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Emergence of polar order and
cooperativity in hydrodynamically
coupled model cilia

Nicolas Bruot and Pietro Cicuta

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

As a model of ciliary beat, we use two-state oscillators that have a defined

direction of oscillation and have strong synchronization properties. By allow-

ing the direction of oscillation to vary according to the interaction with the

fluid, with a timescale longer than the timescale of synchronization, we

show in simulations that several oscillators can align in a direction set by

the geometrical configuration of the system. In this system, the alignment

depends on the state of synchronization of the system, and is therefore

linked to the beat pattern of the model cilia. By testing various configur-

ations from two to 64 oscillators, we deduce empirically that, when the

synchronization state of neighbouring oscillators is in phase, the angles of

the oscillators align in a configuration of high hydrodynamic coupling. In

arrays of oscillators that break the planar symmetry, a global direction of

alignment emerges reflecting this polarity. In symmetric configurations,

where several directions are geometrically equivalent, the array still displays

strong internal cooperative behaviour. It also appears that the shape of the

array is more important than the lattice type and orientation in determining

the preferred direction.
1. Introduction
Motile cilia are highly conserved organelles, present in a wide range of eukary-

otic organisms [1,2]. The periodic beating of these filaments allows very diverse

biological processes, from swimming in unicellular organisms such as the algae

Chlamydomonas reinhardtii to fluid circulation in the human brain ventricles [3],

fallopian tubes [4] and airways [5]. Cilia grow outwards from a structure called

the basal body, which is anchored to a cell’s cytoskeleton [6]. The basal body is

itself generated from centrioles, which are subcellular structures responsible for

microtubular organization. Once fully grown, a cilium transverses the cell’s

plasma membrane extending typically several micrometres out of the cell

body. The interior structure of motile cilia, the axoneme, is in most cases com-

posed of nine exterior microtubular doublets, and two central microtubules,

connected by a well-defined network of motor proteins that slide the micro-

tubules, leading to bending of the entire structure; the mechanisms at work

within cilia have been modelled quantitatively [7] and models to reproduce

the cycle of oscillation have been proposed [8,9]. In the earlier-mentioned mam-

malian examples, the cilia belong to multi-ciliated cells, and there are typically

of order 200 cilia per cell; each cilium is separated by approximately 200 nm.

The same is true and has been explored in the outer surface of various

‘model’ biological organisms, such as Paramecium [10] and the algae colony

Volvox [11] as well as developing embryos of mice [12,13] and Xenopus frogs

[14]. These ciliated cells, together with mucus-producing cells (goblet cells,

in mammals), and ion-regulating cells, form a general tissue type known as

mucociliary epithelium.

In fully developed epithelial tissue, the cilia undergo a periodic sequence of

power and recovery strokes, with the filament roughly contained in a plane per-

pendicular to the plane of the cells. The direction of beating is well-defined

relative to the organ, for example, it is parallel to the trachea in mammalian
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airways. This is essential for the generation of fluid flow,

mucus clearance away from the lungs in this case, which

relies on coordinated beating of cilia to produce transport-

efficient metachronal waves [15]. An open question in develop-

mental biology is to find the rules and the cues that enable this

fairly complex, and well organized tissue, to be made. The first

symmetry to be broken in the development of vertebrates is

the anterior/posterior. For example, the planar cell polarity

(PCP) pathway sets the initial direction in a developmental

stage of the epithelium in Xenopus embryos, a tissue that

includes multi-ciliate cells [16]. From this point on, there are

gradients of a variety of biochemical elements along this

axis. Cells can be polarized, both in the intracellular protein

localization and in their shape. This process happens before

ciliagenesis, and the standard view in biology is that the gradi-

ents in biochemical markers control most, if not all, of the

subsequent organ development. However, once cilia are gener-

ated, they contribute to long-range flows, which can transport

chemical factors directionally, or act as a mechanical cue for

organization [17–20]. Recent results and reviews have been

summarized here, but these questions have been in the

minds of researchers for some time [21].

