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Abstract. Vertically aligned monodomain nematic liquid-crystal elastomers contract when heated. If a
temperature gradient is applied across the width of such a cantilever, inhomogeneous strain distribution
leads to bending motion. We modelled the kinetics of thermally induced bending in the limit of a long
thin strip and the predicted time variation of curvature agreed quantitatively with experimental data from
samples with a range of critical indices and nematic-isotropic transition temperatures. We also deduced a
value for the thermal diffusion coefficient of the elastomer.

PACS. 78.20.Hp Piezo-, elasto-, and acoustooptical effects; photoacoustic effects — 61.41.+e Polymers,
elastomers, and plastics — 82.35.Ej Nonlinear optics with polymers — 83.80.Va Elastomeric polymers

1 Introduction

Liquid-crystal elastomers (LCE) combine the long-range
orientational correlation of liquid crystals and entropically
driven polymer elasticity to give a range of exotic prop-
erties such as spontaneous reversible shape changes and
“soft elasticity” —deformation with no or little energy
cost, leading to a variety of director instabilities under
transverse extensions [1].

Nematic LCE possess the simplest uniaxial orienta-
tional order and can be synthesized by incorporating
rod-like anisotropic mesogenic groups into the strands of
weakly crosslinked polymer networks. The order is char-
acterized by its principal axis, the nematic director n,
and the scalar order parameter ) = (P2(cosf)), which
measures the mean orientation of mesogenic groups with
respect to the director. Such an internal degree of freedom
coupled to the elastic body constitutes what is known as
the Cosserat medium: the relative movement of crosslink-
ing points provides elastic strains and forces, while the
director rotation causes local torques and couple-stresses
—Dboth intricately connected in the overall macroscopic
response of the body. In fact, the physics of LCE is much
richer than that of notional Cosserat solids because (again
due to the entropic nature of long polymer chains con-
necting the crosslinking points) rubbers are capable of
very large shear deformations (being at the same time
essentially incompressible). Hence, one expects a variety
of unique physical properties, especially in the region of
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large deformations. However, in this work we shall explore
only small local strains.

Due to the coupling to the elastic body, the change in
the degree of alignment of mesogenic rods leads to spon-
taneous elongation or contraction of the whole network
along n as constituent polymer chains become on aver-
age more or less anisotropic (prolate or oblate depend-
ing on the system). This direct coupling between physi-
cal conformation and order parameter has been theoret-
ically predicted a long time ago [2], and then compre-
hensively demonstrated by simultaneous measurements of
length and order using diffraction techniques [3-5].

Landau theory predicts a 1st-order transition into
the isotropic phase as the nematic LCE is heated above
its nematic-isotropic transition temperature T . This is
based on the quadrupolar symmetry of the second-rank
tensor order parameter of the nematic, which does not
distinguish between rods pointing “upwards” and “down-
wards”. However, in the elastomer network that was
crosslinked in the aligned director state in order to ob-
tain a permanent monodomain nematic texture [6], one
does not find a discontinuous jump in the order parame-
ter. Instead, frozen-in uniaxial stress leads to the super-
critical continuous change of Q(T') across the transition,
and with it the continuous equilibrium uniaxial deforma-
tion of the monodomain nematic LCE. Depending on the
degree of induced anisotropy of polymer chains forming
the network, the magnitude of this deformation can be as
high as 500% [7].

Spontaneous shape changes can also be induced
optically. Photoelastomers doped with rod-like groups,
such as azobenzene derivatives, which undergo trans-cis
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isomerization on absorption of UV photons [8,9], or car-
bon nanotubes, which respond to IR light [10], are found
to contract when irradiated at suitable wavelengths since
local order is disrupted by the kinked dopant groups. Due
to the high stroke and the equilibrium (reversible) nature
of induced deformations, this now becomes an active area
of engineering micro-optical mechanical systems (MOMS).

Inhomogeneous deformations are of special interest
since they see potential applications in photo- and thermal
actuators, detectors and sensors, microrheological valves
and pumps, as well as structures which can respond to
their neighboring environment. Non-uniform deformations
occur when a spatial stress distribution is induced inside
an elastomer. This could be achieved by irradiation, or
by application of temperature gradient across the sample.
Mathematical models [11] have been proposed to predict
equilibrium curvatures in unilaterally illuminated photoe-
lastomer cantilevers with exponential attenuation. How-
ever, in contrast to uniaxial contractions along the ne-
matic director that have been well documented, no quan-
titative measurements have been made so far on bending
curvatures. At the same time, while qualitative experi-
ments on optically induced deformations have reported
time scales varying from < 100ms [12] to ~ 1-10s [13,
14] depending on the incident intensity of light sources,
the kinetic aspects of the bending motion have not been
addressed theoretically.

