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Abstract
Particles floating at the surface of a liquid generally deform the liquid surface. Minimizing the
energetic cost of these deformations results in an inter-particle force which is usually attractive
and causes floating particles to aggregate and form surface clusters. Here we present a
numerical method for determining the three-dimensional meniscus around a pair of vertical
circular cylinders. This involves the numerical solution of the fully nonlinear Laplace–Young
equation using a mesh-free finite difference method. Inter-particle force–separation curves for
pairs of vertical cylinders are then calculated for different radii and contact angles. These
results are compared with previously published asymptotic and experimental results. For large
inter-particle separations and conditions such that the meniscus slope remains small
everywhere, good agreement is found between all three approaches (numerical, asymptotic
and experimental). This is as expected since the asymptotic results were derived using the
linearized Laplace–Young equation. For steeper menisci and smaller inter-particle separations,
however, the numerical simulation resolves discrepancies between existing asymptotic and
experimental results, demonstrating that this discrepancy was due to the nonlinearity of the
Laplace–Young equation.

(Some figures may appear in colour only in the online journal)

1. Introduction

An object at an otherwise planar liquid–fluid interface can
distort the interface either by imposing height variations
along a three-phase contact line or by imposing a non-zero
derivative condition on the interface along this contact line.
The first scenario is observed when the contact line is pinned
to an object, whilst the second scenario is observed when the
interface must deform to satisfy a contact angle condition.
As a result of these deformations, two or more objects
at an interface are subject to surface-mediated ‘capillary
interactions’ [1]. For floating particles, a large component of
the interfacial deformation may be caused by the requirement
that the vertical force components (including the particle’s
weight) must balance. The lateral force that results from such
a deformation is therefore often referred to as a ‘flotation
force’ in the literature [2] and is the mechanism behind the
‘cheerios effect’ [3]. Non-floating particles do not need to
satisfy a vertical force balance condition; the lateral capillary

force that results from interfacial deformation is usually
referred to as an ‘immersion force’ [2]. Flotation forces are
observed and exploited in a range of biological systems from
‘meniscus-climbing’ in Mesovelia [4] to pattern formation
in floating mosquito egg rafts [5], while immersion forces
explain some features of the collective motion of nematode
worms [6]. Humans too are learning to exploit both flotation
and immersion forces, particularly as a way of self-assembling
complex structures [7, 8].

The strength of the capillary interaction between two
interfacial objects depends on the shape, size and surface
properties of the objects in question as well as, in the case
of flotation forces, their weight. Analytical and numerical
solutions are straightforward only in some limiting cases,
which we discuss in detail below. In this paper we study
the immersion forces between a pair of vertical cylinders—in
some sense this is the simplest possible setup. However, we
relax two of the simplifying assumptions usually made in
asymptotic studies of this system; we do not require the

10953-8984/12/284104+08$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/28/284104
http://stacks.iop.org/JPhysCM/24/284104


J. Phys.: Condens. Matter 24 (2012) 284104 H Cooray et al

Figure 1. A pair of vertical cylinders at a liquid–fluid interface interact due to capillary forces, when one of the fluid phases preferentially
wets the solid. Boundary conditions around the two cylinders are shown, and the notation is discussed in the text.

surface gradients to remain small and we allow the cylinders
to have a centre–centre separation that is comparable to their
diameter. Calculating the interaction force in this simplified
geometry is a first step towards finding the interaction force
in more complex systems, but is also of interest in its own
right: the capillary force between vertical cylinders has been
measured experimentally using a torsion microbalance [9,
10] and, whilst generally agreeing with existing asymptotic
expressions for the force [11], revealed some significant
discrepancies. In this paper we demonstrate that these
discrepancies can largely be attributed to the simplifications
made to facilitate analytical progress.

