Most polymer texts cover thisreasonably well in
outline.

Mor e specialist textsfor reference:

JJ Aklonisand WJ Macknight Introduction to
Polymer Viscoelasticity, Wiley 1983

IM Ward Mechanical Propertiesof Solid Polymers
Wiley

A viscoelastic material is, asthe name suggests, one
which shows a combination of viscous and elastic
effects.

The viscousterm leads to energy dissipation.
Theelastic term to energy storage.
Rate effects arevery important for these materials

For aviscous liquid with viscosity n, the constitutive
equation relating stressg to strain € is

de
o= HE
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Thereisdissipation of energy —and irreversible
shape changes — associated with the flow.

The viscosity can berelated to the diffusion equation.

|f an external forcef on a particle/atom givesriseto a
velocity u then
u= puf where pisthe mobility

Einstein relation gives
u=D/KT where D isthediffusion coefficient

Stokes Law saysfor a particle of radiusa
f=6rmnau

N __KT
= 678D

In general then n and D areinversely related, and as
D increases with temper atur e viscosity decr eases.
|n contrast most solids exhibit pure elasticity

|deal elastic material
o=Ee E isYoung's modulus

Energy isstored as elastic energy.

Material returnsto original shape once stress
removed.

Polymeric liquids, and various solids, have attributes
of both and these are known as viscoelastic materials.
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A constant load isapplied and theresulting strain is
measur ed.

€1 =immediate elastic defor mation

£, = delayed elastic defor mation

€3 = Newtonian flow (i.e. per manent defor mation)

Define creep compliance

J(t) =?

o

so there are 3 components of the creep compliance J;
in gener al associated with the 3 components of strain.

One exception to this is a crosslinked rubber: its
memory effect means that there is no permanent
shape change so that €3 =0 and so Js; also is zero.

Division into J; and J, (or equivalently €, and &)
fairly arbitrary.
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J; and J, sometimes knows as unrelaxed and r elaxed
I eSpONSES.
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A fixed extension (strain) is applied

strain applied
o)
| — time

\\ stress o measur ed

Define stress relaxation modulus

oty =20

€o

If no viscous flow occurs, stressdropsto finite value
at infinitetimes - relaxed modulus.

If thereisviscousflow, stresscan drop to zero.

1. Maxwell Model

AM Donald 5
Viscoelasticity



Spring and Dashpot model
Spring = elastic component

E + Dashpot = viscous component in
series

Define characteristic time T for response

Equation of motion

d¢ _ 1do o
dt E dt n
total spring  dashpot
strain rate

de/dt =0in equatijon of motion
ldo 1
O00=——+—0(t
E dt /70()

do E dt
=—=——dt=—
g n T
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Ino(t) =Ing, -t/ T

o) _

€o

g,
—exp-t/r1

o

E(t) = Eqexp-t/t

At very short times, the Maxwell model behavesas a
simple spring.

Takeslonger for the viscous component to respond.

For t>>T1 stressdropsto zero asonly theresponse of the
dashpot remains.

2. Kelvin or Voigt Model

Spring and dashpot in parallel

n o1
EE— (0)
I VP
E 0o
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de
Total stress o= E£+na

Ina , 0 Isa constant g, so, dividing by
n

g, de

)
_— - 4 —
n ot dt

Can solvefor € with integrating factor expt/t

g(t) = o /E (1-exp-t/)
This model cannot be used for stressrelaxation
experiments, sinceit would requireinfiniteforceto
strain viscous elementsinstantaneoudly.

Both these models aretoo simple.

Next step isto combine them to produce a 'standard
linear solid'.

Thisisan improvement, but thereisstill only one
characteristic time associated with the model.

In general therewill be awhole spectrum of these —for
instance in a polydisper se polymer melt, different chain
lengths respond differently.

Fast chainsrespond faster than long chains.
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So to model a polymer melt properly we might imagine
we need a whole system of standard linear solids each

with itsown T.