This paper presents the first quantitative experimental
study of the dynamics and kinetics of thermally induced
bending in a nematic elastomer cantilever. We apply ra-
diative heating to one side of cantilevers made from well-
aligned monodomain polysiloxane side-chain elastomers,
and measure the amplitude and time evolution of the in-
duced curvature. We also develop a theoretical model,
which predicts the reduced curvature of the cantilever as
a function of time for cantilevers with different critical ex-
ponents, transition temperature and maximum strain. A
value for the thermal diffusion coefficient of the elastomer
is estimated from matching the model predictions to the
experiment.

2 Experimental section

Materials. All side-chain siloxane liquid-crystalline elas-
tomers, as well as their starting materials, were pre-
pared in the Cavendish Laboratory following the proce-
dures of Finkelmann et al. [6,15]. The polymer backbone
was a poly-dimethylhydrosiloxane with approximately 60
Si-H units per chain, obtained from ACROS Chemi-
cals. The pendant mesogenic group in sample A (NE-
A) was purely 4-methoxyphenyl-4-(1-buteneoxy) benzoate
(MBB), while sample B (NE-B) contained of 70 mol%
of MBB and 20 mol% of 4-alkeneoxy-4’-cyanobiphenyl
(ACB), as illustrated in Figure 1. All networks were chem-
ically crosslinked via the same hydrosilation reaction in
the presence of commercial platinum catalyst COD, ob-
tained from Wacker Chemie, with di-functional crosslink-
ing group 1,4 di(11-undecene) benzene (11UB) also syn-
thesized in house. In all cases the crosslinking density
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Fig. 1. Schematic illustration of the materials used in this
work. Siloxane backbone chain with Si-H groups was reacting
with 90 mol% mesogenic side groups and 10 mol% of flexi-
ble crosslinking groups (11UB). Two materials differed in the
composition of mesogenic groups: NE-A had 90 mol% of MBB,
while NE-B had 70 mol% of MBB and 20 mol% of ACB.

(11uB) Flexible crosslinker

was 10 mol% of the reacting bonds in the siloxane back-
bone, so that on average each chain has 9 mesogenic
groups between crosslinking sites. These materials have
been very well studied over the years; both have a glass
transition around 0°C and nematic-isotropic transitions:
Ty~ 87°C for NE-A, and Ty ~ 101 °C for NE-B.

Monodomain alignment. Monodomain, aligned sam-
ples of nematic elastomers were made by following the
classical two-step crosslinking approach of Finkelmann et
al. [6]. First we prepare partially crosslinked films in a
centrifuge, highly swollen in toluene (2-3ml per 1g of
material), reacting for 25-35 minutes at ~ 75°C before
evaporating the solvent and suspending the samples un-
der load in an oven for more than 5 hours at 120°C to
complete the second-stage crosslinking reaction. A care-
ful study of reaction kinetics ensured that approximately
50% of crosslinks were established in the first stage of this
preparation. When a uniaxial stress is applied to such a
partially crosslinked network, the uniaxially aligned state
in the resulting nematic elastomer is established with the
director along the stress axis. This orientation is then fixed
by the subsequent second-stage reaction, when the remain-
ing crosslinks are established.

Following the original ideas of [6] and the present
understanding of the nature of polydomain nematic
LCE [16], in all cases we performed the second-stage
crosslinking in the high-temperature isotropic phase: only
in this way a good alignment and mechanical softness are
achieved (in contrast to crosslinking in a stretched polydo-
main nematic phase, which results in topological defects
and localized domain walls frozen in the material).

The mechanical history of the samples was elimi-
nated by annealing in the isotropic phase for > 2 hours
(~ 130°C) followed by slow cooling. A precise measure-
ment of the variation in natural length L(T") with temper-
ature was then made with a travelling microscope, which
followed the end points of a sample that was suspended
without load and heated at a slow rate of 0.33 °C/min in
an insulated glass-front oven.