Theoretical expressions have been derived for capillary
interactions between fixed vertical cylinders [11], between
floating spheres [12] and between capillary multipoles [13].
However, these expressions have limited validity since they
are based on the solution of the linearized Laplace–Young
equation for the shape of the interface between the objects
and in some cases [12] also use linear superposition of
the interfacial shape around a single object. These two
approximations can be relaxed by solving the fully nonlinear
Laplace–Young equation numerically. Previously, the finite
difference method has been used to provide these numerical
solutions [14]. However, it was reported that the numerical
solution obtained in this manner was very slow, and the most
interesting cases of complete wetting and small inter-particle
separations (for which the meniscus slope is expected to
be largest and hence the validity of the asymptotic results
most limited) were not studied. Indeed, for the range
of parameters considered in [14] no significant deviation
between the numerical solution and the asymptotic results
was observed. In this paper, we discuss an implementation
of the hp-meshless cloud method [15], which is a mesh-free
finite difference method. This method is chosen here for its

versatility and allows the iterative solution of the nonlinear
Laplace–Young equation even for conditions of complete
wetting and for objects at very close range.

2. Theoretical setting

We consider two vertical cylinders with radii R1, R2
and contact angles θ1, θ2 that pierce an otherwise planar
liquid–fluid interface. This scenario is shown in figure 1.
The planar interface is disturbed by the presence of the two
cylinders because of the requirement that the interface obeys
a contact angle condition at the surface of the cylinders. The
height of the liquid interface is given by

z = ζ(x, y) (1)

with z = 0 representing the undisturbed liquid level.
The shape of the meniscus, ζ(x, y), is described by the
Laplace–Young equation, which relates ζ(x, y) to the mean
curvature κ by balancing the hydrostatic pressure in the liquid
with the pressure jump due to the interfacial curvature [16].
Mathematically we may write

ζ = `2
cκ. (2)

Here the capillary length `c is defined by:

`c =

√
γ

1ρg
, (3)

where γ is surface tension and 1ρ is the density difference
between the two fluids. In Cartesian coordinates, the
interfacial curvature κ is given by [14]

κ =
ζxx(1+ ζ 2

y )+ ζyy(1+ ζ 2
x )− 2ζxζyζxy

(1+ ζ 2
x + ζ

2
y )

3
2

. (4)
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For a meniscus near a vertical cylinder, the appropriate
boundary condition is a fixed contact angle θ . As illustrated in
figure 1, this boundary condition is simple to describe verbally
but is non-trivial to express mathematically: first we define t
as the running tangent to the contact line, n as the running
outward normal to the cylinder wall and b as the binormal to
t and n. Then the contact angle is set with respect to the plane
containing n and b [11]. If γ̂ is the unit tangent to the liquid
interface on this plane and b̂ is the unit binormal, then the
contact angle boundary condition reads

b̂ · γ̂ = cos θi (5)

on the surface of cylinder i.
The solution of the Laplace–Young equation (2) subject

to the boundary condition (5) on the surface of each cylinder,
and the requirement that ζ(x, y) → 0 as x, y → ±∞, is
sufficient to determine the meniscus profile ζ(x, y) for a
particular cylinder separation d and given cylinder radii R1,2
and contact angles θ1,2.

The quantity of most interest in this paper is the lateral
interaction force F between the cylinders, i.e. the force that
must be applied to each cylinder to maintain a particular
separation d. In general, we expect that the two cylinders will
be attracted to one another (so that F > 0) but we shall see
that there are circumstances under which a repulsive force
exists at large separations. Once the shape of the meniscus
is known, the component of the force of attraction due to
surface tension can be calculated by integrating the force due
to surface tension around the contact line, as suggested in [11].
The surface tension force acting on a cylinder is given by

Fγ =
∮
γ ds. (6)

Here γ is the surface tension force acting along an
infinitesimal arclength ds along the contact line, and ds is
given by

ds = χ dα (7)

where χ is defined by

χ =

√
R2

k +

(
∂ζ

∂α

)2

, k = 1, 2, (8)

and α is the angle between the x-axis and the line joining
the centre of the cylinder to a point on the contact line (see
figure 1).