In the specific case of developing orientational cilia order

in the airway tissue, there is a hypothesis that flow-induced

self-organization might be important. A fraction of the cells

in the tissue that will develop into the airway epithelium

express a few hundred centrioles, which become basal

bodies and grow cilia. At this stage, the cells themselves are

already polarized (biochemically and in shape), but the

basal bodies when they first appear are not oriented. There

have been very recent studies suggesting that the network

of microtubules connecting the basal bodies could couple to

the cell shape or to the emerging tissue architecture, and

possibly orient the cilia [22]. On the other hand, the newly

made cilia are exposed to a directional flow from the

mucus being produced by other cells. These cilia will also

be exposed to the flow that they themselves generate, i.e.

they interact with each other through hydrodynamic inter-

action forces [23]. The question of how are cilia aligned has

also been addressed looking at mouse brain ventricles [24],

where it was shown that cilia first dock apically with

random orientations, and then reorient in a common direc-

tion through a coupling between hydrodynamic forces and

the PCP protein Vangl2.

This paper is an attempt to explore whether the collective

interaction through flow can feasibly explain the very robust

alignment of basal bodies with each other inside each cell,

and also the alignment to the axis of the developing tissue.

It has already been proposed that hydrodynamic interaction

might play a central role in the emergence of a collective

synchronized state of cilia (metachronism) [23,25,26]. Evidence

of the role of flows in determining the orientation of cilia is

present in the experiments in the Xenopus larval skin [17,27]

and in mouse brain ventricles [24], but there is a lack of phys-

ical models to explain this behaviour. Moreover, these

experiments suggest that the positive feedback of the fluid

on the orientation of the cilia is due to an average fluid

flow. We present here an alternative process to explain the

emergence of polar order by hydrodynamic coupling, sup-

ported by simulations and a theoretical argument. This

model does not require an average net flow. Instead, it

involves the time-dependence of the flow generated locally

by each cilium, and is therefore related to the relative phase
differences between the cilia and hence to the shape of the

beating cycle of a single cilium.

In the spirit of a reductionist model, a great number of fac-

tors are either neglected or coarse-grained. This gives us a

simple (albeit intrinsically nonlinear) rule that describes each

cilia element in the model. All the degrees of freedom (the

details) that characterize the structure, the semi-flexible

nature, and the molecular motor drive of the cilia, are coarse-

grained into the rule by which the cilia is moved in the

model. The cilium shape is approximated by a sphere for the

sake of calculating the induced (and perceived) forces owing

to fluid flow; the presence of a solid planar boundary is neg-

lected here, and the liquid is described by a constant viscosity

(Newtonian liquid). All these factors can be developed further

in future work, and, in fact, to match quantitatively with a

given biological scenario, it will be essential at least to adjust

the parameter range (e.g. the distance between units) to more

specific systems and to add realistic fluid dynamics. The

mucus layer in the airway system is spatially stratified [15]

and exhibits a viscoelastic response. Despite all these simplifica-

tions, the model remains very rich: the basic dynamical rule for

each cilium, together with the many-body fluid flow inter-

actions that couple all the active elements with each other,

lead to synchronization in a variety of collective dynamical

behaviour. In the ‘simple’ system, it is possible to test the con-

sequences on the emergent collective state coming from subtle

changes in the forces driving cilia flow, and in the geometrical

placement of the active elements investigating the role of local

structure and boundary conditions.

Other simple models have been considered in recent

years. Synthetic experimental ciliary systems have been

assembled based on filaments of magnetic colloidal particles

tethered to a surface, and driven by magnetic field gradients

[28,29], and these might be a way to drive fluid flow of

mixing in microfluidic channels and cavities. These con-

trolled systems are also well suited to exploring the

hydrodynamics at the local scale [30]. In other models, the

question of synchronization through flow interactions has

been explored [31,32]. It is also worth keeping in mind that

schools of swimming organisms can certainly align to an

external field above a density threshold; self-ordering is

also known in swimmers, but its origin is under debate,

because there are multiple sources of interaction, including

steric and hydrodynamic coupling [33].

Fluid flow at low Reynolds’ number (Re) is reviewed in

[34]. In this regime of lengthscales and velocities, there is

no inertia, and an object’s velocity is directly proportional

to the instantaneous net force acting on it. The flow field

around a spherical object decays as the inverse distance

from the object, at far field and in the absence of boundaries.