Measurements of the natural length L(7') variation
with temperature, Figure 2, were fitted to a model func-
tion L/Lo = 1+ (1 —T/Tnr)®, where Ly is the constant
length of samples in the isotropic phase. Obviously, such
a superficially critical behavior cannot be matched to ex-
periment at the transition point itself (where supercritical
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Fig. 2. Curves of equilibrium uniaxial contraction of mon-
odomain nematic LCE. The two samples (labelled on the plot)
have different transition temperatures Tn; and different chain
anisotropy, leading to the 20% and 55% contraction, respec-
tively. Solid lines drawn through the data below T'n represent
the analytical fit functions described in the text.

effects take over), but it provides a very good continuous
interpolation of the data in the nematic phase. Fitting to
the data gives a = 0.25, § = 0.843 and T; = 359.6 K for
NE-A,and a = 0.21, 8 = 0.3 and Ty; = 373.8 K for NE-B.

The thickness w of the two samples (which we shall
require in the cantilever analysis) was 0.351 mm (NE-A)
and 0.368 mm (NE-B) at room temperature. Elastomer
samples were cut into thin strips of approximate dimen-
sions Lx W xw = 5mm x 1 mm X w (with differing thick-
ness) and had one end vertically attached to a stand on an
adjustable platform. Sideways images of the strips (can-
tilevers) were taken by a Sanyo VCB-3512T monochrome
CCD camera (f = 9mm) with direct back lighting and
digitally captured using software FTA32 by First Ten
Angstroms Inc at a frame rate of 15fps. An Antex CS
16W soldering iron provided heating. This soldering iron
had a flat tip (cylinder of 4.5mm diameter) which pro-
vided uniform radiative heating over the whole cantilever.
Imaging of this tip also acted as a scale for confirming
the thickness w of the samples by comparing dimensions
on screen. The soldering iron, which was allowed to equili-
brate for 15 minutes before each experiment, was mounted
horizontally on a movable stand which can be slid to the
desired position (2mm) in front of the mounted sample
in less than 0.2s, which marked the start of each kinetic
measurement. Temperatures at the front and the back of
the samples were measured with a thermocouple, however,
not during the cantilever-bending experiment (but in a
separate event of heating in exactly the same conditions).

Movies of the bending motion were taken and each
frame was analyzed both manually and using a MATLAB
image-processing algorithm. Manually, the radius of cur-
vature was obtained by superposing circles of various sizes
on the outline of the curved sample using graphics soft-
ware CorelDraw and adjusting until the circle of best fit
was found, see Figure 3. The automated MATLAB al-
gorithm extracted the position of points along the curved
edge of the sample in the image and fitted the set of points

Fig. 3. (a) A composite image showing the extent of cantilever
bending. On the left one can see the tip of the soldering iron.
(b) The scheme of the manual analysis of the cantilever curva-
ture.

to the equation of a circle with variable radius R by a
least-squares method; the optimized value of R was then
output as the radius of curvature. In the end, our proce-
dure was to analyze all images in an automated way, but
then re-examine every anomalous point manually (because
we found that our algorithm was not coping well with the
cases of non-uniform curvature along the cantilever). The
outputs of this analysis were the values of normalized cur-
vature w/R against time for each bending experiment.

3 Theoretical model

Heat diffusion across a flat strip.

The problem of thermal diffusion in a flat sample ex-
posed to a constant heat flux from one side is certainly a
classical one. We give its brief account here in order to ex-
pose the key parameters of the problem, required for the
subsequent description of cantilever bending. Consider a
1D diffusion of the scalar temperature field T'(x,t) across
the thickness of the cantilever, 9, = DJ2?T, where the
diffusion coefficient D = x/C'is the ratio of thermal con-
ductivity & (given by the heat flux definition J = —x0,T)
to specific heat capacity per unit volume C. We assume
that the soldering iron acts as a source of constant flux
J at = 0, while losses on the front (x = 0) and back
(z = w) surfaces are taken to be proportional to the differ-
ence between the temperature on the sides, Tt and T3,, and
the ambient swrrounding, Ty, i.e. —k9,T = J — (Tt — Tp)
at ¢ =0, and —k0,T = (T}, — Tp) at = w, taking flux
to be positive to the right.

Since the diffusion equation consists only of deriva-
tives of the temperature field 7" and the boundary con-
ditions are only sensitive to temperature differences, we
can homogenize the problem by considering the func-
tion § = (T' — Tp) instead. Introducing natural variables
X = x/w and 7 = Dt/w?, the problem can be recast as

Oy0=A0—-06.) at x=0,
879283(9, with ¢ 0,0 =—-A60 at x =1, (1)
0=0 at 7 =0,

where A = wy/k and ©, = J/v are the two essential
parameters of the problem.