The vector γ can be decomposed as

γ(i) = γ (b̂ cos θi + n̂ sin θi), i = 1, 2. (9)

If ex, ey and ez are unit vectors along the x, y and z directions,
respectively, then

n̂ = cosαex + sinαey; (10)

t̂ =
1
χ

(
Rk sinαex − Rk cosαey −

∂ζ

∂α
ez

)
; (11)

b̂ = n̂× t̂ =
1
χ

(
−
∂ζ

∂α
sinαex +

∂ζ

∂α
cosαey − Rkez

)
. (12)

Substituting into equation (9), the x component of γ becomes

γ (i)x = γ

(
−
∂ζ

∂α

1
χ

sinα cos θi + cosα sin θi

)
. (13)

Combination of equation (13) with equations (6) and (7) gives

F(i)γ,x = γ
∫ 2π

0

(
−
∂ζ

∂α
sinα cos θi + χ cosα sin θi

)
dα. (14)

In addition to the force from surface tension, a
force also acts on each cylinder due to the variations in
hydrostatic pressure around the cylinder. This force arises
from the differences in liquid level around the cylinder. The
x-component of this force is given by

Fp,x = 1ρgRk

∫ 2π

0

1
2ζ

2 cosα dα. (15)

Then the total force of attraction between the two cylinders is

Fx = F(i)γ,x + F(i)p,x. (16)

It should be noted that F(1)γ,x and F(2)γ,x are not necessarily equal.
However, the total force given by equation (16) is the same for
both cylinders according to Newton’s third law.

The above approach is used to calculate the force of
interaction from the numerical solution for the meniscus
shape. The force can also be calculated using an energy
approach, as used in the asymptotic solutions discussed in
section 3. This approach is discussed in detail in [11]. If
the total energy of the system is E and the inter-particle
centre-to-centre distance is d, then the inter-particle attractive
force is given by

F =
dE

dd
. (17)

The interaction energy E comprises three components as
shown below:

E = 1ρg
∫

Sp

1
2ζ

2 dS+
2∑

k=1

(γ
(k)
sl − γ

(k)
sv )

×

∫ 2π

0
ζ(α, k)Rk dα + γ

∫
Sp

√
1+ ζ 2

x + ζ
2
y dS. (18)

In equation (18), the first term represents the gravitational
potential energy of the fluids, the second term is the interfacial
energy between the walls of the cylinders and each of the two
fluids, and the third term is the interfacial energy between
the two fluids. Here Sp is the projected area of the fluids to

the horizontal plane, γ (k)sl is the surface tension between the

cylinder k surface and the lower liquid, γ (k)sv is the surface
tension between the cylinder k surface and the upper fluid,
ζ(α, k) is the height of the contact line around cylinder k
where α is the angle measured around a cylinder.

3. Existing asymptotic results

3.1. Some simplifications

There are two asymptotic limits in which the interaction force
between two cylinders can be solved analytically, as described

3
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below. In both of these limits, the problem is simplified
by linearization of the Laplace–Young equation so that the
interfacial deformation is approximately given by

ζ = `2
c∇

2ζ. (19)

This approximation is valid when the meniscus slopes are
small:

∂ζ

∂x
� 1,

∂ζ

∂y
� 1. (20)

When calculating the energy of interaction in certain
asymptotic limits, it is furthermore expedient to neglect the
gravitational energy of the liquid in equation (18) compared to
other energies. This approximation is expected to be valid for
small cylinders R1,R2� `c. We note that although we neglect
the gravitational energy in the asymptotic results that follow,
our numerical simulations (discussed below in section 4) do
not neglect this energy.

However, it is also important to emphasize that the
inclusion of the term linear in ζ in (19) is important in the
asymptotic results that follow since it is this term that ensures
that the interface decays to the undisturbed level far from the
cylinders —something that the solution to Laplace’s equation
∇

2ζ = 0 is unable to do.

3.2. Long-range asymptotic solution

If the separation of the two cylinders d is large compared to
the capillary length `c, we may consider the meniscus around
a single cylinder and, assuming that the individual menisci
may simply be superposed, calculate the increase in surface
energy that results from their interaction. This is the dominant
energy that leads to the force of interaction.

