this conclusion might be with so few points and the
inevitable experimental error. Let us compare this rela-
tion to the correlation length obtained from our theory.
Due to the dependence of the coupling parameter Λ on
the number density of crosslinks c0 (11), the relation be-
tween correlation length and crosslink number density is:

ξ =
√

B/2Λ ∝ c
−1/2
0 .

As we expect the relation between the volume frac-
tion of crosslinks and their number density to be roughly
linear, x ∝ c0, we note that the predicted relation be-
tween correlation length and crosslink density is very dif-
ferent from the observed power law, however tentative:
the measured correlation length drops off fast with in-
creasing crosslink density whereas the predicted decrease
is considerably weaker. This apparent discrepancy might
be resolved by taking the percolation limit of an elas-
tomer into account. This limit is the minimum concen-
tration of crosslinks cmin needed to form an elastic net-
work when synthesizing an elastomer. The elastic prop-
erties of the material should only depend on the excess
of crosslinks over this minimum, that is, Λ ∝ (c0 − cmin),
leading to an amended expression for correlation length:
ξ ∝ (c0 − cmin)

−1/2. We note that for crosslink concen-
trations close to the percolation limit cmin the changes in
the correlation length can be much more drastic. A fit of
this theory is shown in Fig. 2 leading to an estimate vol-
ume fraction of xmin ≈ 0.09 at percolation limit of elastic
network. Considering the level of our approximations, as
well as the somewhat ambiguous way the “crosslinking
density” is quoted in experimental reports (volume-% vs.
molar-%, possibly accounting for the double-bond on the
crosslinking molecule), this is a very reasonable estimate
of percolation threshold.

Real-space correlations

We want to find the real-space fluctuation correlations
corresponding to the mean-square fluctuation in recipro-
cal space as given by Eq.(10). Hence excitations of the
elastomer are again taken to be mainly along the smec-
tic layer normal. The two terms of (10) are considered
separately and integrated directly. The thermal contribu-
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FIG. 2: Correlation length of “elastomer II” with stiff
crosslink V8 and domain size of “elastomer II” with flexible
crosslink V1 plotted against the volume fraction of crosslinks
[13]. The solid lines represent the fit assuming a percolation
limit of xmin ≈ 0.09.

tion to fluctuation correlations along the layer normal is
the simple exponential (corresponding to the Lorantzian
structure factor) with a decay length ξ:

〈u(z)u(0)〉 ∼ kBT

a2
√

ΛB
e−

√
2Λ/B|z|, (19)

where a is the intra-layer distance between two meso-
gens, which is the short-distance cutoff in this system.
In contrast, the random field of crosslinks leads to an
expression:

〈u(z)u(0)〉 ∼ c0q0γ
2

a2ΛB

(

√

2Λ

B
+ |z|

)

e−
√

2Λ/B|z|. (20)

The Landau-Peierls-divergence is removed, however, po-
sitional correlations now decay with the characteristic
length scale ξ =

√

B/2Λ showing the nominally short-
range order. The quenched random field has the effect
of retarding the exponential decay by the prefactor that
depends linearly on z, effectively extending the range of
correlations, as can be seen in Fig. 3. This is consistent
with our observation that the introduction of randomly
distributed crosslinks improves translational order. The
slowdown of the exponential decay is only significant over
a distance of a few correlation lengths hinting that the
coupling to random crosslinks primarily enhances short-
range order within the material.

One should point out that our theory was developed
in the limit of small deformations and correspondingly
breaks down for large wavenumbers q. In addition, scat-
tering intensity profiles were derived for the case that
layer displacements are small compared to the layer spac-
ing, which in turn enforces a lower bound on the crosslink
concentration (18). However, this requirement may be in
conflict with another assumption made during the de-
velopment of the theory. Crosslink densities were taken
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FIG. 3: Components of the real space correlation functions
plotted against reduced distance along the layer normal, z/ξ:
the thermal fluctuations (Lorentzian structure factor) and the
quenched distortions due to crosslinks (square-Lorentzian), cf.
Eq.(20). Both functions where normalized to 1 at z = 0 to
allow for comparison.

as small enough to maintain a replica-symmetric regime,
rendering the theory less reliable for the case of large
numbers of crosslinks. For a better description the do-
main of strong quenched disorder could be explored more
rigorously in an approach based on replica symmetry
breaking.