In the steady state 0,0 = 0. Being it a 1D problem,
only a linear solution § = Ay + B could satisfy 8)%9 = 0.
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Fig. 4. Plots of 0 = T'— T} across the cantilever thickness x/w.
Increasing curves are for the times Dt/w2 =0.1,1,3 and 100.

Letting the steady-state front and back temperatures be
and T and T}, respectively, (equivalently 7 and 6;), the
steady-state temperature profile across the sample is given
by 0 = 0f — (6f — 6;)x. Parameters A and ©. can then
be expressed as

A=(6;/65—1) and O.=(6f +6), (2)
which consist only of explicitly measurable quantities T¢,
Ty, and Tj. Note that for a thin enough sample one expects
T =Ty and so A < 1. The full time-dependent solution
can be obtained by superposing a series of different time
decay modes 0 = Ay, sin(kx + ¢) exp(—k?7) on the steady-
state solution. Quantization conditions for k and ¢ are
determined by the initial/boundary conditions, giving the
transcendental equations

kn, = Atan(nm/2 — k,,/2) and ¢, = (n7/2 — ky,/2) (3)

for integer n. Fourier analysis of orthogonal modes in
0(x,7) gives the expression for coefficients,

20, sin(ky, /2)

A = (=122 Amn/ =)

n= (=1 kn + sin(k,)

nj2+120c A kycos(ky/2) — 2sin(ky, /2)
kn 2+ A kn — sin(ky,)

for odd n; (4)

= (1)

for even n. The full solution for the temperature across
the sample of thickness w is therefore given by

* * %\ L
T(x,t) =17 — (T¢ *Tb)a

- ] z 1 N\ 12 pejw?
+ ZA" sin (kn [5_5} + 7) e—knDt/w? (5)
n=1

There are two features of this solution that we need for
our main problem. First of all, there is a characteristic
time scale in the problem, given by the ratio w?/D which
will allow us estimate the thermal diffusion constant in
nematic LCE. Note that the (n = 1) mode in equation (5)
has k1 =~ A at A < 1 and, therefore, this is the slow-
decaying mode. Other modes have k,, of order (n — 1)7
and decay fast, in practice, within a few seconds in our
experiments.

The second aspect of the solution T'(x,t) is the rather
smooth variation across the cantilever thickness. Figure 4
demonstrates the z-dependence at different times, which
justifies an essential simplifying approximation made in
the next section, taking T'(x) to be a simple linear function
connecting the two values Tt and Tj,.

Kinetics of cantilever bending.

Consider now a long thin strip of elastomer, pref-
erentially contracted at the front and bent accordingly,
due to unilateral heating from the side x = 0 starting
at t = 0. A temperature distribution T'(z,t) is set up
across the cantilever thickness. Since the length of a mon-
odomain nematic elastomer below T is locally given by
L/Ly =14 (1 —T/Tn1)%, the local strain distribution
due to contraction along the z-direction (vertical in Fig. 3)
can be calculated. Taking the zero-strain state at ambient
temperature Ty, we obtain

e(x) = -1 (6)

- T T [(1 - %> - 1} ’

where L(Tp) is the sample length at ambient temperature.
Assuming Young’s modulus to be constant over the tem-
perature and strain range of the experiment, this strain
can be directly converted to stress o = Ee(z), at each
depth z into the sample. As the elastomer deforms in-
compressibly, a contraction in the z-direction would lead
to transverse expansions along x and y. However, for the
case of a long thin strip in which L > W > w, - and y-
curvatures can be safely ignored.

Let x, be the position of a neutral plane [11]. Me-
chanical equilibrium requires, in the absence of external
forces and torques, that force and moment vanish across
every cross-section of the cantilever. This means that all
bending stress, E(x — z,,)/R, where R is the radius of
curvature of the beam, is provided by the excess stress
Ele(x) — e(zy)] with respect to this neutral plane. Two
conditions representing the balance of forces and torques
are, as in [11],

/OdexEx _Rxn = /OdexE[E(:r) —e(xy)],

T —x,

w (7)
7 /0 W dzz Ele(z) — e(xy)],

/ Wdxax FE
0

where W is the width of the cantilever (the y-dimension),
Ww being the cross-section area of the beam.