A detailed solution of the meniscus shape around a single
cylinder was presented by Lo [17]. Far away from the cylinder
(compared to the capillary length `c) it is convenient to write
the linearized Laplace–Young equation (19) in cylindrical
polar coordinates to give the interface shape ζ(r) as the
solution of

ζ =
`2

c

r

d
dr

(
r

dζ
dr

)
, (21)

where r is radial distance measured from the centre of the
cylinder. The solution of this equation that decays as r→∞
is

ζ(r) = AK0(r/`c), (22)

where K0 is the modified Bessel function of the second kind
of zeroth order [18]. In the limit R � `c we may determine
the constant of integration A as follows. The weight of liquid
lifted up within the meniscus is

W = 2π1ρg
∫
∞

R
rζ dr

= 2πγA
R

`c
K1(R/`c) ∼ 2πγA (R� `c). (23)

Using the generalized Archimedes’ principle [19] this weight
must be supported by the force of surface tension acting

around the contact line, which in this case is 2πR × γ cos θ .
Hence we find that A = R cos θ . We note that this result
may also be obtained by careful matching of the profile from
equation (22) with the meniscus shape near to the cylinder
for which the slope cannot necessarily be assumed to be
small [17].

Assuming that the two cylinders are sufficiently far apart
from one another (i.e. that their separation d � `c) then we
neglect the first and last terms of equation (18) and expect that
the energy of interaction will simply be the increase in surface
energy caused by the change in the height of the meniscus
on cylinder 2 due to the meniscus of cylinder 1 (and vice
versa). This energy is larger than the increase in gravitational
potential energy of the meniscus due to the same effect and
the change in energy of the liquid–fluid interface, provided
that R1,2 � `c. Since this energy of interaction 1E is caused
by a solid–vapour interface being replaced by a solid–liquid
interface we expect that the difference in the surface energies
of these interfaces on cylinder 2, γ (2)sl −γ

(2)
sv , will be important

and so we have

1E = 2πR2[γ
(2)
sl − γ

(2)
sv ]ζ1(d).

Using Young’s law γ
(2)
sl −γ

(2)
sv = −γ cos θ2 and equation (22)

for the meniscus profile ζ1, we find that

1E = −2πγR1R2 cos θ1 cos θ2K0(d/`c). (24)

The force of attraction F is given by F = dE/dd and so we
have that the force of interaction between the two cylinders is

F =
2πγR1R2

`c
cos θ1 cos θ2K1(d/`c). (25)

This result is given by several authors (see for example [2])
and can be derived more formally. However, the result
equation (25) remains unchanged.

3.3. Short-range asymptotic solution

Kralchevsky et al [11] developed another analytical solution
for a pair of cylinders in the opposite limit in which the
inter-particle distance is small compared to the capillary
length: d � `c. Instead of linear superposition, the linearized
Laplace–Young equation is solved in bipolar coordinates
(τ, σ ) for the meniscus around two vertical cylinders. We do
not repeat this involved calculation here but merely note the
final result for the force between two identical cylinders:

F =
2γπR2cos2θ
√

d2 − 4R2
. (26)

We note that equation (26) is strictly valid only in the limit
R� d � `c and so

F ≈
2γπR2cos2θ

d
,

which is precisely the d � `c limit of the long-range force
law equation (25). To make best use of this observation,
Kralchevsky and Nagayama [2] pose the composite expansion

F =
2πγR1R2

`c
cos θ1 cos θ2K1(d/`c) (R� `c). (27)