As a model for motile cilia, we develop a simple phase oscil-

lator that we studied in previous work to determine the

threshold for hydrodynamic synchronization [35,36] and

the properties of the dynamical collective state [37–40]. In

this model, a configuration-dependent force (‘geometrical

switch’) is applied to a colloidal sphere, generating an oscil-

lation of fixed amplitude but free phase. In this work, we

develop this model, by adding freedom to orient the direction

of the oscillations, in order to look at possible alignment of

several oscillators. This work differs from the theoretical

model studied in [41], where it was shown that alignment

can occur in the direction of an average fluid flow that can

be generated by the cilia themselves. Here, we show that an
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Figure 1. (a) One-dimensional model of oscillator. The colloidal particle is
driven by two traps A and B switching on and off alternately (with harmonic
potentials in this sketch: a ¼ 2). The traps switch when the particle reaches
a distance j from the centre of the active trap, leading to oscillations with a
constant amplitude 2Rg. (b) The oscillator in (a) is modified to allow freedom
in its direction of oscillation u. When the particle is at a radial position
greater than Rf, the trapping constant in the direction orthogonal to u is
set to 0. Furthermore, when the active trap is also in the same direction
as u, the trap will follow the angular position of the particle. The coloured
track of the particle position over a few cycles shows a slow deviation of the
angular position. The trap positions are indicated by the grey lines. (c) Evol-
ution of the active trap’s angle corresponding to the track in (b). The sharp
jumps correspond to trap switches and the slow deviation occurs because of
the allowed freedom between Rf and Rg, just before every trap switch.
(Online version in colour.)

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130571

3

external flow is not a necessary condition for orientational

alignment. Alignment can emerge spontaneously for certain

spatial arrangements of oscillators. We note here that cells

in some systems as, for example, Paramecium show very

regularly spaced cilia, possibly defining axes of alignment,

whereas in the airways, the cilia distribution is more

random within cells, and the distribution of the multi-ciliated

cells themselves is also not completely regular.
2. Model of active oscillators with
orientational freedom

The motion of a single cilium is modelled by a spherical col-

loidal particle driven by an external potential U ¼ k(x 2 x0)a.

In order to actively drive the particle, the centre of the trap x0

is switched alternately between two positions, represented by

the grey lines in figure 1a. When the trap B is turned on, the

bead is driven by the right (blue) potential. When it reaches

a distance j from the trap’s centre, trap B is switched off,

and trap A is turned on, driving the bead in the opposite

direction. The same switching rule applies to the new trap.

This is a realization of a one-dimensional free-phase oscillator

with a constant amplitude 2Rg. We have implemented this

oscillator experimentally with optical tweezers in previous

work by using harmonic driving potentials [35,38,42] and

also with variable potential shapes, described by a variable

power exponent a [40]. It can be assumed here that two

such oscillators display strong synchronization—through
hydrodynamic coupling—provided that a= 1; the emerging

dynamical steady state of a pair is in phase if a , 1 and in

antiphase if a . 1 [40,43].

In order to add freedom in the direction of oscillation of the

above-described oscillator, we allow the particle and the traps

to move in the direction orthogonal to the direction defined

by the centre of trap A and trap B (figure 1b): in the two-

dimensional plane, the bead can move in a disc of radius Rg

and the traps can move on a circle of radius Rg þ j. The angu-

lar freedom is implemented such that the trap moves by

following the angular position of the bead only if (i) the

bead is outside the disc of radius Rf and (ii) it is on the side

of the active trap. When condition (i) is satisfied, the orthog-

onal trapping force is set to 0; otherwise, it is set to a high

value such that the bead is strongly confined along the direc-

tion defined by the traps. The radius Rf defining the boundary

between angular freedom and confinement is a parameter that

controls how much angular freedom is allowed. Condition

(ii) ensures that an orthogonal displacement of the particle

when it is approaching the active trap will not be cancelled

by a possible orthogonal displacement in the opposite direc-

tion just after the trap switched. Figure 1b shows the track of

the particle position of a single oscillator over a few cycles of

oscillation. The direction of oscillation is slightly changing

because of the freedom of rotation when conditions (i) and

(ii) are satisfied. Because the particle is not coupled, in this

figure, to any other oscillator, the direction is only changing

because of free diffusion of the particle. Figure 1c represents

the direction of the active trap. The square-like shape is due

to the switching between traps A and B, and each jump corre-

sponds to an angular change of p. The angular freedom acts

before a trap switch, as a slight change of the trap angle.