Assuming a linear temperature drop across the thick-
ness, T'(x) = Tt — (Tt — T,)x/w, the spatial integrals can
then be conveniently converted to over temperature via
dT = — (Tt — Ty, )dx /w to obtain

w Tt

(5-)= /T Tl e

w o Xy Tr — Ty
G-3)=/ a5

(8)
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Note that both the lateral width W and the Young mod-
ulus E scale out of these mechanical balance equations.
On elimination of z,, and (x,) from these two equations,
one obtains

w (T =T)e(T)dT [T &(T)dT
R~ /Tb (Tt — Tv,)? 6/

n Tt—Th

The problem could be solved completely if we had an an-
alytical expression for £(7). Unfortunately, our interpo-
lation formula is only applicable below T, while above
the transition e is constant. The break at T calls for
a different mathematical treatment for the following two
regimes:

i) When the temperature is below T everywhere in
the sample, Ty > Tt > T}, evaluating the integrals gives
the dimensionless curvature:

w 63 1

R~ [1+p(1—To/Tyn1)"] 2+ 3a + a2
Tnr —Ti T \“ Tnr —Ti
(BB B (2o T )
Ty — T Y Ty —Th
Tnr — T T, \* Tnr —Ti
Y b(l_ b) (a—? NT f)].(lO)
Tf — Tb TN] Tf - Tb
Here T; and Ti, are independently measurable time-
dependent functions. At all temperatures within this
regime the curvature w/R is a monotonically increasing
function of time with the positive second derivative (con-
vex function).
ii) When the T exceeds T, so that the phase transi-
tion front is inside the sample, Tt > Ty > T},, we obtain:

w 63 Tnr — Ty

R [1+8(1—-Ty/Tn1)? Tt — T
(1- i)“ a +2(Ti —Tir) (Tt = Ti)

(9)

TN] 2+3a+a2 (11)
This expression represents a non-monotonic function of
time, with the negative second derivative (concave func-
tion) and the maximum curvature w/R followed by a de-
crease when the majority of the sample becomes isotropic.

Regime ii) comes to an end when the temperature
at the back of the cantilever, Tj,, reaches the transition
point Ty, i.e. all of the sample becomes homogeneously
isotropic. At this point, evidently, w/R = 0. Calculat-
ing the integrals in the regime when all of the sample is
isotropic, Ty > Ty, > Tny, confirms that w/R = 0 at all
times.

In our experiments the powerful heating flux has en-
sured that the temperature rise was high so the interest-
ing regimes (i) and (ii) occurred at relatively short times,
when both Ty and Ti, were well approximated by a single
exponential:

Ti = TF — (Tf — To)e /™, (12)
T, =T — (T} — To)e /™,

where 7r and 7, are the effective thermal diffusion times at
the front and back, respectively. It is expected that 7+ and

T, take similar but not identical values, since inspection of
the full series for T'(x,t) shows that the spatial coefficient
of sinfk,(x/w — 1/2) + nw/2] is identical at x = 0 and
x = w for odd modes, but swaps sign for even n. In this
single-exponential approximation, regime changes occur
at t1 = 7t In(TF — To)/(TF — Tivy), when the front of the
elastomer enters the isotropic phase and the curve w/R(t)
has an inflection point; and at to = m, In(Ty — Tp) /(T —
Tnr), when the elastomer becomes uniformly isotropic and
hence returns to a state of zero curvature, with also a zero
tangent. The values and gradients of reduced curvature
match on both sides of ¢; and t9, as is physically required.

4 Analysis of bending kinetics

In both samples, the reduced curvature w/R variation is
characterized by three distinct regimes. Immediately after
the start of the experiment (heat flux on) there is a slow
initial increase of curvature with time; this is followed by
a sharp peak, after which the curvature rapidly dropped
to zero. This trend corresponds to regimes i) and ii) de-
scribed in the theoretical model, but also could be qualita-
tively understood by considering the shape of the contrac-
tion curve of the nematic elastomer, L/Ly against T' (see
Fig. 2). Initially, when the sample is relatively far away
from Ty, the mechanical response to temperature change
is flat. The local strains induced at the front and back
surfaces are small and similar in magnitude. However, as
the temperature approaches T, which happens first on
the front of the cantilever, the internal stress gradient is
amplified by the increasing steepness of the L(T) curve.
This leads to the cantilever curvature rising at an increas-
ing rate. The curvature will be decreasing again after the
front portion of the cantilever turns isotropic and stops
contracting while the on-going contraction at the back re-
duces the stress gradient. Finally, the sample returns to a
stationary unbent state as it becomes uniformly isotropic.