4
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4. Numerical solution

Using numerical methods it is possible to solve the full
nonlinear Laplace–Young equation equation (2) without the
simplifying assumptions needed to make analytical progress.
However, this requires a careful choice of numerical method.
We first attempted to implement a standard finite difference
method based on a uniform Cartesian grid. This did not yield
satisfactory results for two main reasons: (a) the mismatch
between the square grid and the exact circular boundary and
(b) uniform grids are inefficient at simultaneously dealing
with the rapid change in interface shape near the cylinder
and slower change further away—it is better to have a
fine mesh there, which gradually coarsens towards the outer
boundary. The hp-meshless cloud method [15], which we
have implemented in Matlab, eliminates both of these issues.
It does not require a regular grid, but only a collection of
nodes. These nodes can easily be positioned on the domain
boundaries (the cylinders) with nodes within the domain
distributed initially on concentric circles, centred at the centre
of each cylinder (these circles are clipped along the centre-line
between the two circles to avoid them intersecting one
another). Furthermore, the radii of the grid circles are selected
in such a way that the node density decreases exponentially
with distance from the cylinders.

The nonlinear terms in the Laplace–Young equation are
handled using an iterative scheme. The meniscus height at the
(N − 1)st iteration is used to give estimates of the nonlinear
terms. This allows a linear equation for the meniscus height at
a particular point for the Nth iteration to be written, namely

ζ [N] = `2
c{ζ
[N]
xx (1+ ζ

2
x )
[N−1]

+ ζ [N]yy (1+ ζ
2
y )
[N−1]

− 2ζ [N]xy (ζxζy)
[N−1]
}{[(1+ ζ 2

x + ζ
2
y )

3
2 ]
[N−1]
}
−1. (28)

It is also necessary to modify the boundary condition
equation (5) so that the relevant nonlinearities are handled by
a similar iterative procedure. If ŝ is the outward unit normal
to the liquid surface from the contact point along the plane
containing b and n, it can be deduced from equation (5) that

n̂ · ŝ = cos θi. (29)

Now

{ŝ} = −{ζx, ζy,−1}
/√

ζ 2
x + ζ

2
y + 1 , (30)

and we may write n̂

{n̂} = {nx, ny, 0} (31)

since n̂ lies in the horizontal plane. Equation (29) can then be
expressed as:

ζxnx + ζyny = − cos θi

√
ζ 2

x + ζ
2
y + 1, (32)

which may in turn be converted to an iterative equation

[ζxnx + ζyny]
[N]
= − cos θi

[√
ζ 2

x + ζ
2
y + 1

][N−1]
. (33)

For each node in the domain, a ‘star’ of nearby nodes
is selected. This is done by dividing a large circle drawn

Figure 2. Numerical solution for the shape of the three-dimensional
meniscus near two cylinders with R1 = R2 = 365 µm,
d = 1150 µm and complete wetting (θ = 0◦) in a solution matching
the properties of experiments in [9]: SDS solution with
γ = 36.8 mN m−1 and 1ρ = 1000 kg m−3, so that `c = 1.9 mm.

from the central node into equal sections, and selecting an
equal number of nodes from each section. Using the moving
least squares (MLS) approximation [20], all the derivatives
needed for the iterative scheme described by equations (28)
and (33) may be determined as linear combinations of the
values of ζ at the nodes in the star. This determination
of the linear combinations is slightly more complex if a
star contains nodes on the cylinder boundaries. In this
case, the stars are not properly balanced. To avoid this,
an additional degree of freedom is given for the boundary
nodes, as recommended in [15]. This is done by adding
equation (33) into the MLS approximation. Using these
linear combinations, equation (28) may be expressed for each
node, yielding a system of linear equations for the whole
domain, which can be expressed as a matrix equation. The
solution of this matrix equation amounts to one iteration of
equations (28) and (33). The addition of equation (33) to
the MLS approximation makes sure that the boundary nodes
satisfy both the boundary condition and the Laplace–Young
equation.

This iterative scheme is continued until the maximum
difference between the liquid levels in two consecutive
iterations is very small (i.e. of the order of 10−13 m). Starting
from an initially flat interface (corresponding to θ = 90◦), the
contact angle was gradually changed from 90◦ to the desired
contact angle. The final converged solution of equations (28)
and (33) is the equilibrium shape of the meniscus. A typical
interface shape, showing the meniscus height calculated at
each node point, is presented in figure 2. With this converged
meniscus shape, the force of interaction was determined by
integration along the three-phase contact lines as described by
equations (6)–(16).