Because this work focuses on the alignment of oscillators, all

angles in later figures will be plotted modulo p in order to

remove the square-like shape in the graphs.
3. Alignment of two oscillators
In this section, we study the behaviour of two oscillators, set

apart by a distance d ¼ 10 mm. The simulations shown here

use the same methods as in [40]. In particular, the hydro-

dynamic interaction between the spheres is described by

the Oseen tensor, hence assuming a bulk fluid, and the simu-

lations include thermal noise. Figure 2 shows a simulation

for a ¼ 0.7 and Rf/Rg ¼ 0.5. The other parameters are set

to values characteristic of cilia and are given in figure 2.

The relative state of the oscillators has two features. First,

the oscillations synchronize in phase within a few cycles

(figure 2b; typically four cycles, with the parameters used

in this work). The synchronized state agrees with [43] and

[40]. Furthermore, the directions of the two oscillators con-

verge to 0 rad, as shown in figure 2c. The characteristic

time to converge is, however, much higher than the time to

synchronize: about 12 cycles for Rf/Rg ¼ 0.5.

When varying a and Rf, different behaviours can

be obtained. This is summarized in figure 3 showing the

distribution of the angles (u1, u2) of the active traps for

each oscillator, when running 3000 s long simulations. For

a ¼ 0.7, leading to in-phase oscillations, the angles converge

to (0, 0) for all values of Rf/Rg except 0. When Rf/Rg ¼ 0,

thermal fluctuations tend to randomize the angle of the oscil-

lators each time they cross their centre O1 and O2, resulting in
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Figure 2. (a) Simulated tracks of two beads in oscillators centred on O1 and
O2. The angular positions are coupled by the hydrodynamic interaction
between the two beads, leading to alignment along x. (b) x-Position of
the two beads. The positions oscillate and synchronize in a few cycles.
The amplitude moves slowly because the positions with varying angles are
projected along x. (c) Angle of the trap for each particle. The angle is plotted
modulo p, in order to hide the effect of the traps’ switches. The angles con-
verge to 0, but with a much longer timescale than the synchronization
timescale. In all the figures, unless explicitly specified, most of the parameters
for simulations are matching typical cilia: d ¼ 10 mm, a ¼ 0.45 mm (see
supplementary note in [40]), Rg ¼ 2 mm, Rf ¼ 1 mm, h ¼ 1 mPa s21,
a ¼ 0.7, T ¼ 296 K and k is set such that the frequency of oscillations
is 30 Hz (with no thermal fluctuations).
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a uniform (u1, u2) distribution. This also broadens the peak at

(0, 0) when Rf/Rg � 0. The case of a ¼ 2, which leads to oscil-

lations in antiphase, is more complex. For the same reason as

before, the angle’s distribution is uniform for Rf/Rg ¼ 0.

When this ratio is increased, the distribution shows peaks

at (0, 0) (Rf/Rg ¼ 0.05), a locus of angles avoiding the (0, 0)

alignment (0.2 � Rf/Rg � 0.8) and again convergence to

(0, 0) (Rf/Rg ¼ 0.95). In the middle-range of angular freedoms

0.2 � Rf/Rg � 0.8, the two oscillators do not align. Instead,

the system tends to stay in configurations that minimize

the hydrodynamic coupling between the particles (e.g. the

(0, p/2) configuration).
4. An explanation for the synchronization of
two oscillators

We derive here a model to explain the alignment properties

observed in the simulations above. For the sake of simplicity,

we neglect the Brownian fluctuations to reduce the question

to a problem of convergence of the angles of the two oscil-

lators. The distributions in figure 3 in the middle-range of

Rf/Rg can be explained for both a . 1 and a , 1 by a

simple treatment in which the synchronization of the oscil-

lators and their alignment are considered separately.
The state of an oscillator is described by the position r of

the particle, the angle of the oscillator (in [0, p[) and a vari-

able s ¼+1 indicating the direction along u where the trap

is. The first and third parameters can be merged into a

single parameter, describing the ‘geometrical phase’, f (in

[0, 2p[). Therefore, the state of the oscillator is fully described

by two parameters: f and u.