Figures 5 and 6 show the measured values of curvature
w/R. The solid line in each plot is the fit by the theoret-
ical model, equations (10) and (11). Evidently, the agree-
ment is very good, both qualitatively and quantitatively
—except in the final stages of sample unbending, where
the discrepancies are significant. This, however, should be
expected because of the following two factors, one practi-
cal, the other to do with data analysis.

In our model, we have ignored the fact that, as cur-
vature increases, the lower end of the cantilever lifts and
becomes closer to the heat source. Figure 3 shows this
very clearly. This introduces a significant deviation from
the theoretical assumption in the model, that the heat
flux J is constant. It is clear that, after the point of max-
imal bending is reached, the real heat flux on the sample
is inhomogeneous along the length of the cantilever (z lo-
cal coordinate). As a result, the far end of the cantilever
(the part closest to the heat source) will become homoge-
neously isotropic much earlier than the simple 1D diffusion
model would predict. In practice we see this very clearly,
as in the final stages of the heating cycle the far end of
the cantilever is already straight, while the middle and
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Fig. 5. Experimentally measured values of reduced curvature
w/R, for the NE-A cantilever, against time after the start of
heating. The solid line is the fit by theoretical equations (10)
and (11), with arrows showing where regimes i) and ii) end.
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Fig. 6. Experimentally measured values of reduced curvature
w/R, for the NE-B cantilever, against time after the start of
heating. The solid line is the fit by theoretical equations (10)
and (11), with arrows showing where regimes i) and ii) end.

near parts still have curvature remaining. Such buckling
occurred more significantly in NE-B than in NE-A, as seen
from the curvature plots, however in all cases both man-
ual and algorithmic fitting was difficult and ambiguous as
curvatures are no longer constant.

The other discrepancy factor is inherent in the model
itself. In order to obtain closed-form expressions for
w/R(t), equations (10) and (11), we had to use an in-
terpolating formula for the underlying thermal contrac-
tion L(T'). As is clear from Figure 2, this formula does
not work in the immediate vicinity of the transition Txy,
where all materials show differing degree of diffuse super-
critical behavior. So it is not surprising that the model
expressions deviate from the actual data when the tem-
peratures of the sample are around, or slightly above, the
notional Tx;. These are the regions past the curvature
peak, where the model “assumes” that the local regions
with T > Ty are fully isotropic, while in practice we
know that the contraction continues for 2-3 more degrees.

Among other ignored effects, which might become ap-
parent at high temperatures (later times of the bending
cycle) there is heating of surrounding air and lateral heat

loss, which would require ambient temperature Ty to be
time dependent and a full 3D treatment of heat diffusion,
respectively. All these factors could be eliminated or much
reduced in impact. We could (and indeed have in some ex-
periments) mount the heat source at an angle to minimize
the effect of one cantilever end approaching it too closely.
We could also write a much more elaborate interpolation
formula to account for the full continuous L(T") variation,
and then proceed to calculate all integrals numerically.
However, on reflection we have decided that the benefits
of such improvements would not be worth the price of los-
ing the simplicity of experiment and the ease of analysis.
After all, the agreement of the model with experiment in
the early regions of the bending process is excellent, as we
expect when the material is in the nematic phase.

The point of maximum curvature occurred at 4.3 s for
NE-A and at 3.3s for NE-B. Since we have measured the
saturation temperatures T} and T}’ independently, as well
as determined the parameters 3, a,Tn; of the intrinsic
thermal contraction curves for each material, the only two
fitting parameters are the front- and back-relaxation times
7¢ and 7p, cf. equation (12). The best fits in Figures 5 and
6 were achieved with 7t = 2.42s and 7, = 2.05s for NE-
A, and with 7+ = 2.13s and 7, = 2.5s for NE-B. It must
be remarked that despite the experimental and theoreti-
cal difficulties discussed above, the two-stage increase in
the cantilever curvature shows good agreement with the
experimental data. This proves that we understand the
underlying physics of nematic elastomer cantilevers cor-
rectly, and allows us to extract relevant material parame-
ters from the fits.