5
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Figure 3. (a) Force of attraction between two identical hydrophilic cylinders with θ1 = θ2 = 0◦ and R1 = R2 = 365 µm in a solution of
SDS with γ = 36.8 mN m−1, 1ρ = 1000 kg m−3 so that `c = 1.9 mm. Experimental results from [9] (�) are shown along with predictions
from the full numerical solution described here (•) and the asymptotic result equation (27) (solid curve). (b) Force of attraction between two
similar, but not identical, hydrophilic cylinders with θ1 = θ2 = 0◦, R1 = 315 µm and R2 = 370 µm in the same SDS solution as in (a).
Experimental results from [10] (♦) are shown along with predictions from the full numerical solution described here (•) and the asymptotic
result equation (27) (solid curve).

Figure 4. The asymptotic solution equation (27) (solid curve)
agrees with numerical simulations for R� d � `c (points). Here
R1 = R2 = 5 µm, θ1 = θ2 = 0◦ and the liquid properties are those
for an air–water interface (i.e. γ = 72.4 mN m−1 and
1ρ = 1000 kg m−3 so that `c = 2.7 mm). The cylinder diameter
here is 2R ≈ 3.7× 10−3`c.

If the iterative scheme failed to converge, the collection
of nodes was refined by adding more nodes in the areas of
maximum error, according to the h-adaptive method proposed
in [21]. The minimum distance from the centre of a cylinder
to the edge of the domain was 7`c, and a typical domain
contained 6000–9000 nodes.

5. Results and discussion

Figures 3(a) and (b) show the attractive capillary force
between two perfectly wetting cylinders (i.e. θ = 0◦). Over
the whole range of available experimental data, the numerical
solution agrees very well with experiments [9]. In addition,
the asymptotic solution (27) agrees with both the numerical
solution and experiments at large inter-particle separations, as
expected. However, when the two cylinders are close to one
another, the experimental data deviate from this asymptotic
solution. We attribute this discrepancy to the fact that at such
small separations the meniscus slopes are large, invalidating

the linearization of the Laplace–Young equation made in
the derivation of equation (25). The high meniscus slopes
present for these parameter values are clearly illustrated in the
numerically generated meniscus profile shown in figure 2.

It is well known that the meniscus around a single very
small cylinder (R � `c) decays over a distance comparable
to the cylinder radius R, rather than the capillary length
`c [17]. Because of this we expect that the asymptotic force
law equation (27) should be valid for cylinder separations d
satisfying R� d. To confirm this expectation, figure 4 shows
the results of numerical solutions in this regime. We observe
that as d → 2R the asymptotic result equation (27) breaks
down because of the large meniscus slopes (as previously)
but that for d � R the asymptotic expression is perfectly
adequate.

As a more compelling demonstration of the predictive
power of our numerical method in comparison to the
asymptotic result equation (27), figure 5 shows the interaction
force between a hydrophilic and a hydrophobic cylinder. In
this situation, the asymptotic result is able to predict the
long-range repulsive force that is observed experimentally
(F < 0). However, it is completely unable to reproduce
the fact that this repulsion changes sign and becomes a
short-range attraction when the cylinder separation becomes
of the order of their radii. A physical explanation of this
transition to attraction was given by Poynting and Thomson
for two vertical plates and is repeated, along with illustrative
calculations, in [3].