Yet, the work presented here shows consistence with
experiment: As predicted, for high enough crosslink con-
centrations the central parts of the quasi-Bragg peaks
measured by Obraztsov were well approximated by
Lorentzians [13]. In contrast, our work is unable to ac-
count for the observation of algebraic decay of the tails
of the peaks at large wavenumbers and the lineshape at
low crosslink densities. A description of this behavior in
elastomers remains a theoretical challenge.

Besides, intra-layer excitations of the smectic phase
were largely ignored in this analysis owing to the setup
of X-ray studies [13], which we have focused on, and the
restriction to small layer displacements. A more com-
plete theoretical approach should incorporate these ex-
citations into the theoretical edifice leading to improved
predictions both for fluctuation correlations and scatter-
ing lineshapes. In addition, our treatment is restricted
to monodomain uniaxial elastomers, albeit real materials
exhibit a range of layer normals within the material. A
different theoretical approach is needed to properly de-
scribe this situation.

CONCLUSION

A monodomain uniaxial smectic-A elastomer was an-
alyzed for small deformations in a continuum model
and with the quenched random disorder introduced by
coupling to a field of randomly distributed network
crosslinks. The average over disorder was treated using
the replica trick in a dilute regime of crosslinks, main-
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taining the replica-symmetric regime.

We predicted the lineshape of the first-order peak for x-
ray scattering normal to the smectic phase. For crosslink

densities c0 >
R2

0

d2

0
V

a true Bragg peak modulated by a

Debye-Waller factor is obtained asserting the presence
of long-range order. This part of our theory confirms
previous work on this subject [9, 10].

For crosslink densities c0 ∼ R2

0

d2

0
V

the x-ray intensity

profile is of Lorentzian form exhibiting short-range or-

dering with a characteristic length ξ =
√

B
2Λ . This leads

to exponentially decaying real-space fluctuation correla-
tions (19) indicating good translational order over a dis-
tance ξ ≈ 20nm. As the coupling constant Λ depends on
the crosslinking density we demonstrate that the pres-
ence of crosslinks does introduce disorder even in the
monodomain, well-aligned system of smectic layers. The
correlation length depends on the crosslink concentration
as ξ ∝ 1/

√
c0 − cmin causing the regions (‘domains’) of

good translational order to shrink with a growing num-
ber of crosslinks. It should be appreciated that this effect
of disordering is not a consequence of quenched random
disorder introduced by the random field: the decrease
of the correlation length is also observed in the purely
thermal-fluctuation contribution, even though we expect
in practice that the magnitude of fluctuations would be
dominated by the quenched-disorder contribution to our
main result, the Eq. (17).

This domination has important consequences: the pre-
dicted intensity profile due to the random field has the
form of the square of a Lorentzian with the same char-
acteristic length scale ξ. It is this form of a squared
Lorentzian that retards the exponential decay of posi-
tional correlations and hence improves translational or-
der (20) compared to the purely thermal case (19). Thus
the presence of the random field of crosslinks, when they
are established in a uniaxially aligned (nematic) sys-
tem, stabilizes the 1-D translational smectic order against
thermal fluctuations causing the size of domains of good
translational order to exceed the correlation length ξ.

Further, our results have been compared to experi-
ment: X-ray scattering peaks are predicted to broaden
with increasing crosslink concentration which is qualita-
tively consistent with observations [13]. A quantitative
comparison to experiment leads us to speculate about
the percolation limit of the elastomers studied: analyz-
ing the observed dependence of the correlation length on
the crosslink concentration it is estimated that a volume
fraction of 9% of crosslinks is needed to form an elas-
tic network within these materials. This result is highly
speculative and presented as a motivation for further in-
vestigation.

One should point out that our theory is far from of-
fering a complete description of the behavior of smectic
elastomers with random crosslinks: the remnant quasi-

long range order as observed by Obraztsov [13] in the
algebraic decay of the x-ray intensity profile is not ac-
counted for in this work. In addition to that, intra-
layer excitations in the system were widely ignored and
crosslink concentrations assumed to be small throughout.
A further theoretical investigation of smectic elastomers
should compensate for these shortcomings.

On the other hand, interesting contributions to the
debate about the role of random crosslinks have been
made. We were able to demonstrate both known tenden-
cies of the behavior of crosslinks in smectic elastomers.
So we found crosslinks to impair translational order by
penalizing relative displacements between the layers and
the elastic medium. Ironically, when introduced in the
form of quenched random disorder, crosslinks have the
counter-intuitive effect of stabilizing translational order
against thermal fluctuations.
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