Standard Linear Solid (dueto Zener)

_ de_ n., do,
27 Img TE T
0'1 02
Er Em = E e 9E_Mydo
& Iy E, dt
Nm
Add %E to each
o dt
side
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E_ dt dt  E_ dt
de
dt

do de
o+ TE = E &+ TE(Em +E)

| nstantaneous r esponse (¢=0), finite de/dt) —no
response from dashpot

0 modulus=E, + E,

L ong time response, dashpot takes all the strain and E,,
does not contribute

O modulus=E, reaxed modulus

Energy dissipated (in dashpot) a maximum at some
intermediate time.

effective
modulus

Ttime At early and late
times, no

' max dissipation movement in

ation

5o
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dashpot and hence no dissipation.
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To describethe general response of a system, must
allow for details of loading history.

This can be done using the Boltzmann super position
theory.

Boltzmann proposed:

e Cregpisafunction of thewhole sampleloading
history.

« Each loading step makes independent contribution to
total loading history.

» Total final deformation isthe sum of each
contribution.

Q I nput Yt
n
-
i
n
T T T :
1 2 3 Time
In general, for a , iIncrements of stress
do at timest,
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da(u)

&) = I J(t-u)——
For . incremental additions of strain dg
at timest,
de(u
o(t) = [ G(t-u) =

For a steady state shear rate, thiscan berewritten as

o(t) = node/dt Newton's law of

Viscosity

where 7, = [G(t — u)du (by change of variable)
0

Note that thistheory only worksfor small defor mations
—thisislinear viscoelastic theory.

Two types of processes occurring — storage and
dissipation of energy.

L ooking at the analogous situation of L CR cir cuits,
whereV and | areout of phase for oscillating signals,
can anticipatethat for viscoelastic materials, stress
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and strain will be out of phasein dynamic
experiments.

Furthermor e the modulus must be described by a
complex modulus.

|f an alter nation stress/strain isapplied to a
viscoelastic solid, stress and strain are out of phase.

Complex modulus G=G; + G,

Thisisa general description for all viscoelastic
materials.

L et phase angle be &, apply sinusoidal strain

€ = E.eXpin 0 = 0.expi(uwt+0d)
o o :

— =G =—expid

£ £

(0]

In general OG,[k<OG; [

G, representsstressin phase with strain —i.e. energy
stored during defor mation

G, isameasure of energy dissipated/cycle.

Consider energy loss/cycle

2nlw dg

AE =Refode=Re | aadt
0
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de*
dt

or rate of loss/cycle = %Re[a ]

g AE =Te’G,

Phase angle d related to G, and G, by

Measuring the in phase and out of phase components
of theresponse of strain to an imposed stress (or vice
versa) at different frequencies providesthetwo
components of G to be deter mined.

The modulus may vary greatly with frequency/time
scale of the experiment.

Different techniques are used for different
frequencies (see Ward).
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Motion isdamped SHO

rod rigidly clamped at
oneend

cylindrical rod of polymer
radiusr, length |

inertia disc,

- t of inertiall
N moment of inertia
set in oscillatory motion
For thin walled tube, angular strain =r (6/1)
Restoring forcefor rotation © = Gr(0/1) x area
Torque=r Gr (6/1) 2rtrdr
G2m® . Gm*6

d
T 2l

Total torque = |

Equation of motion becomes

4
|é+%(el+iez)9:o

Thisisthe equation for damped SHM with the 8
term being iwé

4
With  @? =n—% and tméz%:

A
2 T
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N\ isthelogarithmic decrement.

Asexpected frequency isdetermined by G, and
damping by G,

This apparatusworksover frequency range 0.01-50Hz.
At higher frequencies wavelength of the stresswaves
becomes compar able with the dimensions of the
specimen.

G1
log G tan| &
I \
7 \
log w
Rubbery Visco- Glassy

elastic
These terms apply to polymer melts, but the
phenomena are much more general.

Tand and G, are both large at intermediate frequencies
in the viscoelastic regime.
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This behaviour isthe same for solidswith any damping
mechanism.

In the case of metals etc thisis sometimes known as
internal friction.

In bce metals, the damping occur s due to movement of
interstitialse.g. Cor Ninairon.

|nter stitials sit at the centres of the cube edges, and
dightly distort thelattice.

When an external stress applied, the energy associated
with the different interstitial sitesisno longer
degener ate.

Under oscillatory stresstheinterstitialswill try to move
to accommodate this.

At high frequenciesthisisimpossible.
At low frequenciesit will occur to completion.
In both these cases stress and strain will bein phase.

However at inter mediate frequencies, around the
natural frequency of interstitial jumping, thereis
significant damping and G; and G, will be out of phase.
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Jumping will bethermally activated and so the
frequency at which damping is maximum will be
temper ature dependent.