The evolution in time of f1 and u1 (left oscillator), f2

and u2 (right oscillator) is a complex problem in which the

four variables are coupled. However, in the middle-range

of Rf/Rg, the phase difference f2 2 f1 converges with a

much lower relaxation time compared with the characteristic

relaxation time of the angles u1 and u2. When looking at the

alignment properties of the oscillators, at timescales at which

the directions move, we can assume that the synchronization

of f1 and f2 occurs instantaneously: in-phase, if a , 1 or in

antiphase, if a . 1, as described by the theory for the one-

dimensional version of the oscillator [43]. The solving of the

evolution of the system is reduced to the following question:

how do (u1, u2) evolve in time when the oscillations are

assumed in phase (if a , 1) or in antiphase (if a . 1)?

Starting from an initial condition (u1, u2) of the traps’ pos-

itions when the beads pass O1 and O2, the angles after the

traps switched for both beads become (u1 þ Du1, u2 þ Du2).

It is convenient to introduce here three frames in figure 2a:

ðêx; êyÞ, ðêr1 ; êu1Þ and ðêr2 ; êu2Þ. When the particle i is

approaching its active trap, it will undergo the change of

angle Dui when the particle moves from the position Rf to

Rg. Dui is related to the velocity of the particle vu1 along the

orthogonal direction and to the time t it takes to move

from Rf to Rg in the radial direction:

Dui ¼ si

ðtg;i

t f ;i

dt
vui

r
; ð4:1Þ

where tf,i and tg,i are the instants at which the particle reaches

a radial position Rf and Rg, respectively. si is the variable

describing which of the two traps that is driving the oscillator

i is active: si ¼ 1 if the active trap is in the direction of êr, or

si ¼ 21 if it is in the opposite direction. Between these two

positions, the orthogonal trapping force is zero. Neglecting

thermal fluctuations, the only contribution to vui is from the

hydrodynamic coupling. We describe the coupling with the

Oseen tensor that relates the velocities vi of the particles to

the driving forces Fj acting on them:

v1 ¼ H1;1F1 þH1;2F2;
v2 ¼ H2;2F2 þH2;1F1

�
ð4:2Þ

where

Hi;j ¼

I

6pha
; if i ¼ j;

1

8phd
(Iþ êx êx); else

8>><
>>:

: ð4:3Þ

Here, h is the viscosity, a the beads’ radii and I is the unit

tensor. Equation (4.3) assumes that the two particles are far

away compared with the amplitude of their oscillations 2Rg,

so that the separation between the particles can be approxi-

mated to the constant d êx.

Introducing radial driving forces Fj ¼ Fjêrj in equation

(4.2) and using equation (4.1) leads to:

Du1 ¼ s1s2hruðu1; u2ÞDu0;
Du2 ¼ s1s2hruðu2; u1ÞDu0;

�
ð4:4Þ
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with

hruðu1; u2Þ ¼ cos u1 sin u2 � 2 sin u1 cos u2; ð4:5Þ

and

Du0 ¼
e

g

ðtg

tf

dt
FðrÞ

r
: ð4:6Þ

Here, e ¼ 3a/(4d ), g ¼ 6pha and F(r) is the force from the

driving potential, which has the same shape from U(r) � ra

for the two oscillators, so that

FðriÞ ¼ akðRg þ j� riÞa�1: ð4:7Þ

To write equations (4.4)–(4.6), we assumed that the vari-

ations in angle in a half-cycle are small, so that the function

hru can be put out of the integral in equation (4.1). Writing

the equations to the highest order, the tf,i and tg,i integration

boundaries can also be replaced by generic variables tf

and tg corresponding to the times at which an uncoupled

oscillator would be respectively at positions Rf and Rg, and

r ¼ r(t) � ri(t) corresponds to the radial position of that

uncoupled oscillator. With these approximations, Du0 does

not depend on the angles u1 and u2, nor on the oscillator.

This is a constant that depends on how the angular freedom

is implemented in the model of oscillator. The hru(u1, u2) term,

however, is related to the variation in the hydrodynamic

coupling of a bead moving along the radial direction with

the velocity of the other bead along the orthogonal direction,

depending on the angles of the oscillators.