The effect of the contact angle on the difference
between the numerical results and the asymptotic result
equation (27) is considered in figure 6. The results show that
the deviation is highest at the steepest meniscus, θ = 0◦. This
is expected because the steeper the meniscus, the larger the
error introduced by linearizing the Laplace–Young equation.
However, it can also be observed that even at a contact angle
of 85◦, which leads to a very small meniscus slope angle at
the edge of the cylinders, there is a significant deviation from
the asymptotic prediction when the two cylinders are close to

6
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Figure 5. Force of interaction between two dissimilar cylinders,
matching the experimental conditions of [10]: one cylinder is
hydrophilic and the other hydrophobic, held in water with
γ = 72.4 mN m−1, R1 = 370 µm, R2 = 315 µm and θ1 = 0◦ (the
value of θ2 is not reported). Numerical results (•) are shown together
with the asymptotic prediction equation (27) (solid curve) with the
value θ2 = 101.5◦. The numerical simulation is able to reproduce
the reduction in repulsive force observed at short ranges in the
experimental results (♦) of [10] and shows that the force becomes
attractive at very short range. According to [10], the long-range
asymptotic result agrees best with experiments when θ2 = 99◦.
However, carrying out the numerical solution for a range of θ (with
increments of 0.5◦), we found that the best match is for θ2 = 101.5◦.

one another. Comparison of results for cylinders of different
radii (figure 6(a) versus (b)) suggests that there is a larger
discrepancy between the asymptotic and numerical results as
R increases. This is because the asymptotic prediction for the
meniscus height equation (27) is derived under the assumption
that R� `c, and breaks down as R approaches `c.

Finally, we discuss the validity of approximating the
true force law by a power law. Such approximations
are of considerable use in more complex scenarios, most
notably when attempting to understand the dynamics of
aggregation [3, 12, 22]. Based on the composite asymptotic
expansion equation (27) it is common to use the well-known

Figure 7. The force law is in general not well approximated by a
power law. Here, the local power-law exponent is determined as the
logarithmic derivative of the numerically determined force with
respect to distance. We consider pairs of identical cylinders with
θ = 0◦, and a variety of radii: R = 0.0026`c (�), R = 0.01`c ( ),
R = 0.11`c ( ), R = 0.16`c (•), R = 0.26`c ( ). The result
expected on the basis of the asymptotic solution equation (27) is
shown for comparison (solid curve) and demonstrates the
oft-assumed exponent of −1 in the limit d � `c.

result [18] that K1(x) ∼ x−1 for x � 1 to obtain F ∼ d−1

for d � `c. Figure 7 shows the effective power-law exponent
determined from the numerical simulations presented in this
paper. We observe two features of this power-law exponent:
firstly, the value of the power law is not universal and depends
both on d/`c and the particle size R/`c. Secondly, the regime
of validity of such power laws is extremely limited with
none of those plotted in figure 7 valid over even a decade
in d/`c! This should serve as a warning when making such
simplifications or when trying to infer a simple exponent from
experimental data.

6. Conclusions

We have presented numerical solutions of the nonlinear
Laplace–Young equation based on the hp-meshless cloud

Figure 6. The deviation of the numerical results from the asymptotic prediction equation (27) depends on the contact angle and cylinder
radius. The figure shows the numerically determined force of attraction between two identical cylinders as the radius and contact angle
change. In (a) R = 0.0026`c, while in (b) R = 0.26`c. In both (a) and (b), points represent numerical results with contact angle θ = 0◦ (•),
θ = 45◦ (�), and θ = 85◦ (♦), while the solid curves show the asymptotic result equation (27).
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method. This provides a versatile tool for the simulation of the
meniscus shape around pairs of vertical cylinders in regimes
where simple asymptotic approximations are not valid.
Crucially, the determination of the interface shape via this
method allowed us to calculate the force–separation curve for
a range of parameter values and to probe the regime of validity
of the well-known asymptotic solutions. These asymptotic
solutions rely on the linearization of the Laplace–Young
equation and hence fail in situations where the meniscus
slope cannot be assumed to be small. In particular, this
simplification is not valid for contact angles near perfect
wetting and/or complete hydrophobicity, and when the two
objects are close to each other. In these regions, the full
numerical solution is necessary. Our numerical simulations
show excellent agreement with experimental results from the
literature, even in regimes where the asymptotic results are
at variance with experiments. Finally, we demonstrated that
the true interaction force law is not well approximated by
simple power laws and hence that caution should be used
when making such approximations.
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