Parameters 7¢ and 7, can be viewed as a characteris-
tic heating time for the sample. By comparison with the
first terms of the thermal diffusion solution, equation (5),
they are expected to be of order w?/k?D. Steady-state
temperatures Ty and T}¢ were measured to be 375K and
365 K for NE-A, and 398 K and 390 K for NE-B, giving
A = 0.89 and 0.133, respectively. The value of k1 can then
be obtained from solving the transcendental equation (3)
numerically (giving k1 = 0.419 for NE-A and 0.511 for
NE-B). Rearranging, the thermal diffusion coefficient is
given by D ~ w?/k37. A typical value of D is therefore
estimated to be ~ 1.5-107"m?/s. We are not aware of
any measurements of thermal diffusion in nematic LCE,
but this estimate compares favorably with the literature
values of D = 1.1 -107"m?/s for a crosslinked silicone
elastomer [17], a value also consistent with uncrosslinked
silicone polymer melts [18].

5 Conclusions

In this work we experimentally studied the time varia-
tion of the curvature of a long thin strip of an aligned
monodomain nematic elastomer, for two samples differ-
ing in their transition (constitutive) behavior and shape
dimensions. Associated theoretical analysis was able to
quantitatively describe the data and reflect all charac-
teristic trends. Fitting the data allowed us to deduce
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characteristic time scales and estimate the thermal dif-
fusion constant D of the siloxane elastomer.

To the best of our knowledge, this is the first quantita-
tive study of thermal diffusion in nematic elastomers, as
well as their cantilever bending due to induced inhomo-
geneous strains arising from unilateral radiative heating.
Such controlled and reproducible bending is an important
physical effect underlying many engineering applications.
Perhaps more practically relevant is the photo-induced
cantilever bending, where the local strains are induced due
to the photoisomerization reaction in azobenzene deriva-
tives [11-14,19]. Our experiments on photo-bending, anal-
ogous to the current work, will be reported elsewhere. Nev-
ertheless, thermal bending is a fundamentally important
effect where one tests the details of continuum mechan-
ics, kinetics of local and global response, and the general
understanding of the nematic elastomer state.

We wish to thank A.R. Tajbakhsh for the preparation of
samples, M. Warner for useful discussions concerning the
diffusion equation and C. Picard for assistance in MATLAB
programming.

References

1. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers,
2nd ed. (Clarendon Press, Oxford, 2007).

2. M. Warner, K.P. Gelling, T.A. Vilgis, J. Chem. Phys. 88,
4008 (1988).

3.

4.

5.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

W. Kaufhold, H. Finkelmann, Makromol. Chem. 192, 2555
(1991).

J. Kiipfer, H. Finkelmann, Macromol. Chem. Phys. 195,
1353 (1994).

A.R. Tajbakhsh, E.M. Terentjev, Eur. Phys. J. E 6, 181
(2001).

J. Kiipfer, H. Finkelmann, Macromol. Rapid Commun. 12,
717 (1991).

S.V. Ahir, A.R. Tajbakhsh, E.M. Terentjev, Adv. Funct.
Mater. 16, 556 (2001).

H. Finkelmann, E. Nishikawa, G.G. Pereira, M. Warner,
Phys. Rev. Lett. 87, 015501 (2001).

P.M. Hogan, A.R. Tajbakhsh, E.M. Terentjev, Phys. Rev.
E 65, 041720 (2002).

S.V. Ahir, E.M. Terentjev, Phys. Rev. Lett. 96, 133902
(2006).

M. Warner, L. Mahadevan, Phys. Rev. Lett. 92, 134302
(2004).

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray,
M. Shelley, Nat. Mater. 3, 307 (2004).

Y. Yu, M. Nakano, T. Ikeda, Nature 425, 145 (2003).

N. Tabiryan, S. Serak, X.-M. Dai, T. Bunning, Opt. Ex-
press 13, 7442 (2005).

H. Finkelmann, H. Greve, M. Warner, Eur. Phys. J. E 5,
281 (2001).

S.V. Fridrikh, E.M. Terentjev, Phys. Rev. E 60, 1847
(1999).

A.W. Broerman, D.C. Venerus, J.D. Schieber, J. Chem.
Phys. 111, 6965 (1999).

D.W. van Krevelen, Properties of Polymers, 3rd ed. (Else-
vier, Amsterdam, 1990).

C.L.M. Harvey, E.M. Terentjev, Eur. Phys. J. E 23, 185
(2007).