To go further in the calculation, we need to include that

oscillations are either in phase, if a , 1, or in antiphase if

a . 1. We introduce a variable d, equal to 1 for oscillations

in phase and 21 for oscillations in antiphase. The state of syn-

chronization d determines the sign of the product s1s2 [38].

More precisely,

s1s2 ¼ d signðhrrðu1; u2ÞÞ ð4:8Þ

with

hrrðu1; u2Þ ¼ 2 cos u1 cos u2 � sin u1 sin u2: ð4:9Þ

The quantity gehrr represents the coupling force on bead 1

and projected along êr1 , coming from a radial force acting
on bead 2 along êr2
. Equations (4.4) and (4.8) lead to the

iterative map:

Du1 ¼ d signðhrrÞhruðu1; u2ÞDu0;
Du2 ¼ d signðhrrÞhruðu2; u1ÞDu0

�
ð4:10Þ

This system of equations can be studied by linear stability

analysis for d ¼ 21 and d ¼ 1 (Du0 being positive), by separ-

ating the regions of different signs. Instead, in figure 4, we

simply plot equation (4.10) in the (u1, u2) plane by representing

the evolution of an initial condition (u1, u2) as an arrow cen-

tred on (u1u2) and of direction (Du1, Du2). For a , 1 (d ¼ 1,

figure 4a), the system converges from any initial condition

to (u1, u2) ¼ (0, 0), in agreement with the simulations in

figure 3. For a . 1, in figure 4b, the system moves towards a

position on the locus of points defined by hrr(u1, u2) ¼ 0

(solid lines). However, because the angular speed does not

converge to zero around this line, the system will jump from

one side to the other side of the line. This results in a change

in sign of hrr. Therefore, the oscillations that were in the syn-

chronized state in antiphase before the jump, become in

phase. The system will tend to return to the stable state of oscil-

lations in phase, but, because, the rr-coupling is close to 0

nearby the line, this takes several cycles of oscillations. There-

fore, when crossing the zero-rr-coupling line, the angles will

move away from the line for several cycles, following, for a

while, arrows in the opposite direction as the ones indicated

in figure 4b. Once the system has returned in the synchronized

state in antiphase, the angles will follow the convergence

map for a . 1 again. Therefore, the system constantly oscil-

lates between the two sides of the zero-rr-coupling line,

with a large amplitude, related to how fast the oscillations

converge to the synchronized state. This agrees again with

the simulations in figure 3 in the middle-range for Rf/Rg.

When Rf � Rg, the assumption that oscillations are exactly

in phase or in antiphase becomes wrong, as thermal fluctu-

ations and coupling introduce little delays between the

switches of the traps of the two oscillators. When the delays

become of the order of the time an oscillator spends in the

0.2 � Rf/Rg � 0.8 region, equation (4.8) does not apply.

To summarize, whena , 1, the oscillators align to the direc-

tion of highest synchronization strength (or highest rr-coupling),
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whereas for a . 1, they take orientations that minimize the

synchronization and the system is barely synchronized.
5. Linear array of oscillators
When increasing the number of oscillators, various geometri-

cal configurations can be studied numerically; the resultant

dynamics of the system can be represented by plotting the

angle of each oscillator as a function of time.

Figure 5 shows simulations of 60 oscillators equally

spaced by a distance d ¼ 10 mm along a line (‘chain’ confi-

guration, (a–d )) and a circle (‘ring’ configuration, (e–h)). In

the chain configuration, the angles are measured from the

direction of the line of oscillators, whereas in the ring con-

figurations, the angle of an oscillator is measured from

the tangent to the circle at the position of the oscillator. As

for two oscillators, the cases a ¼ 0.7 (typical for a , 1) and

a ¼ 2 (typical for a . 1) lead to different behaviours. For

a , 1, two neighbouring oscillators tend to be parallel. In

the chain configuration, the system shows a strong alignment

of the oscillators along the direction of the line (ui ¼ 0). In the

more symmetric ring configuration, the oscillators tend to

align tangentially to the circle (ui ¼ 0 again). The alignment
is weaker in the ring configuration, as shown by the width

of the peak in the distribution of the angle displayed as

insets in figure 5 (distributions over time and oscillator

index). In both chains and rings, the oscillators align in the

configuration that maximizes the hydrodynamic rr-coupling.