Thisisgenerally true.

Using polymer analogy again.
glassy
log G transition

rubbery

temperature

Thisrepresentsthe behaviour over thewhole
temperaturerangeat a given w (or timet).

Alternatively can study at fixed temperature and range

of frequencies w.
Similar shaped curveisfound.

log G

AM Donald . 19
Viscoelasticity timeor 1/w



Experimentally observed that thereisa correspondence
between time and temperature.

Can shift curvesfor viscoelastic properties at different
temperaturesonto asinglecurveat asingle
temperatureto create a

Then
where ar isthe shift factor and given by
_Cl(T _To) -
I = WLF t
ogar C+(T-T) eguation
(Williams-L andel-
Ferry)

and T, isthereferencetemperature.

C, and C, are approximately universal constants
C.:=17.4and C, =51.6K

Notethat ar isnot a function of time, only temperature.

This same equation can be used for any of the
viscoelastic constants including viscosity.

In which case it recoversthe Voge-Fulcher Law.
n(T) = [E(T,t)dt = JE(Ty,t,¢ )it
0 0

= JE(Ty tes Jar Aty = ap7(Ty)
0
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M | _
= Iog(n(Tg)J =logar

T-T,

aswe saw before

On(T) = Aexp

Experimentally the WLF equation isvery important
because it enablestheresponse of a system under a
widerange of conditionsto be described from limited
experimental data.

Theoretically it impliesthat all the timescalesin the
problem scalein the sameway with T.

Theflow of polymersisdominated by long range
motions.

However because of the complexity of chains, there
are many internal motions possible.

These show up in the loss modulus (below T ).
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In the glassy state, local segmental notions not
sufficient to relax the strainsimposed by exter nal
stress, and G, ishigh.

Situation mor e complicated for crystalline polymers,
wher e also have to passthrough T, before bulk flow
occurs.

However remember that polymer chainsare
entangled —so how do they move at all?

At first it wasthought that thiswastoo difficult to
deal with at all, but much progress has now been
made.

De Gennes conceived of the idea of —
moving like a snake (1971).

| deas developed further here by Doi and Edwards.

Seethe book by M Doi and SF Edwards Theory of
Polymer Dynamics 1986, OUP.

Think of the motion of snakesin a nest — constrained
laterally but can move along their length.

Wher e one chain inter acts strongly with another
chain (naively asa simple knot), identify an
entanglement.
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All the surrounding chains provide constraintsfor the
movement of a test chain.

Consider a chain confined in such atube.

The chain can slowly escapethistube asit undergoes
Brownian motion, ther eby creating a new tube.

Mobility g of whole chain = monomeric mobility /N
where N isthe number of monomersin the chain.

Einstein relation D=pkT implies
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_ KT
Dtube =~

If Tistuberelaxation time, ietimelength L of old tube
takesto belost and new length L to be created, then by
random walk

N
D kT

Now L iscurvilinear length of tube/chain] L I\N
And T O N’ (or equivalently M?)

And since nlr,
Thisresult isin contrast to small molecules (ie onesfor
which entanglements and the tube concept do not
apply) for which

TO N

M
S

Q
Iy

In N

Y

molecular weight

Schematically one might expect
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Experimentally the dependencein the entangled regime
isfound to be

n D\N3.4
Origin of discrepancy with ssmpletheory isthought to
liein fluctuations.
If we apply a defor mation to a polymer melt, the
constraints are defor med.

The chain can gradually escape from itstube, to form a
new undefor med tube.

Therelaxation time can therefore be found from
experiment — often known astheterminal time.

in simple reptation theory

Terminal time

T

2] 2

>

5 L

3

c Plateau

S «<«—— modulus
03
ST
1

MW,
L og(time)
MW <MW,

Oncethe chain has completely escaped no further
resistance to defor mation, and hence G drops.
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Alternatively can find the terminal time from the creep
compliance curves.

log J(t)

log t
Aswith rubbers, for which we identified a plateau
modulusinversely related to M, (the MW between
crosslinks), for entangled polymerswe can find an
equivalent quantity — M., the MW between
entanglements— from the value of the plateau modulus.

By analogy with thetheory of rubber elasticity, the
value of G at the plateau:

_ PN,KT
M

e

G
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