For a . 1, the graphs are more ‘granulated’: neighbouring

oscillators tend to minimize their coupling, leading to differ-

ent angles between consecutive oscillators. However, the

average distribution shows a single, very wide peak at p/2,

orthogonal to the direction of the line in the chain and

orthogonal to the tangent to the circle in the ring. In all

cases, the thermal noise has little effect on the width of the

peaks in the angle distribution for the parameters used here.
6. Two-dimensional arrays of oscillators
Cilia in biological systems are usually arranged on two-

dimensional carpets rather than chains or rings. To capture

this, rectangular Nx � Ny arrays of about 64 oscillators with

square and hexagonal lattices are simulated. Figure 6 shows

phase angles for two lattices, with T ¼ 296 K. The distance

between neighbouring oscillators is kept the same between

the two lattices, and only simulations for a , 1 are shown,

because a . 1 does not display strong alignment properties.

The angles are measured from the x-axis, and the oscillators

are indexed as indicated in figure 6a,d. The first result is

that the oscillators show a cooperative behaviour, and tend

to align with the same angle at a given time in the four con-

figurations studied. This is even visible in the highly

symmetric 8 � 8 square lattice simulation that shows no pre-

ferred average direction of oscillation. The second result,

shown by the angle distributions in the insets, is that except

for the 8 � 8 square lattice simulation (figure 6b), the

system has a preferred direction of either 0 or p/2 rad.

The preference for one direction could have two origins: the

boundary conditions (shape of the surface covered by

the array), or the type (square or hexagonal) and orientation

of the lattice. The surface of the array is an Nxd � Nyd rec-

tangle for the square lattice and an Nxd� ð
ffiffiffi
3
p

=2ÞNyd
rectangle for the hexagonal lattice. Therefore, the rectangular

surface is stretched along y in (c) and ( f ), stretched along x in

(e) and a square in (b). It follows from the angles distributions

that the oscillators align along the direction of stretching of

the array, which is a configuration of higher rr-coupling

than the other axis of the rectangle. This behaviour is inherent

to the higher hydrodynamic coupling in the Oseen tensor in

the x-direction (3a/(2d )) than y direction (3a/(4d )), for two

particles at positions on the êx axis. The type of the lattice

has a negligible effect on the alignment compared with the

aspect ratio of the array.
7. Discussion and conclusions
We implemented a model oscillator that has the ability to

change its direction of oscillation (the beating plane), and

aims to describe the collective behaviour of multiple cilia sub-

ject to hydrodynamic interaction. The oscillation direction is

free: on each cycle, it adjusts by an angle proportional to

the velocity of the fluid flow projected orthogonally to the

oscillator. While we do not discuss how this freedom is

allowed in real cilia, many models can lead to a such

response of the angle to an external flow. We chose a specific
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model in order to calculate its emergent properties, but the

details of how angular freedom is implemented are not

crucial to the results: the quantity Du0 in equation (4.6)

depends on the details, but this enters as a constant in

equation (4.4), setting the amplitude of the response to the

flow. It is the structure of this equation that underlies our

results, so other ways to implement flexibility would lead

to similar conclusions as the ones we draw in this paper.

The alignment properties of a system of oscillators depend

on the details of the driving force, which are matched very

simply to the synchronized state of a system of two oscillators.

In this paper, the synchronized state is tuned by the parameter

a, which characterizes the driving force, and is either in phase

or in antiphase. An empirical rule, that emerges from all the

simulations in this paper, is that a given configuration of oscil-

lators tends to put itself in angular configurations of highest

(for in-phase synchronization) or lowest (in antiphase synchro-

nization) coupling (in absolute value) between the oscillators,
projected along their directions of oscillation (rr-coupling).

This rule is confirmed by a theoretical model in the case of

two oscillators, for which, the locus of maxima of jhrrj is

reduced to a single point (u1, u2) when a , 1, and the locus

of minima is a curve when a . 1. For that reason, and because

synchronization tends to be lost near the zero-rr-coupling line,

only oscillators with an in-phase stable state display strong

alignment. This study provides a link between the beating

pattern of the cilia (widely believed to determine the synchro-

nized state) and the orientation in arrays of cilia. It is

interesting to note here that ‘real’ cilia actually beat in phase

with their neighbours. This makes the case a , 1 more rel-

evant for cilia, and the study shows that it is the case that

leads to alignment. We also suggest that the loss of polar

order in motile mutant cilia could be due to a modified driving

potential acting on them.

While we do not define precisely what ‘highest’ and

‘lowest’ coupling means in a system of more than two
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oscillators, simulations with large number of oscillators seem

to confirm a similar rule that could be used to predict the

state of alignment of a system. We speculate that the rule is

related to how the relaxation times of the normal modes of

oscillation depend on the angles, as the normal modes already

play a key role in determining the state of synchronization,

when no angular freedom is added [38]. In addition, in an

array of cilia, the synchronized state as a metachronal wave

can be seen as a state minimizing the energy required for the

beating [25]. Similarly, the rule aligning the oscillators could

therefore be related to a problem of energy minimization

or maximization.

Alignment properties in large arrays is described both

in terms of cooperative behaviour between oscillators and

in estimations of the preferred direction of oscillation

(if any). The rule sets conditions on both properties. States

with all oscillators aligned in the same direction at a given

time have high rr-coupling and are therefore seen in all the

simulations for a , 1, leading to high cooperativity bet-

ween the oscillators. Non-symmetric configurations such as

chains of oscillators or rectangular arrays also tend to confine

the angles in a particular direction, which is the direction

in which the system is elongated. In two-dimensional

arrays, the type of lattice could also affect the alignment of

oscillators. However, it appears that in arrays of below

approximately 100 oscillators, the effect of the shape of the

array is more important than the lattice to determine

the preferred direction of oscillation.

In this paper, we have used parameters close to motile

cilia conditions. The size of the array varies a lot with the bio-

logical system: thousands of cilia can be arranged in a dense

array such as in the alga Volvox carteri [11], or in Paramecium
[44]; or a few hundred cilia can be packed on the surface of a

multi-ciliated airway cell, this cluster interacting with the

clusters on other cells in the tissue [18]. In all these cases,

the boundary conditions could have a determinant role in

the choice of the direction of alignment.

A quantitative connection to the biological question of how

airway epithelium gains its full organization in development

(once cells are elongated) will clearly need further develop-

ment of this or related models. In this biological system, the

cells are elongated along the proximal/distal axis, conferring

polarity to the airway tissue as a whole, and the cilia within

each cell become aligned to each other. Furthermore, they

become aligned with the tissue axis. The main aspects that
have been neglected in our model are the likely viscoelastic

properties of the fluids, and the effects on the fluid flow

due to the planar surface on which the cilia are anchored.

Adding a surface changes the form of the velocity decay

away from a cilium (and hence the hydrodynamic coupling

between pairs) from 1/r in bulk to 1/r3 with r the distance

between the two particles. While this is not expected to

change much our results on the alignment of two oscillators,

because the distance between the beads stays almost con-

stant, it does change the hydrodynamic coupling from a

long-range interaction in bulk to a shorter range interaction

in the presence of a surface. In addition, as a consequence

of the small size of cilia, the Brownian motion leads to

non-negligible fluctuations of the phase of the oscillators.

However, the simulations with a large number of oscillators

suggest that the thermal noise is irrelevant when looking at

the alignment properties of the oscillators.

The current model and the behaviour highlighted in this

paper show that hydrodynamic coupling is able, at least in

principle and qualitatively, to lead to orientation of active

oscillators, and that the resulting collective dynamical state

responds to the symmetry of the shape of the array (sym-

metry of the boundary condition). The case of two-

dimensional arrays with cilia described by a driving force

with a , 1 could explain how cilia distributed on the surface

of an elongated cell align with each other, and pick the axis of

stroke from the cell’s elongation. In this speculative scenario,

the microtubule networks which link the basal bodies within

the cells, and are seen to correlate with polarity [16], might

act to freeze in place the orientation of the basal bodies.

The study here proves the possibility of spontaneous

alignment, in the absence of an external flow. Various ciliated

tissues (described in §1) initially develop in the absence of

flow. The presence of a directed external flow (which is

possible in some systems, such as the developing airways)

would be an even stronger aligning factor. In general, the

importance at various stages of development of flow and

mechanical force transduction, which are undeniably present

between cilia, remain an open question clearly requiring

multidisciplinary approaches.
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